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This paper initiates the classification, up to symmetry-covariant contact 
equivalence, of perturbations of local Hopf bifurcation problems which do not 
satisfy the classical non-degeneracy conditions. The only remaining hypothesis is 
that +i should be simple eigenvalues of the linearized right-hand side at criticality. 
Then the Lyapunov-Schmidt method allows a reduction to a scalar equation 
G(x, A) = 0, where G( - x, A) = - G(x, ,I). A definition is given of the codimension 
of G, and a complete classification is obtained for all problems with codimension 
<3, together with the corresponding universal unfoldings. The perturbed bifurcation 
diagrams are given for the cases with codimension 62, and for one case with 
codimension 3; for this last case one of the unfolding parameters is a “modal” 
parameter, such that the topological codimension equals in fact 2. Formulas are 
given for the calculation of the Taylor coefficients needed for the application of the 
results, and finally the results are applied to two simple problems: a model of 
glycolytic oscillations and the Fitzhugh nerve equations. 

1. INTRODUCTION 

The classical theorem of Hopf [ 16,251, describing the bifurcation of a 
periodic solution from an equilibrium point of a differential equation 
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has found many applications. From a mathematical point of view, one 
reason for this fact is that the assumptions for Hopf bifurcation are generic 
(that is, true for most choices of f). One should observe, however, that iff 
depends on extra parameters 01, (a rather typical situation in applications) 
then it is possible for the various hypotheses of Hopf to fail and to fail in a 
stable way. Recall that the theorem of Hopf is a local one (in u and A). For 
parameter values a close to a parameter value a,, where degeneracies occur, 
the results of Hopf are valid but valid only on an extremely small 
neighborhood, in fact a neighborhood of such small size that for practical 
purposes the conclusions of Hopfs theorem are invalidated. For this reason 
it has become clear that the study of various kinds of degenerate Hopf bifur- 
cations is desirable for certain applications, and recently there have been a 
number of articles doing exactly this. 

In this paper we shall study those degeneracies which still allow the 
Lyapunov-Schmidt method [ 351 or the alternative method [ 121 (these are 
equivalent for our purposes) to determine a real function G(x, 1) whose 
nontrivial zeros correspond to periodic solutions to (1.1). Here x 
corresponds-in a sense which will be made precise-to the amplitude of the 
associated periodic solution. Given the function G, one can use the 
singularity theory methods developed in [ 9, lo] to understand the structure 
of the periodic solutions as 1 is varied. One can do this not only for various 
degenerate Hopf problems but also for all small perturbations away from the 
degeneracy. This last observation allows one to obtain results 
which-although still local-are surely valid on a larger neighborhood than 
would be the case using the non-degenerate Hopf theorem. For example, we 
can simultaneously obtain two or more classical Hopf bifurcations in the 
same diagram. Although other authors have considered some of the 
degeneracies we consider, none have analysed the problem of perturbations 
away from the degeneracy in any but the simplest of cases. An advantage of 
the singularity theory approach is that it allows one to give-through the 
notion of codimension (properly interpreted)-the beginnings of a hierarchy 
of those degeneracies which are “likely” to occur, and to study with no extra 
effort the qualitative effects of arbitrary small perturbations. 

In order to state our results more precisely, we quickly review the 
hypotheses of Hopfs theorem. We assume that f(0, 0) = 0. 

(Hl) The Jacobian A E (dd)(O, 0) has simple eigenvalues fi (after 
resealing t if necessary) and no other eigenvalues of the form ki, where k is 
an integer. In particular, 0 is not an eigenvalue of A. 

From (Hl) and the implicit function theorem, it follows that there exists a 
curve v(A) such that f(v(A), A) E 0. Without loss of generality, we may 
assume u(A) = 0, that is, 

j-(0, A) = 0. (1.2) 
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For 1 near 0, let a(J) + k(k) be the unique smooth function satisfying 
o(O) = 0 and w(O) = 1 such that u + iw is an eigenvalue for (d$)(O, A). The 
second Hopf hypothesis is 

(H2) o’(O) # 0 (transversality condition). 
Assuming (Hl) and (H2) Hopf proved the existence of a unique branch of 

non-constant periodic solutions of (1.1) with period near 27r, bifurcating from 
(u, A) = (0,O) and parameterized by the amplitude x. Furthermore he showed 
that along the periodic solution branch A is an even function of x given by 

Assuming 

Hopf observed that this solution branch is either super- or subcritical 
depending on the sign of p2, and he showed that the stability of the solution 
branch is determined via his exchange of stabilities formula. 

In this paper we shall always assume that (Hl) holds. This is sufficient 
information, as has been observed in [4, 2 1,36,40], to apply the 
Lyapunov-Schmidt-alternative method. In the next section we describe this 
approach, while fully exploiting the SO(2) symmetry properties inherent in 
the problem. 

The main theoretical results are given in Section 3, where we analyse the 
situation where hypotheses (H2) or (H3) or both fail. There are two prin- 
cipal theoretical results in this section. 

(A) Theorem 3.19 gives a complete classification of bifurcation 
problems of codimension <3 along with their universal unfoldings. 

(B) Assuming that p2 = 0 but that p4 # 0 and no information about 
higher coefficients in (1.3) is needed, we give in Theorem 3.20 a complete 
classification of all bifurcation problems of finite codimension. 

A modal parameter plays a crucial role for certain cases in both (A) and 
(B). Both of these results rely heavily on the description of bifurcation 
problems with symmetry given in [lo]. Here the appropriate group is Z,. 
Our classifications appear to be substantially more complete than those 
given by other authors. From the point of view of applications, perhaps the 
most interesting example we find in our classification is the codimension 3 
degeneracy in Theorem 3.19, Case (7). This degeneracy is the simplest case 
for which both hypotheses (H2) and (H3) fail, and it is also the simplest 
case involving a modal parameter. The complexity of the perturbed bifur- 
cation diagrams near such a degeneracy is somewhat unexpected, see 
Figs. 4.6 and 4.7. 

At the end of Section 3, in Theorem 3.47 we give explicit criteria for deter- 
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mining whether a given G(x, A) is equivalent to one of our normal forms, and 
in Theorem 3.48 we give tests for F(x, 1, a) to be a universal unfolding of 
such a G(x, A). 

In Section 4 we present all the perturbed bifurcation diagrams for 
degeneracies of codimension <2, as well as the one case of codimension 3 
mentioned above. Moreover assuming that the stationary solution is stable 
before criticality and that the linearized operator (df)(O, 0) has no other 
pure imaginary eigenvalues except fi we give the stability assignment of 
each periodic solution. Here we use Hopfs exchange of stability formula. 

In Section 5 we show how to calculate the function G(x, A) for a given 
differential equation (l.l), and present explicit formulae for certain coef- 
ficients required for the application of the theoretical results of Section 3. 

In the last section we show by examples how our results can be applied to 
real problems. For the sake of exposition we limit our applications to two 
simple models drawn from the recent literature: the Fitzhugh nerve impulse 
equations and a model of glycolytic oscillations. 

In previous work, Andronov et al. [l] and Takens [33] have classified 
singularities of two-dimensional vector fields satisfying only (Hl) though 
they have not treated in detail the role of a distinguished bifurcation 
parameter. Chafee [3,4] has used the alternative method to determine the 
number of periodic orbits for any vector field in a neighborhood of one 
satisfying (HI). Gabber and Willamowski [8] studied (H3) degeneracies 
using Lyapunov functions. Flockerzi [7] considered both (H2) and (H3) 
degeneracies using an averaging procedure and Newton diagrams. Kielhdfer 
[21] extended Flockerzi’s results to infinite dimensional spaces using a 
Lyapunov-Schmidt reduction, and laid bare how the degeneracy of (H2) 
reappears in the bifurcation equation. Hassard and Wan [ 141 first calculated 
the coefficient ,u~ in (1.3). Vanderbauwhede’s work [36, 371 uses the 
Lyapunov-Schmidt reduction and symmetry to obtain partial results for the 
(H3) degeneracy, and also anticipates the applicability of singularity theory 
to this problem. We would like to thank G. Iooss for bringing Vander- 
bauwhede’s work to our attention. Over the past two decades, J. Hale has 
made contributions to bifurcation theory too numerous to list here, see [ 12, 
13, 40, 411 and further references therein. Other authors who have 
contributed to this problem include Iooss [ 181, Joseph and Sattinger [20] 
and Schmidt [30]. 

We end this introduction with two remarks. One obtains entirely different 
degeneracies when (Hl) is violated. Various problems with a simple zero 
eigenvalue in addition to fi in (Hl) have been studied in [ 11, 15, 23, 24, 32, 
38, 391. As shown in [23], the Lyapunov-Schmidt reduction applies to this 
case as well, so one can apply the singularity theory approach. The results in 
[ 10, 28,291 therefore apply equally to the problems in [23,24], and in fact 
these papers are identical in spirit though the techniques are different. The 
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resonant situation with eigenvalues fi and fki (k # 0, 1) is more complex 
and still under investigation. 

Finally, we have presented our results in the setting of ordinary differential 
equations in IR”. It is well known that the Lyapunov-Schmidt reduction of 
Section 2 also applies to differential equations in much more general settings, 
and leads to the same reduced bifurcation equations. Therefore our 
conclusions apply equally to these situations. We cite, for example, [5, 13, 
21, 25, 27,361. 

2. THE LYAPUNOV-SCHMIDT REDUCTION 

In this section we summarize the well-known Lyapunov-Schmidt 
reduction as it applies to the Hopf bifurcation problem. We assume 
hypothesis (HI) but not (H2) or (H3), and place greater emphasis on 
symmetry than is usually the case. Most of the calculations have been 
suppressed for this presentation. However, explicit calculations which are 
needed for applications of the theory are given in Section 5. 

Begin with the differential equation 

$=S(uJ), f(Q 1) = 0, (2.1) 

where f: IR” x IR -+ I?’ is C” and defined on a neighborhood of the origin 
(0,O). Hypothesis (Hl) implies that the linearization of (2.1) at (0,O) has 
2n-periodic solutions. This motivates us to seek periodic solutions of (2.1) 
near (0,O) with period 27r/( 1 + r), for small r. Rescale time by setting 

s = (1 + r)t, u(s) = u(t) (2.2) 

so that such solutions u will have period 2n in s. (The choice (2.2) rather 
than t = (1 + 7)s gives slightly simpler formulae in Section 5.) Now rewrite 
(2.1) as the nonlinear operator equation 

(2.3) 

Let CZn, resp. Cl,, denote the Banach spaces of 2n-periodic functions from 
IR into I?” which are continuous, resp. continuously differentiable, with norm 

(2.4) 



380 GOLUBITSKY AND LANGFORD 

where 1 .I is a norm on I?. Note that 

is defined on a neighborhood of the origin (0, 0,O). 
The purpose of the Lyapunov-Schmidt reduction is to replace the problem 

of solving (2.3) with the problem of solving an equation of the form 

g (x9 Y, 1, r) = 0, (2.6) 

where g: I?* x I4 x I? + I?* is Cm and defined on a neighborhood of the 
origin (0, 0,O). Moreover, as we shall stress in our exposition, the form of g 
is far from arbitrary, as g must commute with the symmetry group SO(2) 
acting on IR’. The structure of g allows us to further reduce (2.6) to an 
equation of the form G(x, A) = 0, where G: iR X IR -+ I? is odd in x. First we 
describe the construction of g. 

Define the linear operator L: C:, + C,, by 

L = (d&(0,0,0) = $ -A, A = (&t-)(0,0). (2.7) 

Observe that L is bounded with two dimensional nullspace M(L). 
Specifically, if c is a complex eigenvector of A satisfying AC = ic, then 
-f(L) = wn{#,, d21, where 

qbl(s) ;Re(e%), ti2(s) = Im(e’“c). (2.8) 

We define the inner product on C,, 

(u, u) = +j;^ u*(s)u(s)ds 

and define the formal adjoint of L, L*: C:, --t C2=, by 

where u* and A* denote (conjugate) transpose of u and A. The nullspace of 
L* is also two dimensional and is spanned by 

w,(s) = Re(e’“d), ty2(s) = Im(e’“d), (2.11) 

where d is an eigenvector of A* corresponding to the eigenvalue -i. 
Furthermore, the Fredholm alternative holds: 

~(L)=Jlr(L*)i-{uEC2,~(u,tyi)=0,i=1,2}. (2.12) 
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Note that the simplicity of the eigenvalue i implies that d*c # 0. Therefore 
we can normalize 

d*c = 2, (2.13) 

and it follows by direct calculation that 

($4 3 w,> = 4,, i,j= 1,2. (2.14) 

Therefore C,, has the direct sum decomposition 

C,,=JqL)@9(L). (2.15) 

Define the (oblique) projectors on C,, 

(2.16) 

and note that P has kernel 55’(L) and image X(,5.) and vice versa for Q. 
(This choice of oblique rather than orthogonal projections will help simplify 
the calculations in Section 5.) With the natural imbedding of C&E CZn, let 
(2.15) induce the decomposition C:, = A’(L) 0 W, where 

w={wEC:,)(w,~,)=O,i=1,2), (2.17) 

and clearly W G S’(L). 
The Lyapunov-Schmidt reduction begins with the observation that solving 

(2.3) is equivalent to solving the two equations 

Piqu, 1,r) = 0, 

QN(u, A, r) = 0. 

(2.18) 

(2.19) 

Now decompose u E C:, by 

u =xf& +y(2 + w, WE w, (2.20) 

and (2.9) has the form 

M(w; x, y, A, t) = QN(x$, + y#z + w, 44 = 0, (2.21) 

where M: W x lR4 + 5?(L). The Frechet derivative (d,,,M)(O, 0): W+ S’(L) 
is easily calculated from (2.3) to be L restricted to W. Since this map has a 
bounded inverse, the implicit function theorem applied to (2.21) yields a 
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unique solution w = w(x, y; 1, T) near (0,O; 0,O) satisfying ~(0, 0; 0,O) = 0. 
In fact this uniqueness, along with M(0; 0, 0,1, r) = 0 shows that 

w(0, 0; I, 7) = 0, (2.22) 

for small A, r. One now substitutes this w(x, y; A, 7) into Eq. (2.18) and 
defines g: A’(L) x R x I4 --f X(L) by 

g = PN(xh + Yf& + w(x, y; J,7), 137). (2.23) 

More explicitly, writing g = g,#, + g,#,, in terms of coordinates on X(L), 
we have 

g,(x,Y;k7)= (1 +7)$-f(uJ),wr =o, i = 1, 2, (2.24) 

where u = = x#i + yQz + w(x, y; 1,7). This completes the Lyapunov-Schmidt 
reduction. Note that (2.12), (2.22) and f(0, A) = 0 imply that the linear 
terms in the Taylor expansion of g at the origin all vanish. 

We now consider the symmetry group SO(2) and how it affects g. Define 
the shift operator S, on C,, by 

s, u(s) = u(s - 8), e,sm. (2.25) 

It is clear that S, = 1, SO+Zn = S,, and that S, induces a representation of 
the group of plane rotations SO(2) on C,,. Observe that since (2.3) is 
autonomous, whenever u is a solution so is S,u. In fact, for a 2z-periodic 
solution u of (2.3), all the solutions S,u define the same orbit in phase- 
space, and differ only by the choice of initial point s = 0. Thus it is natural 
to identify these solutions as one. 

One can easily show that S, commutes with d/ds, L, L*, P, and Q, and 

(S,% s, u) = (u, VI. (2.26) 

Thus, X(L), N(L*), 9(L) and W are all invariant subspaces for S,. We 
denote by S,(x,y) the action of S, on x4, + y+$ E N(L) in terms of the 
coordinates (x, y). One checks that this representation of S, is given in 
matrix form by the standard representation of SO(2) on R*, i.e., 

‘0 x = sin e 0 ( 
cos e -sine x 

Y c0se I( 1 y ’ 
(2.27) 

Now by the uniqueness of solutions to (2.21) given by the implicit 
function theorem, one has 

w(S,(x, v); A, 7) = s, 4% y; I, 7). (2.28) 
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It follows that the reduced function g satisfies 

g (S,(x, Y); 1, z) = s, g(x, Yi A 51, (2.29) 

that is, g is S0(2)-equivariant. The consequences for g of this equivariance 
are given in [ 10, p. 2271 ( usm ’ g a result of Schwarz [ 3 1 I). There it is shown 
that g must have the coordinate form 

= p(x’ + $3 I, z) (2.30) 

where p and q are C” and defined near (0, 0,O). Moreover, since the linear 
terms of g at the origin vanish, one has that p(0) = q(0) = 0. In this form, it 
is easy to see that solutions to g = 0 are given by either x = y = 0 (the trivial 
stationary solutions) or p = q = 0 (the periodic bifurcating solutions). Note 
that for a given solution (x, y), the rotated solutions S,(x, y) correspond 
exactly to the previously discussed phase shift of periodic solutions to the 
original problem. It suffices to choose just one representative for each such 
orbit of solutions; we take y = 0, x > 0. The equation g = 0 from (2.30) is 
then 

g, = p(x’, 1,5)x = 0, 

g, = q(x2, A, 5)x = 0. 

A further reduction is now possible. One calculates directly 
definitions that 

(2.3 1) 

from the 

4, -= 
ds -423 (2.32) 

Then differentiation of (2.23) using (2.22) and (2.32) gives 

g,(O, 0; 0,z) = PT f$ = - z#2. (2.33) 

Therefore 

P,(O, 0, 0) = 0, q,(O, 0,O) = - 1, (2.34) 

and the implicit function theorem guarantees that the equation 4(x2, A, r) = 0 
has a unique solution r = r(x2, 1) near (0, 0,O). Substituting this information 
into (2.31) yields a single scalar equation 

G(x, A) = u(x*, A)x = 0, a(0, 0)x = 0. (2.35) 
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where (I(x*, A) =p(x’, 1, r(x*, A)). Note that (2.35) has a Z, symmetry-if we 
allow negative as well as positive values of x-that is G is odd in x. This is 
what remains of the SO(2) symmetry in the original problem. The study of 
small nontrivial solutions of (2.35) is the object of the next section. It will 
become clear that Hopfs hypotheses (H2) and (H3) stated in the 
introduction are equivalent respectively to 

a,@, 0) f 0 and a,(09 0) # 0, (2.36) 

where z E x2. If a,(O, 0) # 0, then the implicit function theorem applied to 
a(~‘, A) = 0 gives a unique small solution A = A(x’). If also a,(O, 0) # 0, then 
the local behaviour of this solution is determined as in (1.3), i.e., 

I =p,x* + 0.. , Q&4 0) z 0 
p2=- UA(O,O) . 

(2.37) 

3. CLASSIFICATION OF DEGENERATE BIFURCATIONS OF HOPF TYPE 

In the last section we showed that finding periodic solutions reduced to 
solving an equation of the form 

G(x, 1) = a(~*, 1)x = 0. (3.1) 

In particular x = 0 corresponds to a given steady-state solution and non-zero 
solutions x to u(x*, A) = 0 correspond to periodic solutions. Our approach to 
(3.1) is to change coordinates so that a(~*, A) has a simple polynomial form 
from which the solutions may easily be determined. This is the key to the use 
of singularity theory described in [9, lo]. The changes of coordinates we 
allow are: 

DEFINITION 3.2. G and H are Z,-equivalent if 

H(X, A) = Z-(X*, A) G(X(x*, AN, A CL> A), (3.3) 

where 

T(0, 0) # 0, X(0,0) > 0, and A(0) > 0. 

The main result of this section is a classification by codimension of bifur- 
cation problems (3.1). (Roughly speaking, the codimension of G gives a 
measure of how difficult it is to find a given singularity.) In order to define 
codimension we introduce some algebraic notation. 

Let 8, = 8,,, be the ring of germs of C” functions mapping (lR*, 0) -+ IR 
with coordinates z and A on IR*. Let 8, be the space of germs depending on 
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one variable ,?. Let ylr denote the maximal ideal in 8,,, consisting of germs 
which vanish at (0,O). If p, ,..., pk are in 8z,A we denote by (p, ,..., pk) the 
ideal in 8,,, generated by p, ,...,pk. The product of two ideals is the ideal 
generated by products of germs, one from each of the two ideals. .Xk is then 
the ideal in 8, of germs whose Taylor expansion begins with terms of degree 
k or higher. In fact, Taylor’s Theorem shows that Mk is generated by a basis 
for the homogeneous polynomials of degree k. An extremely useful tool in 
calculation is: 

LEMMA 3.4 (Nakayama), Let P = (p,,...,pk) be an ideal in 8,. Let 
q, ,..., qk be in u.+f * g. Then % = (p, + q, ,...) pk + qk). 

Let z = x2. Associate to G in (3.1) the ideal in 8, 

FG = (a(z, A), za,(r, A)). (3.5) 

Also let 

I’G = i=G + 8,{a,(z, A)}, (3.6) 

where “ + ” indicates vector space sum and &,{a,} is the vector space of 
germs of the form h(3L)al(z, A). 

DEFINITION 3.7. The codimension of G is dim +Y”,/TG. 

In [lo], it is shown that codim G is an invariant of Z,-equivalence. 
Another way of thinking of codim G is: Suppose V is a vector subspace of 
8, such that 

8,=l-GO V. (3.8) 

Then codim G = dim V. We shall use V to denote the choice of 
complementary subspace to TG in 8’, in future calculations. 

A basic result from singularity theory [lo] which enables one to compute 
Z,-equivalences in a somewhat mechanical fashion is: 

PROPOSITION 3.9. Suppose G,(x, A) = H(x, A) + tP(x, A) and that either 

fG, = fH for all t 
or 

TG, = TH for all t. 

Then G, is Z ,-equivalent to H for all t. 

The situation in classical Hopf bifurcation is that 

(3.9a) 

(3.9b) 

G(x,A)=Bx3+CxA+-=O, (3.10) 
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where B . C # 0. We will show incidentally that under these assumptions G 
is Z,-equivalent to 

H(x, 1) = x3 f Ix = 0. (3.11) 

Our main concern here is to find out what happens when either B or C or 
both is zero. 

A second theoretical issue is to classify what bifurcation problems are 
possible when a given G is subjected to small perturbations. The 
answer-given by singularity theory-is, in principle, quite straightforward. 
Suppose codim G < co and let P, ,..., P, be a basis for the complementary 
subspace I’. Then 

F(x, A, a) = G(x, A) + a,P,(x, A) + .-- + a,P,(x, A) (3.12) 

is a universal unfolding of G. That is, every small perturbation of G is E,- 
equivalent to F(.,., a) for some fixed a with a depending smoothly on the 
given perturbation. 

As the above discussion suggests, one must assume that codim G < co in 
order to make a complete singularity theory analysis of the problem. This is 
a very mild assumption which we henceforth make. 

The assumption of finite codimension has two immediate consequences. 
To see this write a(z, ,l) as a power series in z with coefficients in A; that is, 

a(z, 2) = u,(k) + u,@)z + * * * + a,(n)zn + * * * . (3.13) 

If a,(l) vanishes to infinite order at A = 0, then to any finite order z is a 
factor of a, zap, and a,. As a result Iz, 1’, A3 ,... are all independent vectors in 
B,/TG and G has infinite codimension. Next suppose that a,(O) = 0 for all i. 
Then again G has infinite codimension as now L is a factor of a to any finite 
order. One can check z, z2, z3 ,... are independent in cP,/TG except for 
(perhaps) one relation (given by an). 

Let m be the first integer for which u,(O) # 0 and let k be the integer such 
that a&) = n%,(L) with c,(O) # 0. It is easy to show that G is Z,-equivalent 
to G with the form (divide by a, and rescale A) 

+,I)= f Ak + u#)z + *** + um-,(qZm-l +z” + u,+,(z,A)zm+l. (3.14) 

We now present our results. As indicated above the case m = k = 1 is the 
situation of Hopf bifurcation. The following two propositions determine what 
happens when one or the other of these two conditions fails. 
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PROPOSITION 3.15. Suppose k = 1. Then G is Z,-equivalent to 

H(x, 2) = (z” f 2)x, (3.16) 

where codim H = m - 1 and a basis for V is {z, z* ,..., zmP1}. 

PROPOSITION 3.17. Suppose m = 1. Then G is Z,-equivalent to 

H(x, A) = (z f A&)x, (3.18) 

where codim H = k - 1 and a basis for V is { 1, A,..., AkP2}. 

The beginning of a classification by codimension promised above is: 

THEOREM 3.19. Suppose that G has codimension <3. Then G is Z,- 
equivalent to one of the following Bs. 

(VI H codim H Basis for V 

(1) x3*Ax 
(2) x3 f /12x 
(3) x5 &AX 
(4) x3 It 13x 
(5) x’*kx 
(6) x3 + A4x 
(7) xs + 2bAx3 + eA2x; E = f 1, b2 # E, 
(8) x5 f 2(A f A2)x3 + A2x 
(9) x5 l 2Ax3 f A3x 

(10) x7 * Ax3 f n2x 
(11) x9 *Ix 

0 
1 
1 
2 
2 
3 
3* 
3 
3 
3 
3 

X 
X3 
x, Ix 
x3, x5 
x, Ax, n2x 
x, x3, Ax3 
x, x3, Ax3 
x, Ix, n*x 
x, x3, x5 
x3, x5, x7. 

In the next section, we shall describe the bifurcation diagrams associated 
with problems of codimension 92 along with their universal unfoldings. We 
note here that in a very concrete sense normal form (7) has codimension two 
when b # 0. That is, the topological Z,-codimension of (7) is two even 
though the C”Z,-equivalences we use here gives codimension 3. We shall 
discuss this point more fully in the next section. We also note that normal 
form (7) is the most likely case to occur if both conditions on Hopf bifur- 
cation fail, that is, m > 1 and k > 1. 

Several authors [8, 33, 371 have studied the case m = 2 and obtained the 
very beginnings of a classification of such bifurcation problems. Here, we 
extend this classification substantially giving a complete description of those 
problems where no higher order information in z than m = 2 is needed. 
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THEOREM 3.20. Assume that m = 2 and that G has finite codimension. 
Then G is Z,-equivalent to one of the following: 

H Restrictions codim H 

(1) x3 f nkx 2k- 1 
(2) x5 f n'x3 f nkx l<l<k- 1,k#21 k+Z-I 
(3) x5 + 2b11’x3 + &A2’X &=fl,b#0,6*&# 1 41- 1 
(4) x5 f 2(bII’ f IZN)x3 + &A2’X 1>2,1+1<N<21-1 21+N-1 

&=fl,b#O,b*&# 1 
(5) x5 f 2(A f 2)x3 + A2x 3 
(6) d(x*, Qx’ + x5 f 2(A’ t 122 25 

c(Izp'+ l)x3 + n*'x 
(7) d(x*, n)x’ t x5 f 2(A t 27 

c(A)A”) t 1*x 

Note (A). To determine whether a given G is H,-equivalent to normal 
forms (l)-(4) one does not need any information about the Taylor expansion 
of G involving terms of the form zp for p > 3. One does need such infor- 
mation to obtain normal form (5) or to proceed with the classification of 
problems of type (6) or (7). (See Proposition 3.47.) 

Note (B). The type of higher order information needed to show that G is 
Z,-equivalent to (5) is contained in a certain non-degeneracy condition (see 
Proposition 3.47(8).) That is to say, if G satisfies certain lower order 
conditions, then generically (or almost always) G will be Z,-equivalent to 
(5). This is in contrast to the type of information needed to pursue the 
classification of (6) and (7) where higher order information is needed in an 
essential manner. 

Proof of Proposition 3.15. From (3.16) we see that 

FH = (z”‘, ,I). (3.21) 

Thus lz and zm+ ’ are in J.rH. By Nakayama’s Lemma pG=fH 
regardless of the choice of a, ,..,, a,-, , a,,, + r in (3.14). By Proposition 3.9(a), 
we see that G is Z,-equivalent to H. Moreover {z, z* ,..., z”- I} is a basis for a 
complementary space V to TH. 

Proof of Proposition 3.17. From (3.18) we see that 

i;H = (z, A”). (3.22) 

As z* E i@H, it follows that FG = f”H. So G is Z,-equivalent to H. A 
simple calculation shows that { 1, A,..., Ak-*} is a basis for V. 
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Proof of Theorem 3.19 assuming Theorem 3.20. Assume that G has 
codimension <3. If m = 1, then Proposition 3.17 shows that G is Z,- 
equivalent to (l), (2), (4) or (6). If m = 2, then Theorem 3.20 states that G is 
Hz-equivalent to (3), (7), (8) or (9). Th e calculations to obtain the basis for 
V for these H’s may either be done directly or recovered from the proof of 
Theorem 3.20. So we may assume that m > 3. If k = 1, then Proposition 3.15 
states that G is Z,-equivalent to either (5) or (11). 

It follows that we may assume that G has the form 

a(z, A) = f Ak + a,(A)z + a,(A)z* + a3(z, 1)z3, (3.23) 

where k > 2. First we show that if k > 3, then codim G > 4. To see this 
compute 

fG +A3 = (Ak, a,(O)Az) +M3 = (a,(O)Az) +d3. (3.24) 

Thus 1, A, A*, z, z2 are independent in B,/(fG +A3), Now 

aA(z, A) = f hlZk-’ + a;(A)z + a’,(O)z’ modJ3 (3.25) 

while La, is in FG +J3. Thus at least four of the live vectors are 
independent in Z”,/(TG +.AT3) and thus in B,/TG. 

Next we assume that k = 2 and m > 3. So a has the form: 

a(z, A) = l A2 + a,(J.)z + a,(lZ)z’ + a,(l)z3 + a&, z)z4, (3.26) 

where a,(O) = a,(O) = a,(O) = 0. Now compute: 

fG t d4 = (f A2 - a;(0);lz2, al(A)2 t 2a;(0)Az2) t d4. (3.27) 

It follows that 1, 2, z, z2, z3 are independent in a/(i;c t ,n”). Moreover, 

Aa,(z, A) E k2A2 t la;(A)z t Aa;(O)z’ mod A4 (3.28) 

is independent of the five terms above. Again at least four of these five terms 
are independent in B,/(TG + J”). So codim G > 4. 

We have reduced the Theorem to the case k = 2 and m = 3. We may 
assume a(z, 1) has the form 

a(z, A) = *A2 t a,(A)z t a,(A)z’ + z3 t a4(z, A)z”, (3.29) 

where a,(O) = a,(O) = 0. Now with an argument similar to the ones above, 
one shows that if a;(O) = 0, then codim G > 4. Here, one computes 
TG +J3. So we can assume a;(O) # 0. Now by scaling we have 

a(z, A) = +A2 f AZ + z3 tp(A.)A2z t q(A)Az2 t r(z, L)z4. (3.30) 
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Now compute fH for H the normal form (10) to obtain 

fH = (-2~~ f A2, 3z3 f AZ). (3.3 1) 

Computing modulo M. FH one has 

k2Z 31z3 qz5 
z4~+-~*--~*--* 

2 2 2 
(3.32) 

Hence z”( 1 - (q/2)z) E J2. fH which implies that z4, 12z and 1z3 are in A. 
f?H. Nakayama’s lemma implies FG is independent of p, q, and r while 
Proposition 3.9(a) implies that G is Z,-equivalent to H. Finally one 
computes the codimension of H to be 3 and a basis for V to be the one 
stated in the Theorem. 

Proof of Theorem 3.20. Assuming m = 2 one has 

u(z, A) = &lZk + 2a,(L)z + z* + u,(A)z3 + a,(z, A)z”, (3.33) 

where E = f 1. Choose 1 so that a, = A$?, , where 12 1. Consider the change 
of coordinates z = i - a#)z”/2 yielding after a division by 1 - ala3 

a(& A) = &Ak 
1 -u,u3 + 1 -“,I, F+Z2+a4(z;A)2. (3.34) 

1 3 

Now let I= L/(“dm, thus obtaining after dropping the bars 

u(z, 1) = &Ak + 21’ b(A)z + z2 + d(z, A)z” = A(z, A) + d(z, qz4. (3.35) 

Observe that the computations of k, 1, E, and b(0) are independent of a3 and 
u4 as b(0) = c,(O). In fact 1 as a function of 1 has the form Iz = I+ q(l),?+ ‘, 
where q(0) does depend on u,(O). From this one can see that the coefficients 
of Lj in b forj < I are independent of q(0) and u,(O). However, the coefftcient 
of ,L’ in b does depend on u,(O). 

We consider four cases: 

0) l>k, 

(ii) 1 <l<k- 1, 21~ k, b(0) # 0, 

(iii) 21= k, b2(0)& # 1, b(0) # 0, 
(3.36) 

(iv) 21= k, b2(0)& = 1. 

Let H denote the bifurcation problem associated to A(z, A) defined in (3.35). 
In all cases one has: 

FH = (l’b(A)z + z2, z2 - elk). (3.37) 
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Thus 
12k G z4 G A2’b2(A)z2 s A2’+kb2(1)~ mod&fH. (3.38) 

Thus for cases (3.36) (i), (ii), and (iii) one has J2k E Mi=H and z4 E Al=H. 
Proposition 3.9(a) shows that G is Z,-equivalent to H as i;G is independent 
of d(z, A) by Nakayama’s lemma. 

In case (i), one has 

dk z z2 E - A’b(A)z mod FH. 

As 12 k, one has Ik and z2 in FH. In fact 

(3.39) 

FH = (A”, z’). (3.40) 

As FH is independent of b(ll) we use Proposition 3.9(a) to show that H is 
B,-equivalent to (1) in the Theorem. Moreover, 1, I ,..., lke2, z, z&.., zlk-‘} 
is a basis for I’. 

In case (3.36)(ii) we prove below that 

Z’H = (z2, Ik, zA’) + R{21b(0)1’-‘z + ckAk-‘}. (3.41) 

In this computation one uses only that b(0) # 0. Now one scales the 
variables so that b(0) = fl and applies Proposition 3.9(b) to see that it is 
Z,-equivalent to normal form (2) of the Theorem. Also the space Y is 
spanned by the k + I- 1 vectors 1, I ,..., Ak-‘, z, 12 ..a zJ’-*. TO prove (3.41) 
observe that 

la, = ~%(;l)z + kik, (3.42) 

where &(O) = b(0). As J’b(A)z + sAk is in FH one sees that Ik and thus z*, z3 
and zl’ are in I’H. As all multiples of vectors in TG by I remain in TG, we 
have proved (3.41). Recall (3.38). 

We now consider case (ii). Let the two generators of fH in (3.37) be p 
and q. It is straightforward to show that zp, A’p, zq, and A’q are independent 
and thus that z3, z2J’, z12’, J3’ are in AfH. Thus H is Z,-equivalent to 

a(z, A) = dk + 212’(b, + b,, ,A t em- t b,,, $-‘)z t z2. 

If bl+ 1 . . . = b 2,--1 = 0, then H is Z,-equivalent to the normal form (3) of the 
Theorem. If not, let N be the integer such that bl+ 1 = . . . = b,-, = 0 and 
b, # 0. Note that 1 t 1 < N < 21- 1. Also one can scale A and z so that 
b, = f 1. Next observe that zJN is in I’H from which it follows that AN+’ and 
.z2AN-’ are in TH. To see this compute 
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where q(0) # 0. One can now show that the subspace TH does not depend on 
b ,,,+, ,..., r,-, . Apply Proposition 3.9(b) to show that H is &-equivalent to b 
the normal form (4). From the above discussion one sees that the 3N vectors 
1, A,..., AN+‘-‘, z, zl,,.., zLN-‘, z*, z21 ,..., z2LN-‘-’ span a subspace W of 8, 
such that I’H + W = 8,. However, if p and q are the generators of fH in 
(3.37) then the 2N- 2Z+ 1 vectors p, Ap ,..., IZN-‘-‘p, q, Aq ,..., AN-‘-‘q, a, 
span a complement to V in W. Thus dim V = 2Z+ N - 1 as stated in the 
Theorem. Note that 1, I ,..,, A*‘-*, z, zl,..., zlN-’ span V. Taking N = 21 gives 
the enumeration for normal form (3). 

Finally we consider the case (3.36)(iv) where b(0) = f 1, E = 1, and k = 21. 
First we observe that if I > 1, then the computation of codimension is 
included in case (6). Taking I= 1, we have 

a(z, A) = z* + 2(bl+ CA* + f(/I)A’)z + A* + d(z, 1)z4, 

where b = + 1. If c = 0, then case (7) will show that codim G > 4. If c # 0, 
then c may be scaled to f 1. Note that the computation of c depends on the 
z3 term in the original G; recall the discussion after (3.35). Consider the 
normal form H given by 

A(z, A) = z* + 2(bA + cA*)z + 1* = (z + bA)* + 2cAz*. (3.43) 

We claim that A4 c AfH. Recall that 

FH = ((z + b1)* + 2cA*z, z(z + b/I) + d’z) = @, q). (3.44) 

Observe that r = zp - (z + bl)q = cA*z* - bcL3z. By Nakayama’s Lemma 
one sees that J4 = (r, (z + bA)*p, (z + bA)*q, (z + bA)zq, z*q) thus proving 
the claim. Proposition 3.9(a) implies that G is Z,-equivalent to H. It is an 
exercise to show that codim H = 3. 

To show that bifurcation problems of the form 

a(z, A) = z* f 2(i’ + c@)P’ ‘)z f I*’ + d(z, l)z4 (3.45) 

have codimension 25, compute TH +A4 and see that 1, z, II, z& and A2 are 
contained in a complement V to TH + J4. Finally, to show that bifurcation 
problems 

a(z, /I) = z* f 2(12 + c@)13)z + A2 + d(z. L)z4 (3.46) 

has codimension 27, compute TH +A5 and see that 1, z, z*, A*, z3, z3& and 
z* 12* are contained in a complement to TH + &. 

In order to use the results described in this section in a given application, 
one must answer the following two questions. Given G(x, A) = u(z, n)x, when 
is G L,-equivalent to one of the eleven normal forms listed in Theorem 3.19? 
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Suppose that F(x, II, a) is a k parameter unfolding of G(x, A), where 
k = codim G; that is, a E IF? and I;(x, 1,0) = G(x, A). Under what conditions 
is F a universal Z,-unfolding of G? The answers to these questions were 
given-in principle-in the Proof of Theorem 3.19. For future reference we 
summarize the results in the following two propositions. 

PROPOSITION 3.41. G is b,-equivalent to normal form (v) of 
Theorem 3.19 if and only if the following defining conditions and non- 
degeneracy conditions on a(z, A) are satisfied at (z, A) = (0,O). Note 
a(0, 0) = 0 always. 

(VI Defining conditions Non-degeneracy conditions 

(1) 
(2) 
(3) 
(4) 
(5) 
(6) 
(7) 

None a, # 0, a, # 0 
a, = 0 a, f 0, aAa # 0 
a, = 0 arr # 0, a, # 0 
a, = aAl = 0 a, Z 0, a,,, f 0 
a, = arz = 0 arzz f 0, a, Z 0 
a, = a,, = aAlA = 0 a, Z 0, alAll f 0 
a, = a, = 0 azz # 0, a,, # 0, b2e # 1 

where b = a,,/la,, . azr ) 1/2 and E = sgn(a,, . aAA). 

(8) a, = aA = 0; E = +l, 6’ = 1 arr Z 0, a,, f 0 

and choose v # 0 so that D’a(v, v) = 0, then @a(v, v, v) # 0. 

(The first f sign is given by b; the second f sign depends on the sign of 
D3a(v, v, v).) 

(9) a, = a, = aAn = 0 azz f 0, azA Z 0, aAAA Z 0. 

(The first f sign is sgn(a,, . a,,); the second f sign is sgn(a,,, . a,,).) 

(10) a, = arr = a, = 0 arrr f 0, anA f 0, azn f 0 

(The first f sign is sgn(a,, . a& the second f sign is sgn(a,, u azrr).) 

(11) a, = aZZ = azzz = 0 a LLzL Z 0; aA f 0. 

The answer for the second question-when is F a universal Z,-unfolding 
of G-is somewhat obvious for the first five normal forms; namely, when the 
perturbation parameters till in the missing lower order terms in G. We list 
the results, for these cases and normal form (7) as these are the cases most 
likely to occur in applications. 
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PROPOSITION 3.48. F(x, 1, a,/3 ,...) = e(z, A, a, ,8 ,... )x is a universal 
unfolding of G(x, A)-assumed Z,-equivalent to norm&form (v)-if and only 
if the following conditions hold. 

(v> Non-degeneracy condition 

(1) 
(2) 
(3) 

(4) 

(5) 

(7) 

det 

None 
e, f 0 
ear f 0 

\ eB2 h 1 

0 0 0 u,, 6, aAA 
0 0 0 2a,, a,, 0 
0 a,, aA, h araA ~AAA 
e, ear e,, eurr earA %AA 
e4 e4r eon ebrz em ebaa 
eY eP eY* eYLz e yzl eyaa 

As we have indicated above, normal form (7) has topological codimension 
2 (as long as b # 0, that is, a,, # 0). As we shall show in the next section, 
only the range of b matters when classifying the perturbed bifurcation 
diagrams. In this case (b # 0) only two perturbation parameters are needed 
to obtain (up to topological &-equivalence) all the perturbed bifurcation 
diagrams. Thus when b # 0 a universal Z, (topological) unfolding is given 
by F = ex as long as e satisfies 

As a final remark we note, that if b = 0 (=a,,) then the matrix condition 
(7) of Proposition 3.48 simplifies to 

(3.50) 

by eyr %A +A / 
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So, in practice, the computation of the determinant of the full 6 x 6 matrix 
for unfoldings of this normal form is never necessary. 

4. THE BIFURCATION DIAGRAMS 

In this section we present the bifurcation diagrams associated to the 
universal unfoldings of problems with codimension less than or equal to two. 
We also include the one problem of codimension three whose topological 
codimension is two. (We are reasonably sure that we have found all bifur- 
cation problems of topological codimension less than three;though we have 
not proved this.) 

Specifically, we consider the following universal unfolding normal forms 
from Proposition 3.19. Here E = +l, a and /3 are unfolding parameters, and b 
is a modal parameter. 

x3 + &AX = 0, (4-l) 

x3 + &(A2 + a)x = 0, (4.2) 

x5 + 2ax3 + &/IX = 0, (4.3) 

x3+&(A3+pA+a)x=o, (4.4) 

x7+~x5+ax3+dx=0, (4.5) 

x5 + 2bAx3 t (A’ + sgn(b)j?A + a)x = 0, b#O, +I, (4.6) 

x5 t 2bAx3 - (A” t sgn(b)pA t a)x = 0, b # 0. (4.7) 

The various bifurcation diagrams associated with these normal forms are 
given in Figs. 4.1 to 4.7, respectively. We choose x as the vertical axis and 1 
as the horizontal axis. We also assume that x > 0. 

The degenerate Hopf bifurcation diagrams obtained by [ 7,2 1 ] correspond 
to the cases a = p = 0 in our figures, though even here they did not consider 
the effect of the modal parameter b in (4.6) and (4.7). 

There are two pieces of information contained in each of these figures: the 
qualitative structure of the zero sets and the stability of each solution branch. 
We will explain below in more detail how the zero sets are found. We have 

t =-1 c =$I 

FIG. 4.1. Bifurcation diagrams for normal form (4.1). 
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FIG. 4.2. Bifurcation diagrams for normal form (4.2). 

*<0 0 = 0 (I > 0 

FIG. 4.3. Bifurcation diagrams for normal form (4.3). 

FIG. 4.4. Bifurcation diagrams for normal form (4.4). 

used the notation that “s” means stable and “u” means unstable; this 
notation has the obvious meanings for both the stationary and periodic 
solutions. 

For the stability assignments of “s” and “u”, we assume that (dJ)(O, 0) 
has all eigenvalues except fi with negative real parts and we have made the 
convention that the steady state solutions x = 0 for A < 0 are stable. If those 
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FIG. 4.5. Bifurcation diagrams for normal form (4.5). Case 0: a =/I = 0. 

solutions are in fact unstable then the stability assignments for any given 
diagram are obtained by interchanging “s” and “~2’ throughout that diagram. 

One should also observe that we have not drawn all possible pertur- 
bations; that is, diagrams for all choices of a,P in (4.4)-(4.7). We have 
however drawn the qualitative pictures for an open dense set of (a,P)‘s; 
namely, those diagrams which, except for (a,P) = (O,O), contain no 
singularities other than limit points and non-degenerate Hopf bifurcations 
from the steady state. It is well known through Hopfs exchange of stability 
formula how the stability of periodic solutions is determined for such 
diagrams, at least for the connected component of the diagram containing 
the x = 0 solutions. The local nature of the universal unfolding allows 
one-by continuity arguments in a,p-to obtain the stability assignments 
for other components as well. 
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FIG. 4.6. Bifurcation diagrams for normal form (4.6). Case 0: a =/? = 0: See Fig. 4.10(a). 
Cases 1 to 5: See Figs. 4.1 l(a) and 4.12(a). 

The diagrams (4.1), (4.2), (4.4) are obtained in a straightforward manner. 
Note that x3 + Ax = 0 has three solutions when A < 0 and only the trivial 
solution x = 0 when A > 0. 

A number of people [8,33, 371 have made a similar observation when x5 
is the initial non-zero term. Takens, in particular, has observed that this 
discussion can be generalized to higher order initial terms. The universal 
perturbation is described by 

x5+2Bx3+Cx=0. (4.8 ) 
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b<O b>O 

FIG. 4.7. Bifurcation diagrams for normal form (4.7). Case 0: a =/3= 0: See Fig. 
4.10(b). Cases 1 to 5: See Figs. 4.1 l(b) and 4.12(b). 

One obtains the diagram pictured in Fig. 4.8 showing the regions in the BC- 
plane corresponding to 1, 3 or 5 real roots x in (4.8). Note that on boundary 
(i) 0 is a triple root and kd?% are simple roots. On boundary (iii) 0 is a 
triple root and there are no other real roots. On boundary (ii) there are two 
double roots at +p. 

The bifurcation diagrams for (4.3), (4.6) and (4.7) may now be obtained 
by analysing paths through Fig. 4.8. More precisely, these normal forms give 
B and C as functions of A for fixed choices of a, /I, and b. The effect on a 
bifurcation diagram corresponding to a given path when that path crosses 
one of the boundaries (i)-(iii) transversely is given in Fig. 4.9. In this figure 

sos/41/3-8 
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\ Iii1 

FIG. 4.8. Roots of Eq. (4.8). 

C 

C 
1-5 1-S 

FIG. 4.9. Crossings of boundaries in Fig. 4.8. 

6 (-1 -1 < 6 < 0 \ \ u \ \ . -__- ---- 
o< bcl I <b 

FIG. 4.10(a). Paths through Fig. 4.8 for normal form (4.6) with CL =/I = 0. 

b<O bZ0 

FIG. 4.10(b). Paths through Fig. 4.8 for normal form (4.7) with (x =/3 = 0. 
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we use the notation p--f q to indicate a path going from the region with p 
roots to the region with q roots. 

It should be clear that the qualitative type of a bifurcation diagram 
corresponding to a path in the BC-plane which intersects the boundaries 
(i)-(iii) transversely and never intersects the origin is determined by which 
regions the path starts and ends in, along with the order of intersections (in 
A) of the path with the boundaries. Such paths we call stable. The set of 
(a, /I) which correspond to stable paths is open and dense in (a, /I) space. 

It is now relatively easy to draw the bifurcation diagrams corresponding 
to stable paths in (4.3), (4.6), (4.7). In (4.3) the path corresponding to a = 0 
is the vertical line in the BC-plane containing the origin. The perturbation 
parameter a moves that line to the left (a < 0) or to the right (a > 0). The 
sign of E determines the direction of the path along this line. 

Problems (4.6) and (4.7) are slightly more complicated (though the effect 
of the modal parameter b can now be readily ascertained). Setting a =p = 0 
one obtains parabolas as paths. The relative position of these parabolas vis- 
a-vis the boundaries (i)-(iii) is determined by b and summarized in Fig. 4.10. 

One now observes that when a and p are non-zero one also obtains a 
parabola as a path in the BC-plane. The net effect of a and /I is to 
(arbitrarily) move the vertex of the parabola from the origin. In Fig. 4.11 we 
list the kinds of stable paths which can occur. Note that we consider b 
fixed-though no change would occur if b varied as long as one did not 
change the interval in which b was originally found. 

For completeness we list in Fig. 4.12 the regions of the a/I-plane which 
correspond to the stable paths given in Fig. 4.11. .Note that in each case 

Ibl > 1 0 < lb! < I 

FIG. 4.1 l(a). Stable paths for normal form (4.6). 

FIG. 4.1 l(b). Stable paths for normal form (4.7). 
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Ibi > I lb1 < I 

FIG. 4.12(a). Regions corresponding to paths in Fig. 4.1 I(a). 

u 

t P 

FIG. 4.12(b). Regions corresponding to paths in Fig. 4.1 l(b). 

regions 1 and 2 correspond to these diagrams which are most likely to occur 
as a small perturbation from a = p = 0. 

To draw the bifurcation diagrams associated with normal form (4.5) 
observe that (4.5) has the form 

x(z” + pz’ + az + &A) = 0, (4.9) 

where z = x2. The solutions of (4.9) are 

-+A = z3 + /3z’ + az, and x = 0. (4.10) 

The non-trivial branch in (4.10) is just an arbitrary cubic through 0 whose 
asymptotic behavior at co is determined by E. The diagrams in Fig. 4.5 are 
now easily obtained. 

5. CALCULATION OF THE COEFFICIENTS 

In order to facilitate applications of our theoretical results, we describe in 
this section a simple procedure for calculating the defining and non- 
degeneracy coefficients of Proposition 3.41, and we present explicit 
formulae for all but one of the coefficients necessary for the classification of 
bifurcation diagrams given in Section 4. Formulae for the lowest order coef- 
ficients, sufficient only for the non-degenerate normal form (4. l), are given in 
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[3, 5, 13, 16, 17, 19, 25, 26, 271. A numerical implementation of the 
Lyapunov-Schmidt method assuming (H2) but not (H3) is given in [22]. 
Calculations of various higher order coefficients can be found in [4, 7, 8, 14, 
19, 21, 30, 401. Our approach is based on that used in [ 19, 261 and by 
Howard and Kopell in [25]. Similar formulae are given by Kielhiifer [21]. 

Recall from Section 2 the bifurcation equations have component form 

g, = P(X29 1, r)x = 0, 

g, = 4(x2, L, t)x = 0. (5.1) 

The Taylor series for p and q, with z = x2, are 

where the coefficients are given by 

1 
PJkr= (2j+ I)! k! /! 

a2j+1+k+kl(0,0,0) 
axzj+iaAk& ’ 

(5.2) 

(5.3) 

and similarly for qjkl and g,. As in Section 2, we can solve q = 0 for 
r = r(x2, 2) and substitute into p to obtain the single equation 

G(x, A) = u(x2, A)x = 0, (5.4) 

where we write 

a(z, A) = Zajkd Ik. (5.5) 

It is these coefficients ajk which we need to calculate. 
For convenience of notation, define the symmetric k-linear form 

j? IR” x ... x IR” -$ IRR by fk(u’ ,..., u”) = (dk,f),,, Oj(~’ ,..., ok), with ith com- 
ponent 

flkV,..., vk) = 2 . . . i akf,(oT O) VI . . . &, 
Pr=l au,, *** au,k “’ (5.6) 

a,=1 

and similarly define 

f yv’,..., (LA..., v”). 
(0.0) 

(5.7) 

Recall that Au = f ‘(0). 
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Now from Eq. (2.33) we immediately obtain the coefficients 

Pool = 03 qoor = - 4,? 1 = 0, 1, 2 ,..* . (5.8) 

In similar fashion we show that 

P 01/= 0 = qo1/3 I = 1, 2,... . (5.9) 

Recall that the Lyapunov-Schmidt procedure has replaced the single 
equation 

0 = (1 + 7) f (X#l + w) -j-(x41 + w, 1) 

= N(x#, + w, I, 7) (5.10) 

by the two equations: Qlv= 0 which defines w(x, A, r) via the implicit 
function theorem, and PN(x#, + w(x, A, 7), A, 7) 3 g(x, 1,7) = 0 which is the 
bifurcation equation. Note that 

0 = QN,(O, 037) 

=Q [( 1+7)~(~1+W~)-Aol+w,) I 
dw 

=Lw,+,e+ 

This has the unique solution for small 7 

w,(O, 0,7) = 0. 

(5.11) 

(5.12) 

Now 

g,*(O, 097) = PN,,(O, 097) 

=P (1 +r)gw,, 
[ 

-AW,A -f”‘(!h + WJ] 

=-Pf”‘#,. (5.13) 

Since this is independent of 7, (5.9) follows. Equations (5.8) and (5.9) 
simplify the calculation of the coefficients a,k. Those required for the cases 
analysed in Section 4 are 

a - 0, 00 - 

alo =Ploo~ 

sol = Polo T 



DEGENERATE HOPF BIFURCATIONS 405 

Qzo -Pzoo +Plol q100, 

a11 =P110 +Plolqolo~ 

a02 = PO209 

a30 = P300 + PlOl [ q200 + q101 q100 1 
+ P2014100 +P102doo, 

~o3=Po3o+Po2lqolo* 

(5.14) 

The coefficients a,, z u,(O, 0) and a o1 E u,(O, 0) are equivalent to those 
calculated by Hopf, corresponding to (H3) and (H2) respectively; see 
(2.36), (2.37). The first calculation of a,, was in [ 141; we give an alternate 
derivation. The labor in calculating ujo increases rapidly withj, and we have 
not explicitly calculated u3o for normal form (4.5). On the other hand (as has 
been shown by Kielhijfer [ 2 11) the first nonvanishing uOk is relatively easy to 
calculate, this facilitates applications of Proposition 3.17 and of 
Proposition 3.20 with I= 1. 

The modal parameter b in (4.6), (4.7) is 

b = all sgn a201W20 ao211’2). (5.15) 

The remaining calculations proceed more efftciently in complex notation. 
Define 

Q(s) = efsc = (6, + id2, 

Y(s) = eisd = ty, + ity,. 

Then the projector P in (2.16) can be written 

(5.16) 

Pv = Re(v, !Q@. (5.17) 

We illustrate the technique in deriving the well-known formulae for polo 
and qolo. From (5.13), 

&A(O, 030) = -Pf’% 

= -Redf’>‘(, , !Y) @ 

= -Re& 
1 
‘2n e-iSd*f lvl 

& + e - ‘SE 

2 
ds @ 

0 

= -$Re d*f ‘*‘(c)Q. (5.18) 

But differentiation with respect to 1 of the identity 

(5.19) 
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leads to 

d*p ’ c = [a’(O) + id(O)] cf*c - d* [A - iZ]c’(O) 

= 2[a’(O) + id(O)]. (5.20) 

Substituting into (5.18) and taking components gives 

a,, =polo = -cf’v’), , ty,) = --$ Re d*f’,‘c = -o’(O), 
(5.2 1) 

4 o,o=-df1~‘(1,~2)=~Imd*f’~1c =w’(O). 

Next we calculate ploO and qlo,,. From (5.10) we compute 

N,,(O) = [ 1 ; -A w,, -f*(h 3 9,) = 0, (5.22) 

w,,,-3$*(~,,w,,)--f3(~1,91,dl). 

= 0. (5.23) 

Note Pf*((,, #I) = 0 from the symmetry, so from (5.22), w,, satisfies the 
differential equation 

[ 1 f -A w,, = $ [e*‘“f*(c, c) + 2f*(c, E) + e-2iSf2(E, E)]. (5.24) 

This has unique solution in W given by 

W xx = a, + eZis a2 + e-2is ci,, (5.25) 

where a, E IR”, a, E C” satisfy 
Au, = -$f*(c, E), 

[A - 2iZ]a, = -+f*(c, c). 
(5.26) 

On substituting (5.25) into (5.23), projecting PNx,, = g,,,, integrating, 
taking components and applying (5.3), we find 

a,, =ploo = -4 Re d*(f*(c, a,) +J*(E, a,) + if3(c, c, E)], 
(5.27) 

4 1oo = +d Im d* [f*(c, a,) +f*(E, a*) + af3(c, c, E)]. 

Higher order coefficients are obtained by the same procedure, we omit the 
details. For the second order a,& + k = 2) in (5.14) one first computes 
vectors analogous to (5.26): 
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[A - iZ]a, = - (3/2)[f*(c, a,) +f*(E, a2) + if3(c, c, E)] 

- 3bml - ~qmlG lf*a, = 0, 
[A - 3iZ]a, = - f [ 3fZ(c, a*) + &f”(c, c, c)], 

A b, = -2[f2(C, a,) +jy, a,)] 

- 3 [.P(a,, a,) + 2f2(a2 7 62) + f3(G 6 %Jl 

- (3/2)[f3(c, c, &> + f3(& 6 q)] 

- (3/8) f4(C, G 6 f), 

[A - 2iZ]b, = - 2 [f2(c, a,) + f(E, u3) + 3f2(a, 9 u2)l 

- 3 V3(c, E, UJ + $f3(c, c, a,)] 

- ff4(C, c, c, f), 

[A - iZ]c, = --f”‘C + [a’(O) + iw’(O)]c, c?*c, = 0, 

[A - 2iZ]c, = 2iu,, 

Ad, = - f [f2(C, E,) +f2(t, CJ +f’*‘(c, E)] 

-f+.l,, 

[A - 2iZ]d, = - [&f2(c, c,) + $2, ‘(c, c) +f’* ‘a,]. (5.28) 

Equations (5.28) may be easier to solve if one makes a linear change of 
variables u = Tti throughout the original problem, to bring A, to a block- 
diagonal form 2 = T- ’ AT. Our formulae apply whether or not this has been 
done, unlike [14, 171. Note also that if one has not resealed t as in (Hl) to 
make the basic frequency w(O) = 1, then the only change in our formulae is 
to replace kiZ by k w(O)iZ, k= 1, 2, 3 on the left side of all of Eqs. (5.26) 
(5.28) (5.31), and al so on the right side of the equations for c2 and d, only. 
Now we have 

P 2,,,, = ( - l/4!) Re d* [ff2(c, b,) + ff’(e, b,) 

+w2(% 9 a,> +f’@2 9 a +f’@2 9 Q3 N 

+ff3(c, c, a,) +f3(c, E, a,) + ff3(c, E, u3) 

+3df3(c, u2,&) +f3(E, a,, a,) + ff3(c, a,, a,)) 

+$df’(c, c, G &) + 3f4(C, c, E, a,) + 3f4(c, 6, 6 a&) 

+(1/16) f5(c, G c, 6 @I, 
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P ,,. = --d Re d*[f*(c,, a,) +f’(E,, a2> +f’(c, do) +f’(& d,) 

+f” ‘(c, a,) + f 2q ‘(6 a,) + (2/3) f” ‘a, 

+ff”(c, c, E,) + 4f3(c, 6, c,) + $f3- yc, c, E)], 

P - 4 Re d*f’(& cl), 101 - 

P 020 = --ja”(O) = -f Re d*[f’* ici + ff’* *cl, 

qozo = +fw"(O) = + 4 Im d* [f’* ‘c, + -$‘* ‘cl, 

P - 0, 011 - 

P - 0. 002 - (5.29) 

Each qjk, is obtained from the corresponding pik, by reversing the sign and 
taking the imaginary instead of the real part. 

The only third order coefficient which we calculate is 

a 03 = -l/3! o”‘(O) + $‘(O) Im d*f’* Id,, (5.30) 

where 
[A - il]d, = ic,, d*d, = 0. (5.31) 

This simplifies if a’(0) = 0, the only case in which we would need uo3. In 
fact as shown by Kielhofer [21], if 

fJ(0) = o’(O) = . . . = (p-1)(,) = 0 (5.32) 

then a,, through a,, m- i are also zero, and 

a ---p’(O). om - (5.33) 

6. EXAMPLES 

We have chosen two simple biochemical models from the recent literature 
which illustrate the two types of codimension one and one case of 
codimension two degenerate Hopf bifurcations. They also show how our 
techniques are used to provide useful information. Other more complex 
models are under investigation. 

Glycolytic Oscillations 

A number of differential equation models have been proposed to explain 
the oscillations which have been observed in experimental studies of 
glycolysis. One of the simplest [2, 341 is 
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dx 
~=bKx-xY*, 

dY 
-=Kx+xY*- Y. 
dt 

(6.1) 

These equations model a product activated reaction in scaled concentration 
variables X, Y, with feed rate 1 > 0 and low activity reaction rate K E (0, 1). 

In the experiments, if 1 is gradually increased, it is possible for a 
spontaneous oscillation to arise and grow to a maximum amplitude, then 
shrink and eventually disappear for larger values of 1. 

Our analysis begins as in [2]. The steady states are given by 

x0= A -E-F+ Y, = 1. 

Defining new variables u, =X-X,, u2 = Y - Y,, we obtain 

du 
-=Au+ 
dt 

where 

-(A’+K) - 

A= 

d*+K - 

h(u) = 2Y, 24, u, + x,u: + u,u:. 

(6.2) 

(6.3) 

(6.4) 

One calculates 

detA=A*+K>O, (6.5) 

tr A = -(A* -I- K) + (A’ - K)/@* -I K). (6.6) 

Therefore A has eigenvalues u f iu satisfying cr = 0, o > 0 if and only if 
tr A = 0, i.e., 

24+(2~-l)A2+~(~+1)=0, 

1; =+(I -2K f di?%& A, >o. 
(6.7) 

The degeneracy o’(A+) = 0 occurs when the discriminant of (6.7) vanishes, 
giving 

1 
Kc=-, 

8 (6.8) 
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In the notation of Section 5 we now have 

a - 0. 01 - (6.9 ) 

Since there are no more parameters in the problem, we do not expect to find 
any higher degeneracy. Indeed, at (xc, A,) the formulae of Section 5 give 

a 3 
lo=B, 

a02 
= -+g,) = 3 . 

(6.10) 

Therefore this example has normal form (4.2) with E = +l and bifurcation 
diagrams in Fig. 4.2. From (6.6) we calculate 

(6.11) 

By Proposition 3.48, K-K, is an unfolding parameter, and it has the same 
sign as a in Fig. 4.2. One easily verifies the stability assignments using (6.6). 
We conclude that for rc > Q there is no Hopf bifurcation, but in a 
neighborhood K < i we have the existence of two Hopf bifurcations which 
are directed toward each other and connected by a branch of stable periodic 
solutions. Hence the model duplicates the experimental phenomena described 
above. This qualitative behaviour has been found in the model by other 
authors [2,34]. In addition to being more direct, our method explains what 
happens to the periodic solutions at K = 4, where the classical Hopf theorem 
fails. 

Fitzhugh Equations 

A simplified model of the nerve impulse has been proposed by Fitzhugh 
[6], and has been analysed by a number of authors, see [8, 171 and further 
references therein. The equations are 

ak X3 
~=y+y+x-p 

&(6--x-Ily). 

(6.12) 

The parameters satisfy y, 6 E R and 

o<p,p< 1. (6.13) 

We begin with the observation that 6 can be eliminated by setting 
y=Y+6/jI,y=J-d/p,x=Xtoobtain 
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dx 
-&=A+ Y+x-jx3, 

dY 
dt- - -P(X + PO 

(6.14) 

We take ,I as the bifurcation parameter. Note that (6.14) has the Z, 
symmetry 

(X, Y, A) + (4, -Y, 4). (6.15) 

Given one solution of (6.14) we obtain another by applying (6.15), so we 
need only consider 1> 0. 

The steady states (X0, Y,,) are given by 

Note that 

d2 -=A$+- , 
dx, 

‘+>o 
s 

(6.16) 

(6.17) 

(6.18) 

so (6.16) (6.17) define a unique steady state for every 1, assuming (6.13). 
Translate variables X = X,, + a,, Y = Y,, + u2 and get the equation 

du 
-=Au+ 
dt 

where 

A= 

We calculate 

(6.19) 

(6.20) 

(6.21) 

(6.22) trA= 1 -pj?--Xi. 
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Therefore A has eigenvalues u f ice with LS = 0 if and only if tr A = 0, i.e., 

xi= 1 -pp, (6.23) 

which is positive by (6.13). We select the positive root X0 of (6.23), in 
accord with our convention 12 0 and the oddness of (6.17). 

Note that hypothesis (H2) always holds for this model, since at u = 0 

1 atrA 
u’=y a~ -=-X,$<O. (6.24) 

This gives a,, > 0, from (5.21). 
Now consider hypothesis (H3). The calculation described in Section 5 

gives 

a lo=~[P~2-2~t 11. (6.25) 

(Eigenvector c was normalized to have first component 1, because only the 
first component enters in the calculation of or,,.) Expressions equivalent to 
(6.25) are given in [8, 171. The condition a,, = 0 defines a unique p E (0, 1) 
for each ,L? E (), l), but a,, is positive for all (B, p) E (0, $) x (0, 1). We solve 
simultaneously the conditions for the steady-state (6.16), (6.17), for u = 0 
(6.23) and for a,, = 0 (6.25), and obtain the critical values of our variables 
in parametric form for /3 E (t, 1): 

PC = 
2p- 1 
7, B 

*=Q 1-P Iv2 c 37’ ( ) 

x = 1 -P 1’2 
c ( 1 

- , 
P 

y =-_t 1-P ‘/* c PT-’ ( ) 

0, = f [2(2@ - l)(l -p)]? 

With these values, one can proceed to calculate a,,@) using the formulae 
of Section 5. Preliminary calculations indicate that a,,#) has a unique 
simple zero p =&, E (4, l), and that a2,,(& < 0 on (3, p,,) and a,&?) > 0 on 
&,, 1). Then for p # &,, we obtain the bifurcation diagrams of Fig. 4.3 with 
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E = sign uzO. On differentiating (6.25) and applying Proposition 3.48 we see 
that we have a universal unfolding with unfolding parameter p related to a in 
(4.3) to first order by 

a= w- l)@-PC) 
164 a,,(P) ’ P+Po* 

For the unique choice /I =/I0 such that Q, = 0, we obtain the codimension 
two normal form (4.5). Again according to preliminary calculations, the 
parameters /I and p provide a universal unfolding of the singularity at 
(/IO, p&3,)). The resulting bifurcation diagrams are shown in Fig. 4.5. This 
implies for example that the model could exhibit three concentric limit 
cycles, two of which are stable giving hysteresis, a possibility not suggested 
in [8, 171. 

We remark that this model contains additional degeneracies if one 
weakens conditions (6.13). The symmetry property (6.15) implies that there 
are two Hopf bifurcations, occurring at l ,. These bifurcations can coalesce 
as in the previous example, but only at A= 0 for which, from (6.17), (6.23) 
and (6.24), 

x,=0= Y,, PP=L 0' = 0. (6.28) 

But then (6.21) implies /I < 1 < p and so a,, cannot vanish. In this situation 
the bifurcation diagrams are like those of the glycolysis model. Only by 
taking p = /3 = 1 can we obtain degeneracy of both (H2) and (H3), but then 
the matrix A is singular so our hypothesis (Hl) is violated also. What is 
happening is that the steady-state solutions have a hysteresis-point bifur- 
cation for these same parameter values. This type of multiple degeneracy is 
under investigation. For this model, one observes that there are not enough 
parameters for a universal unfolding of the degeneracy at Q&p) = (1, l), so 
the model is not structurally stable there and the point should be excluded 
for this reason alone. 
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