
NOTES ON COMPLETE LYAPUNOV FUNCTIONS

KING-YEUNG LAM

Abstract. In this note we presents a self-contained proof for the existence of
complete Lyapunov function for semiflow admitting aMorse decomposition. The
main references are C. Conley’s CBMS lecture notes and the monograph by K.P.
Rybakowski.

Definition 1. Let - be a complete metric space and i : [0,∞) × - be a semiflow,
i.e. (i) (C, D) → i(C, D0) is continuous; (ii) i(0, D) = D for all D ∈ -; (iii)
i(C, i(B, D)) = i(C + B, D) for C, B ≥ 0.

(1) A function W : R→ - is a total trajectory if W(C + C0) = i(C, W(C0)) for all
C ≥ 0 and C0 ∈ R.

(2) A subset � ⊆ - is said to be invariant if for each D ∈ �, there exists a total
trajectory W such that W(0) = D.

(3) Define the omega limit set of a subset � of - by

l(�) := ∩C>0i( [C,∞), �),
and define the omega limit set of a point D ∈ - by l(D) = l({D}).

(4) For D lying on some total trajectory W, we define the alpha limit set
U(D) = U(W) = ∩C<0W((−∞, C]).

(5) A invariant subset � is said to be an attractor if there exists a neighborhood
* of � such that l(*) = �.

(6) For an attractor �, define the repeller dual to � by
�∗ := {D ∈ - : l(D) ∩ � = ∅}.

And the pair (�, �∗) is called a attractor-repeller pair.
(7) i is point-dissipative on - if there exists a bounded set �? of - such that

l(D) ⊂ �? for all D ∈ - .
(8) i is eventually bounded on a set � if i( [C0,∞), �) is bounded for some

C0 > 0.
(9) i is asymptotically compact on � for some subset � ⊂ - if, for any C8 →∞

and D8 ∈ �, {i(C8 , D8)} has a convergent subsqeuence.
(10) i is asymptotically smooth if it is asymptotically compact on every forward

invariant bounded closed set. [By Remark 2.26(b) of [3], a sufficient
condition is: the mapping D ↦→ i(C, D) is compact for each C > 0.]
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(11) A nonempty, compact, invariant subset ( is a compact attractor of neigh-
borhood of compact sets if ( is a compact subset of - and every compact
set has a neighborhood* such that that l(*) ⊂ (.

Theorem 2 (Theorem 2.30 of [3]). Assuming in addition that i is point-dissipative,
asymptotically smooth, and eventually bounded on every compact subset � of - ,
then i has a compact attractor ( of neighborhood of compact sets. In particular,
there exists a neighborhood* of ( such that l(*) = (.
Definition 3 (Morse decomposition of the compact attractor). Given a finite ordered
collection {"1, ..., "<} of pairwise disjoint compact invariant subsets of (. We
say that {"1, ..., "<} is a Morse decomposition of the compact attractor ( of -
(or simply, aMorse decomposition of () if (i) for every D ∈ - there is an 8 such that
l(D) ⊂ "8 , and (ii) if D lies on some total trajectory W, then U(D) ⊂ " 9 for some
8 < 9 ≤ <.

Our main theorem is as follows.

Theorem 4. Given a Morse decomposition {"1, ..., "<} of (. Then there exists a
continuous function + : - → [0,∞) such that

• +−1(8) = "8 for 1 ≤ 8 ≤ <, and,
• For each D ∈ -\⋃<

8=1 "8 , themapping C ↦→ + (i(C, D)) is strictly decreasing
in C ≥ 0,

Proof. See Theorem 9. �

Proposition 5. Given a Morse decomposition {"1, ..., "<} of (. Set
�0 = ∅ and �: = {D ∈ ( : U(D) ⊂ ∪:8=1"8} for 1 ≤ : ≤ <.

Then �0 ⊆ �1 ⊆ ... ⊂ �< is a sequence of attractors in ( such that �8∩ �∗8−1 = "8 .

Proof. The proof is taken from Theorem 3.1.8 in [2].
Step 1: The sets �: (1 ≤ : ≤ <) are closed.

Since by definition �< = (, the set �< is closed (in fact compact). We now pro-
ceed inductively and assume �:+1 to be closed for some 1 ≤ : ≤ <−1. Let D 9 ∈ �:

with D 9 → D for some D ∈ (. Then D ∈ �:+1, since �: ⊂ �:+1 and �:+1 is closed.
There are total trajectories W 9 : R→ ( with W 9 (0) = D 9 and U(W 9) ⊂ "1∪ ...∪": .
Using the compactness of ( we can pass to a subsequence and assume WLOG that
lim 9→∞ W 9 (C) → W(C) for each C, for some total trajectory f through D. We claim
that U(W) ⊂ ("1∪ ...∪":). Indeed, since W 9 (R) ⊂ �: ⊂ �:+1 and �:+1 is closed,
it follows that W(R) ⊂ �:+1 and so U(W) ⊂ �:+1. Observe that "8 ∩ �:+1 = ∅
for 8 > : + 1 since "8 is invariant. On the other hand, U(W) ⊂ "8 for some 8
by our assumptions and therefore U(W) ⊂ "1 ∪ ... ∪ ": ∪ ":+1. Consequently,
either U(W) ⊂ "1 ∪ ... ∪ ": in which case we are done, or else U(W) ⊂ ":+1.
In the latter case, let + ⊃ ":+1 be an open neighborhood of ":+1 such that
+ ∩ "8 ≠ ∅ for 8 ≠ : + 1. There is a sequence Ca → ∞ and a I ∈ ":+1 such
that W(−Ca) ∈ + and dist(W(−Ca), I) ≤ 1/a for all a ∈ N. Therefore, for every
a there is a 9a ≥ a such that W 9a (−Ca) ∈ + and dist(W 9a (−Ca), I) ≤ 2/a. Since
(U(W 9) ∪ l(W 9)) ⊂ ("1 ∪ .. ∪ ":) for every 9 , there are ga ≤ Ca ≤ Ba such that
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W 9a (−Ba), W 9a (−ga) ∈ m+ and W 9a (−C) ∈ + for C ∈ [ga , Ba]. The invariance of ":+1
now implies that Ca − ga → ∞. Let D̃a := W 9a (−Ba), then D̃a ∈ ( and since ( is
compact we may assume D̃a → D̃ ∈ m+ . It then follows that i(C, D̃) ∈ + for all
C ≥ 0 and so l(D̃) ∈ + which implies by our hypotheses that l(D̃) ⊂ ":+1. Since
D̃a ∈ �:+1 and �:+1 is closed, we have D̃ ∈ �:+1 and so there is a full solution
W̃ : R → ( through D̃ with U(W̃) ⊂ "1 ∪ ... ∪ ":+1. The ordering of the sets "8

implies that (U(W̃) ∪ l(W̃)) ⊆ ":+1. By definition of {"8} being a Morse decom-
position, we deduce W̃(R) ⊂ ":+1 and so D̃ ∈ ":+1. This contradicts D̃ ∈ m+ as
":+1 ∩ m+ = ∅. Step 1 is proved.

Step 2: For 1 ≤ : ≤ <, �: is an attractor of certain neighborhood *: in - , i.e.
l(*:) = �:

The claim is automatically true for : = < since �< = ( and, by Theorem 2,
( attracts certain neighborhood * such that l(*) ⊂ (. Hence, We proceed by
induction and assume �:+1 to be an attractor in - for some : ≤ < − 1. Choose a
neighborhood*:+1 ⊃ �:+1 of �:+1 such thatl(*:+1) = �:+1. Since ":+1, �: are
closed and disjoint subsets of the compact set �:+1, we can choose a neighborhood
*: of �: and a neighborhood + of ":+1 such that*: ∩+ = ∅ and*: ∪+ ⊂ *:+1.
Since �: is invariant and contained in*: it is clear that �: ⊂ l(*:). It remains to
show the reverse inclusion. Suppose l(*:) \ �: ≠ ∅, and choose D ∈ l(*:) \ �: .
Then there are sequences D= ∈ *: and C= → ∞ such that i(C=, D=) → D. We
may assume that i(C= + C, D=) → W(C) for every C ∈ R, where W is total trajectory
through D. By induction assumption, l(*:) ⊂ l(*:+1) = �:+1, which implies
W(R) ⊂ �:+1, whence, by step 1, U(W) ⊆ �:+1 and so U(W) ⊂ ("1 ∪ ... ∪ ":+1).
But D ∉ �: and so U(W) ⊆ ":+1. There is a sequence da → ∞ and I ∈ ":+1
such that W(−da) ∈ + and dist(W(−da), I) ≤ 1/a for every a ∈ N. Therefore,
for every a there is =a ≥ a such that C=a ≥ da + 1, i(C=a − da , D=a ) ∈ + and
dist(i(C=a − da , D=a ), I) ≤ 2/a. We will show that by choosing *: small enough,
we can arrange that l(*:) = �: . In fact, if this is not true, then there is a sequence
Xa → 0 such that*Xa ∩+ = ∅,*Xa (�:) ⊂ *:+1 and l(*Xa (�:)) \ �: ≠ ∅, where
*Xa (�:) is the Xa-neighborhood of �: in - . Using what we have proved thus far, it
is easily seenthat there are sequences Da ∈ *Xa (�:), Ba ≥ 1 such that i(Ba , Da) ∈ +
and dist(i(Ba , Da), ":+1) ≤ 2/a. There are sequences ga ≤ Ba < g̃a ≤ ∞ such
that i(ga , Da) ∈ m+ , i( [ga , g̃a), Da) ⊂ + and either g̃a = ∞ or i(g̃a , Da) ∈ m+ . Set
D̂a = i(ga , Da). We may assume by the compactness of i(1,*:+1), that D̂a → D̂.
The invariance of of �: and Da → �: imply ga → ∞, so D̂ ∈ l(*:+1) = �:+1.
On the other hand, i(Ba , Da) → ":+1 and the invariance of ":+1 implies g̃a →∞
so i( [0,∞), D̂) ⊂ + . Therefore l(D̂) ⊂ ":+1 and D̂ ∈ �:+1. Now this obvoously
implies D̂ ∈ ":+1, a contradiction since D̂ ∈ m+ . Hence, indeed, *: can be chosen
such that l(*:) = �: , i.e. �: is an attractor (of a neighborhood in -).
Step 3: " 9 = (� 9 ∩ �∗9−1).

We first show " 9 ⊂ � 9 ∩ �∗9−1. Indeed, if D ∈ " 9 , then there is a solution W :
R → " 9 through D and therefore D ∈ � 9 . Suppose D ∉ �∗

9−1. Then l(D) ⊂ � 9−1
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and therefore l(D) ⊂ ": for some : ≤ 9 − 1. Since D ∈ " 9 , we get l(D) ⊂ " 9

and hence l(D) ⊆ (": ∩" 9) = ∅, which is impossible. Hence " 9 ⊂ (� 9 ∩ �∗9−1).
Next, we show (� 9 ∩ �∗9−1) ⊂ " 9 . If D ∈ � 9 ∩ �∗9−1, then there is a solution

W : R → ( through D such that U(W) ⊂ ("1 ∪ ... ∪ " 9). From D ∈ �∗
9−1 we

conclude l(D) ∩ ("1 ∪ ... ∪ " 9−1) = ∅, and hence l(D) ⊂ ": for some : ≥ 9 .
Now the assumptions of the proposition imply : = 9 and W(R) ⊂ " 9 , and so
D ∈ " 9 , completing the proof. �

Lemma 6. Let i be a semiflow in a complete metric space - satisfying the as-
sumptions of Theorem 2. Let ( be the compact global attractor of neighborhoods
of compact sets in - , then there is a continuous real-valued function 60 in a neigh-
borhood* of ( such that 6−1

0 (0) = �, 6
−1
0 (1) = �

∗ and 60 is strictly decreasing on
orbits that are not contained in (.

Proof. This proof is due to Ch. II, Result 5.1B in [1]. Define ; : - → [0, +∞) by
; (D) = dist(D, ().

Then ; is continuous and ;−1(0) = (. Define : : - → [0,∞) by : (D) =

sup{; (i(C, D)) : C ≥ 0}. Then :−1(0) = (, and : is non-increasing on orbits.
Also, : is continuous as will now be shown. Note that +∞ > : (D) ≥ ; (D). Since

( is a compact attractor of neighborhoods of compact sets, and ( is compact, there
exists n0 > 0 such thatl(*n ) ⊂ ( for all n ∈ (0, n0). For each n , we claim that there
is a neighborhood* of ( such that sup* : < n . If not, then there exists n > 0 and a
sequence D 9 ∈ - and C 9 > 0 such that D 9 → I for some I ∈ ( and ; (i(C 9 , D 9) ≥ n .
By continuous dependence, we can assume that C 9 → ∞. But this contradicts
that ∩C≥0i( [C,∞),*n ) ⊂ � for all sufficiently small n-neighborhood *n of (.
Therefore : is continuous at points of (. Given D ∉ (, let * be a neighborhood of
( such that sup* ; < ; (D). Since ( attracts certain neighborhood of every compact
subsets, we can choose a neighborhood* ′ of D such that l(* ′) ⊂ (. By shrinking
the neighborhood further, we may assume sup* ; < inf* ′ ; as well. We claim that,
there is some C̄ > 0 such that i( [C̄,∞),* ′) ⊂ *. If not, then there exists n > 0 and
a sequence D 9 ∈ - and C 9 > 0 such that D 9 → I for some I ∈ ( and ; (i(C 9 , D 9) ≥ n .
By continuous dependence, we can assume that C 9 → ∞. But this contradicts that
∩C≥0i( [C,∞),*n ) ⊂ ( for all sufficiently small n-neighborhood*n of (. With this
choice of C̄, if D′ ∈ * ′ then : (D′) := supi ( [0,∞) ,D′) ; = supi ( [0,C̄ ],D′) ;. Now : is
continuous at D because supi ( [0,C̄ ],D′) ; depends continuously on D′.

The function 60 is defined by 60(D) =
∫ ∞

0 4−g: (i(g, D)) 3g. The function 60 is
well defined since the semiflow i has precompact and thus bounded trajectories.
Because : does, 60 satisfies the conditions 6−1

0 (0) = (, 60 is continuous and 60 is
nonincreasing on orbits. If D ∉ ( and C > 0, then

60(i(C, D)) − 6(D) =
∫ ∞

0
4−g (: (i(g + C, D)) − : (i(g, D)) 3g.

Since, i(0, D) ∉ ( and i(C, D) → ( as C → ∞, we deduce : (i(0, D)) > 0 and
: (i(C, D)) → 0 as C → ∞. Hence The last integral is strictly negative because the
nonpositive integrand is not identically zero. This concludes the proof. �
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Lemma 7. Let i be a semiflow in a complete metric space - such that i(C, ·) is
compact for each C > 0. Let ( be the compact global attractor of bounded sets
in - , and let �, �∗ ⊂ (. If (�, �∗) is an attractor-repeller pair, then there is a
continuous real-valued function 6 in a neighborhood* of ( such that 6−1(0) = �,
6−1(1) = �∗ and 6 is strictly decreasing on orbits that are not contained in �, �∗.

Proof. Define ; : - → [0, +∞) by

; (D) = dist(D, �)
dist(D, �) + dist(D, �∗)

Then ; is continuous, ;−1(0) = � and ;−1(1) = �∗. Define : : ( → [0,∞) by
: (D) = sup{; (i(C, D)) : C ≥ 0}. Then :−1(0) = �, :−1(1) ∩ ( = �∗,

:−1(1) = {D ∈ - : l(D) ⊂ �∗},
and : is non-increasing on orbits.

Also, : is continuous as will now be shown. Since 1 ≥ : (D) ≥ ; (D) for all D, and
; is continuous, we deduce that : is continuous in :−1(1). For each n sufficiently
small, the neighborhood * = *n (�) satisfies l(*) = �. For each n , we claim
that there is a neighborhood * of � such that sup* : < n . If not, then there exists
n > 0 and a sequence D 9 ∈ - and C 9 > 0 such that D 9 → I for some I ∈ � and
; (i(C 9 , D 9) ≥ n . By continuous dependence, we can assume that C 9 →∞. But this
contradicts that ∩C≥0i( [C,∞),*n ) ⊂ � for all sufficiently small n-neighborhood
*n of �. Therefore : is continuous at points of �. Given D ∈ :−1((0, 1)), then
l(D) ⊂ �. Let * be a neighborhood of � such that sup* ; < ; (D). Choose
a bounded neighborhood * ′ = * ′

X
(D) of D, then there exists C̄ > 0 such that

i(C̄, * ′) ⊂ *, and hence l(* ′) ⊂ � (here we use the fact that * ′ is bounded so
that i(C,* ′) is compact for any C > 0. Therefore,* ′ is disjoint from :−1(1). With
this choice of C̄, if D′ ∈ * ′ then : (D′) := supi ( [0,∞) ,D′) ; = supi ( [0,C̄ ],D′) ;. Now : is
continuous at D because supi ( [0,C̄ ],D′) ; depends continuously on D′.

Define the function 61 by 61(D) =
∫ ∞

0 4−g: (i(g, D)) 3g. Because : does, 61

satisfies the conditions 6−1
1 (0) = �, 61 is continuous and 61 is nonincreasing on

orbits. Now,

61(i(C, D)) − 61(D) =
∫ ∞

0
4−g (: (i(g + C, D)) − : (i(g, D)) 3g for C > 0. (1)

If D ∈ ( \ (� ∪ �∗), then 0 < : (i(C, D)) < 1 for C ≥ 0 and limC→∞ : (i(C, D)) = 0,
so that the last integral of (1) is strictly negative, so that C ↦→ 61(i(C, D)) is strictly
decreasing for C ≥ 0.

Finally, let 6 : - → [0,∞) be defined by 6 = 60 + 61, then 6−1(0) = �,
6−1(1) = �∗, 6 is continuous in - , and 6 is nonincreasing on orbits. In fact,
since 60 is strictly decreasing for orbits initiating from D ∈ - \ (, and 61 is strictly
decreasing for orbits initiating from D ∈ ( \ (�∪ �∗), we conclude that 6 is strictly
decreasing in orbits initiating from - \ (� ∪ �∗). This concludes the proof. �

Proof of Theorem 4. ByProposition 5, there exists< attractor-repeller pairs (� 9 , �
∗
9
)

(1 ≤ 9 ≤ <) such that " 9 = � 9 ∩ �∗9−1 for 1 ≤ 9 ≤ < (here �0 = ∅). For each
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1 ≤ 9 ≤ <, let 6 9 be the Lyapunov function corresponding to the attractor-repeller
pair (� 9 , �

∗
9
), as guaranteed by Lemma 7. Then + (D) :

∑<
9=1 6 9 (D) satisfies all the

desired properties. �

Lemma 8 (Ch. II, Result 6.4A of [1]). If ( is compact there are at most countably
many attractor-repeller pairs in (.

Proof. Since ( is compact, the family of compact subsets of ( with the Hausdorff
metric is also a compact metric space. An attractor-repeller pair can be considered
a point in the product of this subset space with itself.

Let (�, �∗) be such a pair and let * and *∗ be disjoint open (in () sets about �
and �∗ respectively. Then (�.�∗) is the unique attractor-repeller pair with � ⊂ *
and �∗ ⊂ *∗.

Now (*,*∗) determines an open set in the product of the subset space with itself
which contains only one attractor-repeller pair. Thus the set of attractor-repeller
pairs is at most countable. �

Recall that a subset � of ( is said to be internally chain transitive with respect to
the semiflow i if, for two points D0, E0 ∈ �, and any X > 0, ) > 0, there is a finite
sequence

CX,) = {D (1) = D0, D
(2) , ..., D (<) = E0; C1, ..., C<−1}

with D ( 9) ∈ � and C 9 ≥ ) , such that ‖i(C 9 , D ( 9) ) −D ( 9+1) ‖ < X for all 1 ≤ 8 ≤ <−1.
The sequence CX,) is called a (X, ))-chain connecting D0 and E0. Define the chain
recurrent set '(() to be the set of all D0 ∈ ( such that for any ) � 1, and X � 1
there exists a (X, ))-chain connecting D0 to itself.

Theorem 9 (Ch. II, Result 6.4B of [1]). There exists a continuous function � :
- → [0,∞) which is constant on each connected component of the chain recurrent
set, and strictly decreasing on orbits outside the chain recurrent set.

Proof. Let {(�8 , �∗8 )}8 be an enumeration of the attractor-repeller pairs, and let 68
be given by Lemma 7. Define � (D) = ∑∞

8=1 3−868 (D). �

Remark 10. Define a critical value of � to be one achieved on the chain recurrent
set. Since each 68

��
(
is either zero or one at a point of the chain recurrent set,

each critical value of � lies in the "middle third" Cantor set, and in particular the
critical values are nowhere dense. Furthermore, each critical value of� determines
a unique component of the chain recurrent set: because D and D′ lie in the same
component of '(() if and only if D is chained to D′ and vice versa, and this is true
if and only if D and D′ are in '(() and each attractor containing D also contains D′.
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