A Type System
for Higher-Order Modules
(Survey)

Ruchira Datta

CS 263: Design of Programming Languages
University of California
Berkeley, California

December 5, 2001
What Are We Talking About?

• *Type System:* the “type” of a module e is its *signature* σ
 – signature judgement $e : \sigma$

• *Higher-Order:* a *functor* $\Pi s : \sigma . \tau$ takes a module s as argument and returns another module
 – functor signature must specify argument signature σ and return signature τ

• Surveying eponymous paper of Crary, Harper, and Dreyer

• Module calculus extends and unifies work of Harper, Lillibridge, Leroy, Russo, etc.
Controlled Abstraction

• modules are a kind of sum: tuples containing module elements

• opaque module (strong sum) hides all actual types used in concrete implementation during typechecking
 – provides abstraction through hiding
 – difficult to use

• transparent module reveals representation during typechecking
 – allows typechecker to see same type used in different modules
 – breaks abstraction

• translucent sum reveals those types the programmer wants to reveal, hides the rest

• choose opacity through sealing: strong $M :> \sigma$ or weak $M :: \sigma$
Generativity

- judge equivalence of modules by equivalence of all static components
- may want all instances of an abstract type to be inequivalent
- each instance comes with a fresh stamp
- stamping is a side-effect, so such instantiation is impure
- functors can be
 - generative: all result modules are inequivalent (e.g., Standard ML)
 - applicative: applications to equivalent argument modules give equivalent result modules (e.g., Ocaml)
- here programmer can choose: Π^{gen} vs. Π, \Rightarrow vs. $::$
Singleton Signatures

- *singleton signature* packs type \(\tau \) into signature \([\tau]\) containing only single component, of type \(\tau \)

- can extract type from a module \(M \) with singleton signature by \(\text{Ext} M \), i.e., \(\text{Ext}[T] = T \)

- \(S_\sigma(M) \) is singleton signature of modules having signature \(\sigma \), which are (statically) equivalent to \(M \)

- \(S_\sigma(M) \leq \sigma \)

- module functions primitive, ordinary ones built from them
 - e.g., \(\lambda x : \tau. e(x) \equiv \Lambda s : [\tau] : e(\text{ext} s) \)
Determinacy

- module is *determinate* if it can be equivalent to another module
- generative signatures are never determinate
- module is *pure* if effect-free
- if module is pure, weak sealing of that module is pure (opaque, but nongenerative)
- functor with weakly sealed modules in body can be applicative
Principal Signatures and Decidable Typechecking

- *principal signature*: most generous signature for module
- used in separate compilation: check only signatures
- allow subsignatures, but disallow subtypes (of values)
 - otherwise checking subtyping, subsignatures would be mutually recursive
 - termination would require some metric which would not be invariant (might grow) under substitution
Quantifiers

- so far cannot compute principal signature due to *avoidance problem*
 - let functor F have signature $\Pi s : \sigma_1. \sigma_2$
 - want to typecheck $F(M :> \sigma_1)$
 - $M :> \sigma_1$ is indeterminate, so must leave σ_1 alone
 - must find σ_2' which avoids mention of s, with $\sigma_2 \leq \sigma_2'$
 - no unique one, so use existential quantifier: $\sigma_2 \leq \exists s : \sigma_1. \sigma_2$

- quantifiers require higher-order unification, prevent decidable typechecking

- only typechecker allowed to use quantifiers; programmers can’t use them
Modules as First-Class Values

- would like to be able to use modules as first-class values
- could choose appropriate implementation of signature at run-time
- wrap second-class modules as existential packages to get first-class modules

- \(\langle | \sigma | \rangle \equiv \forall \alpha. (\sigma \rightarrow \alpha) \rightarrow \alpha \)
- \(\langle | M | \rangle \equiv \Lambda \alpha. \lambda f : (\sigma \rightarrow \alpha). f M \)