NOTES ON COMPLETE LYAPUNOV FUNCTIONS

KING-YEUNG LAM

ABSTRACT. In this note we presents a self-contained proof for the existence of
complete Lyapunov function for semiflow admitting a Morse decomposition. The
main references are C. Conley’s CBMS lecture notes and the monograph by K.P.
Rybakowski.

Definition 1. Let X be a complete metric space and ¢ : [0, 00) X X be a semiflow,
ie. (1) (t,u) — @(t,up) is continuous; (i) ¢(0,u) = u for all u € X; (iii)
o(t,o(s,u)) = @(t+s,u) fort,s > 0.
(1) A function y : R — X is a total trajectory if y(t + tg) = ¢(t,v(tp)) for all
t >0andzy € R.
(2) A subset A C X is said to be invariant if for each u € A, there exists a total
trajectory y such that y(0) = u.
(3) Define the omega limit set of a subset B of X by

w(B) = r]l‘>0<)0(|:t’ OO), B)’
and define the omega limit set of a point u € X by w(u) = w({u}).
(4) For u lying on some total trajectory vy, we define the alpha limit set

a(u) = a(y) = Ny ((—00,1]).
(5) A invariant subset A is said to be an attractor if there exists a neighborhood

U of A such that w(U) = A.
(6) For an attractor A, define the repeller dual to A by

A" ={ueX: wlu)nNA=0}

And the pair (A, A") is called a attractor-repeller pair.

(7) ¢ is point-dissipative on X if there exists a bounded set B, of X such that
w(u) C By, forallu € X.

(8) ¢ is eventually bounded on a set B if ¢([tg, ), B) is bounded for some
to > 0.

9) ¢ isasymptotically compact on B for some subset B C X if, for any t; — oo
and u; € B, {¢(¢;,u;)} has a convergent subsgeuence.

(10) ¢ is asymptotically smooth if it is asymptotically compact on every forward

invariant bounded closed set. [By Remark 2.26(b) of [3], a sufficient
condition is: the mapping u +— ¢(¢, u) is compact for each ¢ > 0.]
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(11) A nonempty, compact, invariant subset S is a compact attractor of neigh-
borhood of compact sets if S is a compact subset of X and every compact
set has a neighborhood U such that that w(U) C S.

Theorem 2 (Theorem 2.30 of [3]). Assuming in addition that ¢ is point-dissipative,
asymptotically smooth, and eventually bounded on every compact subset B of X,
then ¢ has a compact attractor S of neighborhood of compact sets. In particular,
there exists a neighborhood U of S such that w(U) = S.

Definition 3 (Morse decomposition of the compact attractor). Given a finite ordered
collection {My, ..., M,,,} of pairwise disjoint compact invariant subsets of S. We
say that {M1, ..., M,,} is a Morse decomposition of the compact attractor S of X
(or simply, a Morse decomposition of S) if (i) for every u € X there is an i such that
w(u) C M;, and (ii) if u lies on some total trajectory vy, then a(u) C M; for some
i< j<m.

Our main theorem is as follows.

Theorem 4. Given a Morse decomposition {My, ..., M,,,} of S. Then there exists a
continuous function V : X — [0, o) such that
° V‘l(i) =M; for1 <i <m, and,
o Foreachu € X\\U;%, M;, the mappingt — V (¢(t,u)) is strictly decreasing
int >0,

Proof. See Theorem 9. O

Proposition 5. Given a Morse decomposition {My, ..., M,,,;} of S. Set
Ag=0 and Ak:{ueS:a(u)CUleM,-} forl1 <k <m.
Then Ag C Ay C ... C Ay, is a sequence of attractors in S such that A; ﬂA:.‘_l =M,

Proof. The proof is taken from Theorem 3.1.8 in [2].
Step 1: The sets Ax (1 < k < m) are closed.

Since by definition A,, = S, the set A, is closed (in fact compact). We now pro-
ceed inductively and assume A to be closed forsome 1 < k < m—1. Letu; € Ay
with u; — u for some u € §. Then u € Ay, since Ay C Agyq and Agyy is closed.
There are total trajectories y; : R — S withy;(0) = u; and a(y;) € M U...U M.
Using the compactness of S we can pass to a subsequence and assume WLOG that
limj_,e y;(t) — y(t) for each ¢, for some total trajectory o~ through u. We claim
thata(y) € (M1U...UMy). Indeed, since y;(R) C Ax C Ag41 and Ay is closed,
it follows that y(R) C Ay4; and so a@(y) C Agy1. Observe that M; N Agyp = 0
for i > k + 1 since M; is invariant. On the other hand, a@(y) C M; for some i
by our assumptions and therefore a(y) € My U ... U M U M. Consequently,
either a(y) € M| U ... U M} in which case we are done, or else a(y) C Mp,.
In the latter case, let V. O My, be an open neighborhood of My, such that
VNAM; #0fori # k+ 1. There is a sequence t, — oo and a z € My such
that y(-t,) € V and dist(y(-t,),z) < 1/v for all v € N. Therefore, for every
v there is a j,, > v such that y; (=t,) € V and dist(y;, (~t,),z) < 2/v. Since
(a(yj) Vw(yj)) € (M U ..U My) for every j, there are 7, < t,, < s, such that
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Yj, (=sy),v),(-7,) € Vandy; (-1) € Vfort € [1,,sy]. The invariance of My,
now implies that t, — 7, — oco. Let @i, := y; (-s,), then i, € § and since S is
compact we may assume ii,, — i € V. It then follows that ¢(z, ii) € V for all
t > 0 and so w(ii) € V which implies by our hypotheses that w(if) C My,;. Since
i, € Ary1 and Apy 1s closed, we have i@ € A,y and so there is a full solution
vy : R — § through & with a(y) € M} U ... U M. The ordering of the sets M;
implies that (a(7) U w(¥)) € M. By definition of {M;} being a Morse decom-
position, we deduce ¥(R) € My, and so ii € M. This contradicts i € 9V as
M1 N OV =10. Step 1 is proved.

Step 2: For 1 < k < m, Ag is an attractor of certain neighborhood Uy in X, i.e.
w(Uk) = Ak

The claim is automatically true for k = m since A,, = S and, by Theorem 2,
S attracts certain neighborhood U such that w(U) c S. Hence, We proceed by
induction and assume A, to be an attractor in X for some k < m — 1. Choose a
neighborhood Uyy; D Agy1 of Agyg suchthat w(Upy) = Ay Since My, Ag are
closed and disjoint subsets of the compact set Ag., we can choose a neighborhood
Uy of Ag and a neighborhood V of My, such that UrNV=0and Uy UV C Up,.
Since Ay is invariant and contained in Uy it is clear that Ay C w(Uy). It remains to
show the reverse inclusion. Suppose w(Uy) \ Ax # 0, and choose u € w(Uy) \ Ag.
Then there are sequences u,, € Uy and t,, — oo such that ¢(t,,u,) — u. We
may assume that ¢(t,, + t,u,) — y(t) for every t € R, where v is total trajectory
through u. By induction assumption, w(Uy) C w(Ugy1) = Ags1, which implies
v(R) C Agy1, whence, by step 1, a(y) € Arsq and so a(y) € (M U ... U Mp4p).
But u ¢ Ay and so a(y) € My.. There is a sequence p, — oo and z € My,
such that y(—p,) € V and dist(y(-py),z) < 1/v for every v € N. Therefore,
for every v there is n, > v such that #,, > p, + 1, ¢(t,, — py,un,) € V and
dist(¢(tn, — pv.Un,),2) < 2/v. We will show that by choosing Uy small enough,
we can arrange that w(Uy) = Ag. In fact, if this is not true, then there is a sequence
6, — Osuch thatU_(;VﬂV =0,Us,(Ax) C Ugy1 and w(Us, (Ar)) \ Ax # 0, where
Us, (Ag) is the 6, -neighborhood of Ay in X. Using what we have proved thus far, it
is easily seenthat there are sequences u,, € Us, (Ax), s, > 1 suchthat(s,,u,) €V
and dist(¢(sy, uy), Myy1) < 2/v. There are sequences 7, < §, < T, < oo such
that p(7y,uy) € AV, o([1y,Ty),uy) C V and either 7, = co or w(Ty,uy) € V. Set
ity = ¢(1y,,u,). We may assume by the compactness of cp(l,Uk+1), that 4, — .
The invariance of of Ay and u,, — Ay imply 7, — 00, 80 i € W(Upy1) = Ags1.
On the other hand, ¢(s,,, u,,) — My, and the invariance of My, implies 7, — co
s0 ¢([0, ),i) C V. Therefore w(fl) C My and i € Ap4. Now this obvoously
implies i# € My, a contradiction since i € dV. Hence, indeed, Uy can be chosen
such that w(Uy) = Ag, i.e. Ag is an attractor (of a neighborhood in X).
Step3: Mj = (A; N Aj._l).

We first show M; ¢ Aj N A%_,. Indeed, if u € M}, then there is a solution 7 :
R — M; through u and therefore u € A;. Suppose u ¢ A",‘._l. Then w(u) € Aj_4
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and therefore w(u) C My for some k < j — 1. Since u € M;, we get w(u) C M;
and hence w(u) € (My N M;) = (0, which is impossible. Hence M; C (A; ﬂA;‘._l).

Next, we show (A; N Aj‘._l) CM; IfueA;n Aj._l, then there is a solution
y : R — § through u such that a(y) ¢ (M; U...UM;). From u € A;_l we
conclude w(u) N (M U ...U M;_;) = 0, and hence w(u) C M for some k > j.
Now the assumptions of the proposition imply k¥ = j and y(R) € M;, and so
u € M;, completing the proof. O

Lemma 6. Let ¢ be a semiflow in a complete metric space X satisfying the as-
sumptions of Theorem 2. Let S be the compact global attractor of neighborhoods
of compact sets in X, then there is a continuous real-valued function gg in a neigh-
borhood U of S such that g; L0) = 4, g Y(1) = A* and g is strictly decreasing on
orbits that are not contained in S.

Proof. This proof is due to Ch. II, Result 5.1B in [1]. Define / : X — [0, +0) by
[(u) =dist(u, S).

Then [ is continuous and [~'(0) = S. Define k : X — [0,00) by k(u) =
sup{l(¢(t,u)) : t > 0}. Then k=1 (0) = S, and k is non-increasing on orbits.

Also, k is continuous as will now be shown. Note that +co > k(u) > [(u). Since
S is a compact attractor of neighborhoods of compact sets, and S is compact, there
exists €g > O suchthat w(U,) C Sforall € € (0, g). For each €, we claim that there
is a neighborhood U of § such that sup;; k < €. If not, then there exists € > O and a
sequence u; € X and ¢; > O such that u; — z for some z € S and [(¢(#,u;) > €.
By continuous dependence, we can assume that 7; — oco. But this contradicts
that N;>pp([t, ), Ue) C A for all sufficiently small e-neighborhood U, of S.
Therefore k is continuous at points of S. Given u ¢ S, let U be a neighborhood of
S such that sup;; I < I(u). Since S attracts certain neighborhood of every compact
subsets, we can choose a neighborhood U’ of u such that w(U’) c S. By shrinking
the neighborhood further, we may assume supy, [ < infy; [ as well. We claim that,
there is some 7 > 0 such that ¢([7, ), U’) C U. If not, then there exists € > 0 and
asequenceu; € X andt; > Osuchthatu; — zforsomez € Sand [(p(tj,u;) > €.
By continuous dependence, we can assume that 7; — oo. But this contradicts that
N0 ([t, ), Ue) C S for all sufficiently small e-neighborhood U, of S. With this
choice of 7, if u” € U’ then k(u’) := SUPy,([0,00),u) | = SUPp([0,7],u) [+ NOW Kk is
continuous at u because sup,, (o 71,.) | depends continuously on u’.

The function g is defined by go(u) = fow e Tk(p(t,u))dr. The function g is
well defined since the semiflow ¢ has precompact and thus bounded trajectories.
Because k does, g satisfies the conditions g, 1(0) = S, go is continuous and g is
nonincreasing on orbits. If # ¢ S and ¢ > 0, then

go(p(t. ) - g(u) = /0 " e k(o (r 4 1,u)) — k(p(r,u)) dr

Since, ¢(0,u) ¢ S and @(t,u) — S as t — oo, we deduce k(¢(0,u)) > 0 and
k(p(t,u)) — 0 ast — oo. Hence The last integral is strictly negative because the
nonpositive integrand is not identically zero. This concludes the proof. O
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Lemma 7. Let ¢ be a semiflow in a complete metric space X such that ¢(t,-) is
compact for each t > 0. Let S be the compact global attractor of bounded sets
in X, and let A,A* C S. If (A, AY) is an attractor-repeller pair, then there is a
continuous real-valued function g in a neighborhood U of S such that g~ (0) = A,
¢ ' (1) = A* and g is strictly decreasing on orbits that are not contained in A, A*.

Proof. Definel : X — [0, +c0) by
dist(u, A)

() =
() = st(u, A) + dist(u, A7)

Then [ is continuous, [~'(0) = A and [7!(1) = A*. Define k : § — [0, c0) by
k(u) = sup{l(@(t,u)) : t > 0}. Then k=1 (0) = A, k"1 (1) N § = A*,

k') ={ueX:w)cA,

and k is non-increasing on orbits.

Also, k is continuous as will now be shown. Since 1 > k(u) > [(u) for all u, and
[ is continuous, we deduce that & is continuous in k~!'(1). For each e sufficiently
small, the neighborhood U = U, (A) satisfies w(U) = A. For each €, we claim
that there is a neighborhood U of A such that sup;; k < €. If not, then there exists
€ > 0 and a sequence u; € X and ¢; > O such that u; — z for some z € A and
I(¢(tj,uj) > €. By continuous dependence, we can assume that 7; — oco. But this
contradicts that N;>o@([t,0),Ue) C A for all sufficiently small e-neighborhood
U, of A. Therefore k is continuous at points of A. Given u € k~'((0, 1)), then
w(u) ¢ A. Let U be a neighborhood of A such that sup;;/ < I(u). Choose
a bounded neighborhood U’ = Uj(u) of u, then there exists 7 > 0 such that
@(7,U’) c U, and hence w(U’) C A (here we use the fact that U’ is bounded so
that ¢(r, U’) is compact for any ¢ > 0. Therefore, U’ is disjoint from k~'(1). With
this choice of 7, if u” € U’ then k(u”) := SUpPy,([0,00),u) | = SUPp([0,7],u) |- NOW Kk is
continuous at u because sup,, (o 71, ! depends continuously on u’.

Define the function g; by g;(u) = /Ooo e Tk(p(t,u))dr. Because k does, g;

satisfies the conditions gl‘l(O) = A, g is continuous and g; is nonincreasing on
orbits. Now,

g1(¢(t,u))—g1(u)=/Ome_T(k(w(TH,u))—k(so(T,u))dT forz>0. (1)

IfueS\(AUA¥), then0 < k(¢(t,u)) < 1fort > 0 and lim, . k(¢(¢,u)) =0,
so that the last integral of (1) is strictly negative, so that t — g (¢(t, u)) is strictly
decreasing for ¢ > 0.

Finally, let g : X — [0, ) be defined by g = go + g1, then g~1(0) = A,
g '(1) = A*, g is continuous in X, and g is nonincreasing on orbits. In fact,
since g is strictly decreasing for orbits initiating from u € X \ S, and g is strictly
decreasing for orbits initiating from u € S\ (A U A*), we conclude that g is strictly
decreasing in orbits initiating from X \ (A U A*). This concludes the proof. O

Proof of Theorem 4. By Proposition 5, there exists m attractor-repeller pairs (A ;, A;‘.)
(1 <j<m)suchthat M; = A; OA;_I for 1 < j < m (here Ag = 0). For each
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1 < j < m,let g; be the Lyapunov function corresponding to the attractor-repeller
pair (A}, Aj‘.), as guaranteed by Lemma 7. Then V (u) : Z;.": | 8j(u) satisfies all the
desired properties. O
Lemma 8 (Ch. II, Result 6.4A of [1]). If S is compact there are at most countably

many attractor-repeller pairs in S.

Proof. Since S is compact, the family of compact subsets of S with the Hausdorff
metric is also a compact metric space. An attractor-repeller pair can be considered
a point in the product of this subset space with itself.

Let (A, A*) be such a pair and let U and U™ be disjoint open (in S) sets about A
and A™ respectively. Then (A.A*) is the unique attractor-repeller pair with A ¢ U
and A* c U™.

Now (U, U*) determines an open set in the product of the subset space with itself
which contains only one attractor-repeller pair. Thus the set of attractor-repeller
pairs is at most countable. O

Recall that a subset A of § is said to be internally chain transitive with respect to
the semiflow ¢ if, for two points ug, vg € A, and any 6 > 0, T > 0, there is a finite
sequence

Cé,T = {u(l) = MO’M(Z)’ 7u(m) = VO;I], LARL] tm—l}

withu/) € Aandt; > T, such that [|l@(t;,u)) —uU*V || < §forall 1 <i<m-1.
The sequence Cs 7 is called a (8, T')-chain connecting ug and vy. Define the chain
recurrent set R(S) to be the set of all ug € S such that forany 7 > 1, and 6 < 1
there exists a (0, T)-chain connecting ug to itself.

Theorem 9 (Ch. II, Result 6.4B of [1]). There exists a continuous function G :
X — [0, 00) which is constant on each connected component of the chain recurrent
set, and strictly decreasing on orbits outside the chain recurrent set.

Proof. Let {(A;, A})}; be an enumeration of the attractor-repeller pairs, and let g;
be given by Lemma 7. Define G () = Y52, 37 g;(u). O

Remark 10. Define a critical value of G to be one achieved on the chain recurrent
set. Since each gi| s 1s either zero or one at a point of the chain recurrent set,
each critical value of G lies in the "middle third" Cantor set, and in particular the
critical values are nowhere dense. Furthermore, each critical value of G determines
a unique component of the chain recurrent set: because u and u’ lie in the same
component of R(S) if and only if u is chained to u” and vice versa, and this is true
if and only if u and u’ are in R(S) and each attractor containing u also contains u’.
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