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Abstract. We consider an integro-PDE model for a population structured by

the spatial variables and a trait variable which is the diffusion rate. Competi-
tion for resource is local in spatial variables, but nonlocal in the trait variable.

We focus on the asymptotic profile of positive steady state solutions. Our re-

sult shows that in the limit of small mutation rate, the solution remains regular
in the spatial variables and yet concentrates in the trait variable and forms a

Dirac mass supported at the lowest diffusion rate. Hastings and Dockery et

al. showed that for two competing species in spatially heterogeneous but tem-
porally constant environment, the slower diffuser always prevails, if all other

things are held equal [13, 15]. Our result suggests that their findings may well

hold for arbitrarily many or even a continuum of traits.

1. Introduction

In this paper, we focus on the concentration phenomena in a mutation-selection
model for the evolution of random dispersal in a bounded, spatially heterogeneous
and temporally constant environment. This model concerns a population structured
simultaneously by a spatial variable x ∈ D and the motility trait α ∈ A of the
species. Here D is a bounded open domain in RN , and A = [α, α], with α > α > 0,
denotes a bounded set of phenotypic traits. We assume that the spatial diffusion
rate is parameterized by the variable α, while mutation is modeled by a diffusion
process with constant rate ε2 > 0. Each individual is in competition for resources
with all other individuals at the same spatial location. Denoting by u(t, x, α) the
population density of the species with trait α ∈ A at location x ∈ D and time
t > 0, the model is given as

(1.1)


ut = α∆u+ [m(x)− û(x, t))]u+ ε2uαα, x ∈ D,α ∈ (α, ᾱ), t > 0,
∂u
∂n = 0, x ∈ ∂D,α ∈ (α, ᾱ), t > 0,
uα = 0, x ∈ D,α ∈ {α, α}, t > 0,
u(0, x, α) = u0(x, α), x ∈ D,α ∈ (α, ᾱ).

Here ∆ =
∑N
i=1

∂2

∂x2
i

denotes the Laplace operator in the spatial variables,

û(x, t) :=

∫ α

α

u(t, x, α) dα,

n denotes the outward unit normal vector on the boundary ∂D of the spatial domain
D, and ∂

∂n = n · ∇. The function m(x) represents the quality of the habitat, which
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is assumed to be non-constant in x to reflect that the environment is spatially
heterogeneous but temporally constant.

The model (1.1) can be viewed as a continuum (in trait) version of the follow-
ing mutation-selection model considered by Dockery et al. [13], concerning the
competition of k species with different dispersal rates but otherwise identical:

(1.2)


∂
∂tui = αi∆ui +

[
m(x)−

∑k
j=1 uj

]
ui + ε2

∑k
j=1Mijuj

in D × (0,∞), i = 1, ..., k,
∂
∂nui = 0 on ∂D × (0,∞), i = 1, ..., k,
ui(x, 0) = ui,0(x) in D, i = 1, ..., k,

where 0 < α1 < α2 < ... < αk are constants, m(x) ∈ C2(D) is non-constant, Mij is
an irreducible real k × k matrix that models the mutation process so that Mii < 0
for all i, and Mij ≥ 0 for i 6= j and ε2 ≥ 0 is the mutation rate.

Model (1.2) was introduced to address the question of evolution of random dis-
persal. In the case when there is no mutation, i.e. ε = 0, this question was
considered in [15], where it was shown that in a competition model of two species
with different diffusion rates but otherwise identical, a rare competitor can invade
the resident species if and only if the rare species is the slower diffuser. Dockery et
al. [13] generalized the work of Hastings [15] to k species situation, and proved that
no two species can coexist at equilibrium, i.e. the set of non-trivial, non-negative
steady states of the system (1.2) is given by

{(θα1 , 0, ..., 0), (0, θα2 , 0, ..., 0), ..., (0, ..., θαk)},

where θα is the unique positive solution of

α∆θ + θ(m− θ) = 0 in D, ∂θ
∂n = 0 on ∂D.

Moreover, among the non-trivial steady states, only (θα1 , ..., 0), the steady state
where the slowest diffuser survives, is stable and the rest of the steady states are all
unstable. Furthermore, when k = 2, the steady state (θα1

, 0) is globally asymptot-
ically stable among all non-negative, non-trivial solutions. Whether such a result
holds for three or more species remains an interesting and important open question.

Dockery et al. [13] further inquired the effect of small mutation. More precisely,

when 0 < ε� 1, it is shown that (1.2) has a unique steady state Ũ = (ũ1, ũ2, ..., ũN )
in the space of non-trivial, non-negative functions, such that ũi > 0 for all i, and
Ũ → (θα1

, 0, ..., 0) as ε→ 0; i.e. the system (1.2) equilibrates only when the slowest
species is dominant and all other species remain at low densities.

It is natural, then, to inquire if the situation in the discrete (in trait) framework
carries over to the continuum framework. The aim of this paper is to study the
asymptotic behavior of steady state(s) of (1.1). Let uε be any positive steady state
of (1.1), we will show that, as ε→ 0,

uε(x, α)→ δ(α− α)θα(x),

i.e. uε converges to a Dirac mass supported at the lowest possible trait value α.
See Theorem 2.3 for precise descriptions of our main results.

Mutation-selection models for a continuum of trait values have been studied
extensively, when the phenotypic trait is associated only with growth advantages
[4, 8, 9, 12, 17, 19, 21]. See also [16] for a pure selection model. The consideration
of a spatial trait is more recent [1, 2, 7, 20].
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System (1.1) is also considered in an unbounded spatial domain x ∈ R. A formal
argument concerning the existence of an “accelerating wave” is presented in [6],
which provides a theoretical explanation of the accelerating invasion front of cane
toads in Australia [23]. Rigorous results are obtained when α ∈ A = [α, α] more
recently in [5, 24]. It can be summarized that the highest diffusion rate is selected
when the underlying spatial domain is unbounded, which stands in contrast to the
case of bounded spatial domains we consider in this paper, where the lowest possible
diffusion rate is selected.

The rest of the paper is organized as follows: The main results are stated in
Section 2. Section 3 concerns various estimates on steady states of (1.1). In Section
4 we introduce an auxiliary eigenvalue problem and a transformed problem of (2.1).
The limit of ûε is determined in Section 5. In Section 6, we analyze the qualitative
properties of solutions to the transformed problem. The proof of our main result is
given in Section 7. Finally, the Appendices A to C establish the existence results,
the smooth dependence of principal eigenvalue on coefficients as well as a Liouville-
type results concerning positive harmonic functions on cylinder domains.

2. Main Results

In this paper, we consider the asymptotic behavior of positive steady states of
(1.1), denoted by uε. That is, uε satisfies the following mutation-selection equation
of a randomly diffusing population:

(2.1)


α∆uε + ε2(uε)αα + [m(x)− ûε(x)]uε = 0 in Ω := D × (α, ᾱ),
∂uε
∂n = 0 on ∂D × (α, α),

(uε)α = 0 in D × {α, α},

where

(2.2) ûε(x) =

∫ α

α

uε(x, α) dα.

Throughout this paper, we assume

(A) m(x) is a non-constant function in C(D̄) such that

∫
D

m(x) dx > 0.

In particular, under assumption (A) it is possible for m(x) to be negative somewhere
in D. The existence of positive solutions to (2.1) can be stated as follows:

Theorem 2.1. Suppose (A) holds, then (2.1) has at least one positive solution for
all ε > 0.

We postpone the proof of Theorem 2.1 to Appendix A. For the rest of the paper
we will focus on the asymptotic behavior of positive solutions of (2.1) as ε→ 0. To
this end, we define the following quantities:

Definition 2.2. (i) Let θα(x) be the unique positive solution of

(2.3)

{
α∆θ + θ(m(x)− θ) = 0 in D,
∂θ
∂n = 0 on ∂D.
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(ii) For each α ∈ [α, α], we denote the principal eigenvalue and principal posi-
tive eigenfunction of the following problem by σ∗(α) and ψ∗(x, α), respec-
tively:

(2.4)

{
α∆ψ + (m(x)− θα(x))ψ + σψ = 0 in D,
∂ψ
∂n = 0 on ∂D, and

∫
D
ψ2 dx =

∫
D
θ2
α dx.

(Note that by (i), θα(x) is a positive eigenfunction for (2.4) when α = α. By
uniqueness of the (normalized) principal eigenfunction, we have σ∗(α) = 0,
and ψ∗(x, α) = θα(x) for x ∈ D.)

(iii) Denote by η∗(s) the unique positive solution to

(2.5)

{
η′′ + (a0 − a1s)η = 0 for s > 0,
η′(0) = 0 = η(+∞) and

∫∞
0
η(s) ds = 1,

where a0, a1 are positive constants determined by a1 = ∂σ∗

∂α (α) and a0 =

(a1)2/3A0, where A0 is the absolute value of the first negative zero of the
derivative of the Airy function.

When m(x) ≡ 1, one can easily show that uε ≡ 1/(α − α), i.e. there is no
selection in the trait variable. Our main result shows that the outcome changes
drastically when m(x) is non-constant. In fact, uε concentrates at the lowest value
in the trait variable, as ε→ 0. This phenomenon is also known as spatial sorting.

Theorem 2.3. Let uε be any positive solution of (2.1). Then for all β > 0, there
exists C > 0 independent of ε > 0 such that

(2.6) uε(x, α) ≤ Cε−2/3 exp
(
−β(α− α)ε−2/3

)
in Ω = D × (α, α). Moreover, as ε→ 0

(2.7)

∥∥∥∥ε2/3uε(x, α)− θα(x)η∗
(
α− α
ε2/3

)∥∥∥∥
L∞(Ω)

→ 0

where θα(x) and η∗(s) are given as above. In particular, we have

(2.8) ûε(x) =

∫ α

α

uε(x, α) dα→ θα(x) as ε→ 0.

As the proof of Theorem 2.3 is fairly technical, we briefly outline the main
ingredients for readers, as well as to motivate the scaling ε2/3 and the Airy function
η∗(s) appearing in (2.7). Our idea is to establish the “separation of variables”
formula (2.7) for uε: Let τ > 0 be fixed and introduce the scaling s = (α − ᾱ)/ετ ,
we write

uε(x, α) = ψε(x, α)wε(x, s),

where (σε(α), ψε(·, α) is the the principal eigenpair of −α∆ψ+(ûε−m)ψ = σψ, sub-
ject to the zero Neumann boundary condition and the integral constraint

∫
D
ψ2 =∫

D
θ2
α. The main body of our paper is devoted to the proof of following two things:

(i) As ε → 0, the fact that ûε → θα uniformly (so that ψε(x, α + ε2/3s) → θα(x))
is established in Section 5 with the help of some “rough” description of concentra-
tion of uε on the subset D × {α} of Ω, as well as the limit limε→0(ûε −m) being

non-constant; (ii) As ε→ 0, w̃ε(x, s) := wε(x,s)
‖wε‖ satisfies

−α∇x · (ψ2
ε∇xw̃ε)− ε2−2τ (ψ2

ε w̃ε,s)s + ψ2
ε w̃ε

[
σε(α)− ε2ψε,αα

ψε

]
= 0.
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Suppose one can show that

w̃ε(x, s)→ η(s), i.e. ∇xw̃ε ≈ 0,

we may discard the terms involving derivatives with respect to x. Using the regu-
larity of (σε, ψε) in the variable α (see Lemma 4.1)

σε(α) ≈ σε(α) +
∂σε
∂α

(α)(α− α) and (ψε)s = ετ (ψε)α = O(ετ ),

we have

ε2−2τ

[
−ηss + o(1)ηs + η

(
σε(α)

ε2−2τ
+
∂σε
∂α

(α)ε3τ−2s+O(ε4τ−2)

)]
= 0.

Now, if τ is taken as 2/3, we can pass to the limit so that η satisfies a version of
the Airy equation

−η′′ + (A0 +A1s)η = 0 for s > 0,

where (see Lemma 4.1(iii) and Lemma 4.3)

A1 = lim
ε→0

∂σε
∂α

(α) > 0, and A0 = lim
ε→0

σε(α)

ε2/3
.

The crucial step that w̃ε(x, s) := wε
‖wε‖ being asymptotically independent of x is

proved in Section 6 using some key estimates established in the earlier sections.

Remark 2.4. After this work is completed, the authors learned that a closely re-
lated result, under a slightly different formulation, is independently proved by B.
Perthame and P.E. Souganidis under a different approach, where an intermediate
trait attains the minimum diffusion rate and an interior Dirac mass is found when
the mutation rate tends to zero. Apart from the distinction in our approaches,
we note the following distinct features of our work: (i) A boundary concentration
is found in our set-up, instead of an interior concentration in [22] which predicts
different scalings in powers of ε; (ii) Our method does not assume the convexity
of spatial domain D; (iii) Various detailed L∞ estimates and asymptotic limits
are obtained (Theorem 2.3) which paves the way to the proof of asymptotic sta-
bility and uniqueness of uε in a future paper; (iv) The key estimate of the limit
h0(x) = limε→0 ûε(x)−m(x) being non-constant (Lemma 3.4) reflects the effect of
spatial heterogeneity, the underlying mathematical reason for the selection of small
diffusion rate. See also Proposition 3.7 which makes the connection to [22, Lemma
4.3].

3. Properties of ûε

In this section we establish various properties of ûε. Recall that ûε is defined in
(2.2).

Lemma 3.1. There exists some positive constant δ1 = δ1(α, ᾱ,m) independent of
ε such that

δ1 ≤ ûε(x) ≤ 1/δ1 in D

for all ε > 0. In particular,

(3.1) hε(x) := ûε(x)−m(x)

is bounded uniformly in L∞(D).
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Proof. The idea of the upper bound follows from [24]. Define

(3.2) vε(x) =

∫ ᾱ

α

αuε(x, α) dα.

Then we have

(3.3) αûε(x) ≤ vε(x) ≤ ᾱûε(x) in D.

Integrating (2.1) over α gives

(3.4)

{
∆vε(x) + (m(x)− ûε(x))ûε(x) = 0 in D,
∂vε
∂n = 0 on ∂D.

Let maxD̄ vε = vε(x0), then ûε(x0) ≤ m(x0) ≤ maxD̄m (see [18, Proposition 2.2]),
and by (3.3),

αmax
D̄

ûε ≤ max
D̄

vε = vε(x0) ≤ ᾱûε(x0) ≤ ᾱmax
D̄

m.

Hence we deduce that ‖ûε‖L∞(D) and ‖hε‖L∞(D) are bounded uniformly in ε, where
hε(x) = ûε(x)−m(x) is given in (3.1).

Next, we show the lower bound of ûε. By (3.3), we deduce that

ûε(x) = kε(x)vε(x)

for some kε(x) ∈ L∞(D) such that ᾱ−1 ≤ kε(x) ≤ α−1. So that vε is a positive
solution of

−∆vε + hε(x)kε(x)vε = 0 in D, and
∂vε
∂n

= 0 on ∂D,

where we have already shown that hε = ûε −m is uniformly bounded (in L∞(D))
in ε. Therefore, the Harnack inequality applies so that

(3.5) max
D̄

vε ≤ C ′min
D̄

vε

for some constant C ′ > 1 independent of ε. Combining with (3.3), we have

(3.6) αmax
D̄

ûε ≤ max
D̄

vε ≤ C ′min
D̄

vε ≤ C ′ᾱmin
D̄

ûε.

Now, if we divide (2.1) by uε and integrate by parts over Ω = D × (α, α), we
obtain

(3.7) (α− α)

∫
D

(ûε −m) dx =

∫
Ω

hε(x) dαdx =

∫
Ω

α|∇xuε|2 + ε2|(uε)α|2

u2
ε

> 0.

We deduce by (3.6) and (3.7) that

C ′α

α
min
D

ûε ≥ max
D

ûε ≥
1

|D|

∫
D

ûε(x) dx ≥ 1

|D|

∫
D

m(x) dx > 0.

This establishes the uniform lower bound of ûε. �

Remark 3.2. Since ‖ûε‖L∞(D) and ‖vε‖L∞(D) are bounded uniformly in ε, applying
elliptic Lp estimate to (3.4) implies that ‖vε‖W 2,p(D) is bounded uniformly in ε. In
particular, there exists sequence εk → 0 such that vεk converges uniformly on D.

Lemma 3.3. There exists a constant C > 0 such that for any positive solution uε
of (2.1),

sup
D×(α,α)

uε ≤ Cε−1.
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Proof. Choose xε and αε such that the supremum of uε is attained at (xε, αε). Next,
let Uε(x, τ) = uε(x, αε + ετ), then (extending uε to D× [α− ε0, α+ ε0] by reflection
across the boundary portions D × {α, α} if necessary) one may observe that Uε
satisfies a uniformly elliptic equation with uniformly bounded (in L∞) coefficients{

α∆xUε + Uε,ττ + hε(x)Uε = 0 in D × [−2, 2],
∂Uε
∂n = 0 on ∂D × [−2, 2],

where α = αε + ετ is always bounded between [α − ε0, α,+ε0] ⊂ (0,+∞). Hence,
we may apply the Harnack’s inequality to yield a positive constant C independent
of ε such that

uε(x, αε + ετ) ≥ Cuε(xε, αε) = C sup
D×(α,α)

uε

for all x ∈ D, τ ∈ [−1, 1]. Hence,

ûε(x) =

∫ α

α

uε(x, α) dα ≥ Cε sup
D×(α,α)

uε

for all ε sufficiently small. By Lemma 3.1, we deduce that

sup
D×(α,α)

uε ≤ C ′ε−1

for some positive constant C ′. �

By Lemma 3.1, hε is bounded in L∞(D) uniformly in ε. Therefore, up to sub-
sequences εj → 0, hεj converges weakly in Lp(D) for all p > 1. We first prove an
important property of any subsequential limit h0.

Lemma 3.4. Let h0 be a weak (subsequential) limit of hε(x) in Lp(D) (p > 1) as
ε→ 0, then h0(x) is non-constant in D.

Proof. Suppose to the contrary that for some c ∈ R, hε(x) ⇀ c weakly in Lp(D)
for all p > 1.

Claim 3.5. c = 0.

By taking ε → 0 in (3.7), we deduce that c ≥ 0; i.e. for some c ≥ 0, ûε =
hε +m(x) ⇀ c+m(x) in Lp for all p > 1.

Next, integrating (2.1) with respect to α and then x, we obtain

(3.8)

∫
D

ûε(x)(m(x)− ûε(x)) = 0,

so that

(3.9)

∫
D

m(x)(m(x) + c) = lim
ε→0

∫
D

m(x)ûε ≥ lim inf
ε→0

∫
D

(ûε)
2 ≥

∫
D

(m(x) + c)2,

where the first inequality follows from (3.8), and the second inequality from ex-
panding

∫
D

[ûε(x)− (m(x) + c)]2 ≥ 0 as∫
D

ûε
2 ≥ 2

∫
D

ûε(m+ c)−
∫
D

(m+ c)2 →
∫
D

(m+ c)2.

Hence, by (3.9), we have c = 0; i.e. hε(x) ⇀ 0 weakly in Lp(D) for all p > 1.
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Note that we are done if m < 0 somewhere, since then hε(x) ≥ −m(x) > 0 in
some open subset of D independent of ε, which contradicts hε ⇀ 0. For the general
case of m(x) being possibly non-negative, we continue via a blow-up argument. Let

Cε := sup
α∈(α,α)

(
supx∈D uε(x, α)

infx∈D uε(x, α)

)
.

It is enough to show that

Claim 3.6. Cε ↘ 1 as ε→ 0.

Assuming Claim 3.6, then by definition of Cε,

uε(x, α) ≤ Cεuε(y, α) for all x, y ∈ D and α < α < α.

This gives, upon integrating over α ∈ (α, α),

sup
x∈D

ûε(x) ≤ Cε inf
y∈D

ûε(y).

Hence ûε(x) converges to a constant. But this also means that hε = ûε−m(x) con-
verges to a non-constant function, as m(x) is non-constant. This is a contradiction.

It remains to prove Claim 3.6. Assume to the contrary that there exist some
constant c0 > 1, and sequences εk → 0, αk → α0, xk, yk ∈ D such that

(3.10) uεk(xk, αk) ≥ c0uεk(yk, αk).

Extend uε to D×[α−ε0, α+ε0] for some fixed ε0 small by reflection on the boundary
D × {α, α}, and define

Uk(x, s) :=
uεk(x, αk + εks/

√
αk)

supx∈D uεk(x, αk)
in D ×

(
α− ε0 − αk

εk
,
α+ ε0 − αk

εk

)
.

Then (3.10) says that for some c0 > 1 independent of k

(3.11) inf
x∈D

Uk(x, 0) ≤ 1

c0
for all k.

Moreover, Uk satisfies ∆xUk + αk
αk+εks/

√
αk
Uk,ss + hε(x)

αk+εks/
√
αk
Uk = 0 in D ×

(
α−ε0−αk

εk
, α+ε0−αk

εk

)
,

Uk(x, s) > 0 in D ×
(
α−ε0−αk

εk
, α+ε0−αk

εk

)
, supx∈D Uk(x, 0) = 1.

Since αk → α0 ∈ [α, α], εk → 0, the domain of Uk converges to D × R as k →
∞. Moveover, by the uniform boundedness of ‖hεk‖L∞(D) in k (Lemma 3.1), we
have for each M > 0 the coefficients of the equation of Uk(x, s) are bounded in
L∞(D̄× [−M,M ]) uniformly in k. Since supx∈D Uk(x, 0) = 1, together with (3.11)
we may apply Harnack inequality to obtain a constant C = C(M) independent of
k such that

C−1 ≤ Uk(x, s) ≤ C for x ∈ D and |s| ≤M.

By Lp estimates (applied to D × [−M,M ] for each M), there is a subsequence
Uki that converges uniformly in compact subsets of D̄ × R to a positive solution

of ∆xU0 + (U0)ss = 0 on D × R. (The limiting domain is D × R as α−ε0−αk
ε →

−∞ and α+ε0−αk
ε → ∞.) Now, we apply Proposition C.1 for positive harmonic

functions on a cylinder domain, so that U0 ≡ c1 for some positive constant c1.
Since supx∈D Uk(x, 0) = 1 for all k, we have c1 = 1. In particular, we set s = 0
and find a subsequence Uki(x, 0) converges to 1 uniformly for x ∈ D. This is in
contradiction to (3.11) and proves Claim 3.6. This completes the proof. �
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The following result generalizes a key estimate of [22], proved wherein via Bern-
stein’s method under the additional assumption that D is convex. Although not
needed for the rest of the paper, Proposition 3.7 enables one to follow the elegant
Hamilton-Jacobi approach as in [22] to show the concentration phenomenon.

Proposition 3.7. Let uε be a positive solution of (2.1). Then there exists a con-
stant C > 0 independent of ε such that

ε

∥∥∥∥uε,αuε
∥∥∥∥
L∞(Ω)

+

∥∥∥∥∇xuεuε

∥∥∥∥
L∞(Ω)

≤ C.

Proof. Extend the definition of uε to D × (2α− α, 2α− α) by reflecting along the
boundary portions D × {α, α}. For each α0 ∈ [α, α], define

Uε(x, τ) := uε(x, α0 + ετ).

Then Uε is a positive solution to

A(τ, ε)∆xUε + Uε,ττ − hε(x)Uε = 0

in D×
(
ε−1(2α− α− α0), ε−1(2α− α− α0)

)
and satisfies the Neumann boundary

condition on ∂D×
(
ε−1(2α− α− α0), ε−1(2α− α− α0)

)
. Here A(τ, ε) is a contin-

uous function such that α ≤ A(τ) ≤ α. This, together with the boundedness of
‖hε‖L∞(D) (Lemma 3.1), one may apply the Harnack inequality to D× (−1, 1) and
deduce the following.

Claim 3.8. There exists C > 0 independent of α0 ∈ [α, α] and ε such that

sup
D×(−1,1)

Uε(x, τ) ≤ C inf
D×(−1,1)

Uε(x, τ).

Next, we apply elliptic Lp estimates to Uε in D × (−1, 1), so that
(3.12)

sup
x∈D

[|Uε,τ (x, 0)|+ |∇xUε(x, 0)|] ≤ C ‖Uε‖Lp(D×(−1,1)) ≤ C sup
D×(−1,1)

Uε(x, τ).

In view of Claim 3.8, we deduce for any x ∈ D,

|Uε,τ (x, 0)|+ |∇xUε(x, 0)| ≤ C inf
D×(−1,1)

Uε ≤ CUε(x, 0).

i.e. ε |uε,α(x, α0)|+|∇xuε(x, α0)| ≤ Cuε(x, α0) for all x ∈ D. Since C is independent
of x, α0 and ε, this proves Proposition 3.7. �

4. Two eigenvalue problems

4.1. An Auxiliary Eigenvalue Problem. Consider, for each α > 0 and ε > 0
the eigenvalue problem (recall hε(x) = ûε(x)−m(x))

(4.1)

{
−α∆ψ + hεψ = σψ in D,
∂ψ
∂n = 0 on ∂D and

∫
D
ψ2 dx =

∫
D
θ2
α dx,

and denote the principal eigenvalue and positive eigenfunction by σε(α) and ψε(x, α),
respectively. At this point, we have not shown how the two eigenvalue problems
(4.1) and (2.4) are related yet.

For each ε > 0, σε(α) is a smooth function of α > 0 (Proposition B.1(ii)), and it
has a Taylor expansion at α = α:

(4.2) σε(α) = σ0,ε + σ1,ε(α− α) + σ2,ε(α− α)2 +O((α− α)3),

where σ0,ε = σε(α) and σk,ε = ∂k

∂αk
σε(α).
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Lemma 4.1. Let σε and ψε be given as above.

(i) For each k ≥ 0, ∂k

∂αk
σε(α) is bounded uniformly in ε > 0 and α ∈ [α, α].

(ii) For each k ≥ 0 and p > 1, ∂k

∂αk
ψε( · , α) is bounded in W 2,p(D) (and hence

C(D)) uniformly in ε > 0 and α ∈ [α, α].
(iii) There exists c0 > 0 such that

lim inf
ε→0

∂σε
∂α

(α) ≥ c0 > 0 for all α ∈ [α, α].

In particular, lim inf
ε→0

σ1,ε = lim inf
ε→0

∂σε
∂α

(α) > 0.

(iv) There exist positive constants c1, c2 such that for all ε > 0,

c1 ≤ ψε(x, α) ≤ c2 for all x ∈ D and α ∈ [α, α].

Corollary 4.2. There exists C > 0 independent of ε such that∥∥∥∥ψε,αψε
∥∥∥∥
L∞(D×(α,α))

+

∥∥∥∥ψε,ααψε

∥∥∥∥
L∞(D×(α,α))

≤ C.

Proof of Lemma 4.1. By the uniform boundedness of ‖hε‖L∞(D) in ε (Lemma 3.1),
assertions (i) and (ii) follow from Proposition B.5(i). To show (iii), it suffices to
show, given any sequence εj → 0, and αj → α0 ∈ [α, α], lim infj→∞

∂
∂ασεj (αj) > 0.

By Lemma 3.1, we may assume without loss of generality that for some h0 ∈ L∞(D),
hεj ⇀ h0 weakly in Lp(D) for all p > 1. Then, in the notation of Appendix B,
Proposition B.5(ii) implies that

∂

∂α
σεj (αj) =

∂

∂α
λ1(αj , hεj )→

∂

∂α
λ1(α0, h0).

Since h0 is non-constant (Lemma 3.4), Proposition B.1 implies that the last expres-
sion is positive. This proves (iii).

For (iv), suppose that along a sequence εj → 0 and αj → α0 > 0, either
infD ψεj (x, αj) → 0 or supD ψεj (x, αj) → ∞. By the uniform boundedness of
‖hε‖L∞(D) (Lemma 3.1), we may assume without loss that hεj converges weakly in
Lp(D) for all p > 1. Hence by Proposition B.5(ii), ψεj = ϕ1( · ;αj , hεj ) converges to

ϕ1( · ;α0, h0) uniformly in D, and the latter is a strictly positive function in C(D).
This is a contradiction, and proves (iv). �

4.2. A Transformed Problem. By the fact that uε(x, α) is the principal eigen-
function, with zero as the corresponding principal eigenvalue, of the problem

(4.3)

{
−α∆φ− ε2φαα + hε(x)φ = 0 in Ω = D × (α, α),
∂
∂nφ = 0 on ∂D × (α, α), and φα = 0 on D × {α, α},

we have the following variational characterization

(4.4) 0 = inf
φ ∈ H1(Ω)∫

Ω φ
2 = 1

Jε[φ],

where

(4.5) Jε[φ] =

∫
Ω

[
α|∇xφ|2 + ε2|φα|2 + hεφ

2
]
.

Define

(4.6) sε = (α− α)/ε2/3,
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and

(4.7) wε(x, s) := uε(x, α+ ε2/3s)/ψε(x, α+ ε2/3s) for x ∈ D, 0 ≤ s ≤ sε,

where ψε is given by (4.1). Then wε satisfies

(4.8)


−α∇x · (ψ2

ε∇xwε)− ε2/3(ψ2
εwε,s)s + ψ2

ε

[
σε(α)− ε2 ψε,ααψε

]
wε = 0

in D × (0, sε),
∂
∂nwε = 0 on ∂D × (0, sε),

wε,s = −ε2/3 ψε,αψε wε on D × {0, sε}.

The corresponding variational characterization can be written as

(4.9) −σ0,ε = −σε(α) = inf
φ∈H1(D×(0,sε))\{0}

J̃ε[φ]∫
D

∫ sε
0
ψ2
εφ

2 dsdx

where

J̃ε[φ] =

∫
D

∫ sε

0

ψ2
ε

[
α|∇xφ|2 + ε2/3|φs|2 +

(
σε(α)− σε(α)− ε2ψε,αα

ψε

)
φ2

]
dsdx

+ ε4/3
∫
D

[
ψεψε,αφ

2
]sε
s=0

dx.

Lemma 4.3. 0 ≤ −σ0,ε ≤ O(ε2/3).

Proof. First, σε(α) is the principal eigenvalue (with principal eigenfunction φ̃(x, α) =
ψε(x, α)) of

−α∆φ̃− ε2φ̃αα + hε(x)φ̃ = σφ̃ in Ω = D × (α, α)

subject to homogeneous Neumann boundary condition, with a variation charac-
terization analogous to (4.4) and (4.5). Since the integrand in (4.5) is monotone
increasing in α ≤ α ≤ α, σε(α) is necessarily less than the principal eigenvalue of
(4.3), which is zero. This proves σ0,ε = σε(α) ≤ 0.

For the upper estimate, we use a test function φ(x, s) = η(s) for (4.9), where
η : [0,∞)→ [0, 1] satisfies

η(s) > 0 for 0 ≤ s ≤ 1, and η(s) = 0 for s ≥ 2.

Then upon using ∇xη = 0, (4.2), and∫
D

[
ψεψε,αη

2
]sε
s=0

dx =
η2(0)

2

∂

∂α

[∫
D

ψ2
ε dx

]
α=α

= 0,

(since η(sε) = 0 for ε small, and by normalization we have
∫
D
ψ2
ε (x, α) dx ≡ 1 for

all α), we obtain from (4.9) that

−σ0,ε ≤
∫
D

∫ 2

0
ψ2
ε

[
ε2/3|ηs|2 + (σ1,εε

2/3s+ σ2,εε
4/3s2 +O(ε2))η2

]
dsdx∫

D

∫ 2

0
ψ2
ε η

2dsdx
.

The conclusion follows from Lemma 4.1(iv). �
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5. Uniform limit of ûε.

In this section, we show that ûε converges to θα in C(D). In particular, hε →
θα −m in C(D).

Recall that wε is defined in (4.7).

Lemma 5.1. For all β > 0, there exists C > 0 independent of ε, such that

wε(x, s) ≤ Cε−1e−βs for all x ∈ D and 0 ≤ s ≤ sε,
where sε = (α− α)/ε2/3.

Proof. First, we derive a rough upper bound of wε from Lemma 3.3.

Claim 5.2. There exists C > 0 such that

sup
D×(α,α)

wε ≤ Cε−1.

By definition, supwε ≤ (supuε)/(inf ψε), and the claim follows from the upper
bound of uε (Lemma 3.3) and Lemma 4.1(iv).

Next, we construct a supersolution to prove the exponential decay.

Claim 5.3. For each β > 0, there exists s0 > 0 independent of ε such that

σε(α)− σε(α)

ε2/3
+
σε(α)

ε2/3
− ε4/3ψε,αα(x, α)

ψε(x, α)
≥ 2β2 for all α ∈ [α+ ε2/3s0, α].

To see the claim, we note that since σε is monotone increasing in α (Proposition
B.1(iii)), for α = α+ ε2/3s and s ≥ s0,

σε(α)− σε(α)

ε2/3
+
σε(α)

ε2/3
≥ σε(α+ ε2/3s0)− σε(α)

ε2/3
+
σ0,ε

ε2/3
.

By (4.2) and Lemma 4.1(i),

lim inf
ε→0

σε(α+ ε2/3s0)− σε(α)

ε2/3
≥ (lim inf

ε→0
σ1,ε)s0.

Taking also Lemma 4.3 and Corollary 4.2 into account, we conclude that for α =
α+ ε2/3s and s ≥ s0,

lim inf
ε→0

[
σε(α)− σε(α)

ε2/3
+
σε(α)

ε2/3
− ε4/3ψε,αα(x, α)

ψε(x, α)

]
≥ (lim inf

ε→0
σ1,ε)s0 − C.

Since lim infε→0 σ1,ε > 0 by Lemma 4.1(iii), Claim 5.3 holds by choosing s0 large.

Claim 5.4. For each β > 0, there exists s0 > 0 independent of ε and a supersolution

W (x, s) :=

 sup
x ∈ D

0 ≤ s ≤ s0

wε

 [exp(−β(s− s0)) + exp(β(s− (3/2)sε))],

defined on D × (s0, sε) such that

(5.1)



− α
ε2/3ψ2

ε
∇x · (ψ2

ε∇xW )− 1
ψ2
ε
[ψ2
εW s]s

+
(
σε(α)−σε(α)

ε2/3 + σε(α)
ε2/3 − ε4/3

ψε,αα
ψε

)
W ≥ 0 in D × (s0, sε),

∂W
∂n = 0 on ∂D × (s0, sε),
W (x, s0) ≥ wε(x, s0) for x ∈ D,
W s(x, sε) ≥ −ε2/3 ψε,α(x,α)

ψε(x,α) W (x, sε) for x ∈ D,
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where sε = (α− α)/ε2/3.

To show the differential inequality, note that the term involving derivatives in x
vanishes, and that by Claim 5.3 and Corollary 4.2,

− 1

ψ2
ε

(
ψ2
εW s

)
s

+

(
σε(α)− σε(α)

ε2/3
+
σε(α)

ε2/3
− ε4/3ψε,αα

ψε

)
W

≥ −W ss + o(1)W s + 2β2W

= (−β2 + o(1)β + 2β2)W ≥ 0.

It remains to check the boundary condition on D × {sε}, as the rest follows by
definition. Note that sε →∞ as ε→∞, so that exp(−β(sε − s0))� exp(−βsε/2).
We therefore have

W s(x, sε)

W (x, sε)
+ ε2/3

ψε,α(x, α)

ψε(x, α)
=
−β exp(−β(sε − s0)) + β exp(−βsε/2)

exp(−β(sε − s0)) + exp(−βsε/2)
+O(ε2/3)

which converges to a positive constant β uniformly for x ∈ D. This proves the
claim.

Now, we claim that

(5.2) wε ≤W in D × (0, sε).

By definition, it is easy to see that wε ≤W in D× [0, s0]. That the inequality holds
in D × (s0, sε) is due to the fact that W is a strict positive supersolution of the
linear problem (5.1) with homogeneous Dirichlet boundary condition on D× {s0},
and Neumann condition on the remaining boundary portions. Standard maximum

principle applies and shows that the quotient W−wε
W

is non-negative. (See, e.g. [3,

p. 48].)
Finally, we obtain Lemma 5.1 by combining Claim 5.2 and (5.2). �

Lemma 5.5. Let vε be given by (3.2), then

sup
x∈D
|vε(x)− αûε(x)| → 0.

Proof. Given ε, take δ =
√
εδ1, where δ1 is given by Lemma 3.1.

|vε(x)− αûε(x)| =

∣∣∣∣∣
∫ α

α

(α− α)uε(x, α) dα

∣∣∣∣∣
≤ δ

∣∣∣∣∣
∫ α+δ

α

uε(x, α) dα

∣∣∣∣∣+ (α− α)

∣∣∣∣∣
∫ α

α+δ

uε(x, α) dα

∣∣∣∣∣
≤ δûε(x) + C

∫ α

α+δ

ε−1 exp(−β(α− ᾱ)/ε2/3) dα

≤
√
ε+ o(1)

where we have used Lemma 4.1(iv) and Lemma 5.1 in the second last inequality.
This proves the lemma. �

Proposition 5.6. ûε → θα in C(D), where θα is the unique positive solution of

(2.3). In particular, hε → θα −m in C(D).
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Proof. By Remark 3.2 and Lemma 5.5, we deduce that up to a subsequence εj → 0,
both ûεj and vε/α converges uniformly in D to some û0 ∈W 2,p(D). We claim that

û0 is a (strong and therefore classical) solution of (2.3), i.e. for each z(x) ∈ C∞(D̄),

(5.3) α

∫
D

[û0∆xz + û0(m− û0)z] dx− α
∫
∂D

û0
∂z

∂n
dx = 0.

To show (5.3), multiply (3.4) by a test function z(x) and integrate by parts, using
the Neumann boundary condition of vε, we obtain∫

D

[vε∆xz + ûεj (m− ûεj )z] dx−
∫
∂D

vε
∂z

∂n
dx = 0.

Then one can pass to the limit to obtain (5.3) by invoking Lemma 5.5. By the lower
estimate in Lemma 3.1, there exists δ1 > 0 such that û0(x) ≥ δ1 for all x ∈ D.
Hence û0 is the unique positive solution of (2.3), i.e. ûεj ⇀ θα in C(D). Since the
limit is independent of subsequences, we deduce that that ûε → θα as ε → 0 (not
just along subsequences εj → 0). This proves the proposition. �

Corollary 5.7. Let σε(α) and ψε(x, α) be the principal eigenvalue and eigenfunc-
tion of (4.1), and let σ∗(α) and ψ∗(x, α) be those of (2.4). Then as ε→ 0, σε → σ∗

in Ck([α, α]) for all k, and ψε(·, α) → ψ∗(·, α) in Ck([α, α];W 2,p(D)). In particu-
lar,

(5.4) σ0,ε → σ∗0 := σ∗(α) and σ1,ε → σ∗1 :=
∂σ∗

∂α
(α) > 0.

Proof. Since now hε → h0 = θα−m in L∞(D), the corollary follows from Proposi-
tion B.1(ii). Since h0 = θα −m is non-constant (Lemma 3.4), Proposition B.1(iv)
asserts that σ∗1 > 0. �

6. Convergence of wε

Let wε be given by (4.7), define the normalized version w̃ε = w̃ε(x, s) on D×[0, sε]
by

w̃ε(x, s) :=

( ∫
D
θ2
α dx∫

Ω
ψ2
εw

2
ε dsdx

)1/2

wε(x, s)

so that

(6.1)

∫
D

∫ sε

0

ψ2
ε (x, α+ ε2/3s)w̃2

ε (x, s) dsdx =

∫
D

θ2
α dx > 0.

Proposition 6.1. (i) ‖w̃ε‖H1(D×(0,sε)) is bounded uniformly in ε.
(ii) For any β > 0, there exists C1 > 0 such that for all ε sufficiently small,

w̃ε(x, s) ≤ C1e
−βs

for all 0 ≤ s ≤ sε.
(iii) As ε→ 0, w̃ε(x, s) converges locally uniformly in D̄× [0,+∞) to the unique

positive solution of the problem

(6.2)

{
η̃ss + (ã0 − σ∗1s)η̃ = 0 for s ≥ 0,
η̃s(0) = 0 = η̃(+∞),

∫∞
0
η̃2 ds = 1,

where ã0 = (σ∗1)2/3A0, with σ∗1 given by (5.4) and A0 being the absolute
value of the first negative root of the derivative of the Airy function.
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Since η̃(+∞) = 0 and w̃ε(x, s)→ 0 as s→ +∞ uniformly in x ∈ D, we have in
fact proved the following.

Corollary 6.2. ‖w̃ε(x, s)− η̃(s)‖L∞(D×(0,sε)) → 0 as ε→ 0.

Proof. By Lemma 4.3 and the fact that w̃ε is a minimizer of (4.9), we obtain∫
D

∫ sε

0

ψ2
ε

[
αε−2/3|∇xw̃ε|2 + |(w̃ε)s|2 +

(
σε(α)− σε(α)

ε2/3
+O(ε4/3)

)
w̃2
ε

]
dsdx

+ ε2/3
∫
D

[
ψε,αψεw̃

2
ε

]sε
s=0

dx ≤ C
(∫

D

∫ sε

0

ψ2
ε w̃

2
ε dsdx

)
= C.

Claim 6.3.

∣∣∣∣∫
D

[
ψε,αψεw̃

2
ε

]sε
s=0

dx

∣∣∣∣ ≤ C ∫
D

∫ sε

0

ψ2
ε

(
|∇xw̃ε|2 + |w̃ε,α|2 + w̃2

ε

)
dsdx.

To prove Claim 6.3, we apply the Trace Theorem, so that there is C > 0 inde-
pendent of ε such that∣∣∣∣∫

D

[
ψε,αψεw̃

2
ε

]sε
s=0

dx

∣∣∣∣ ≤ C ∫
D

∫ sε

0

(
|∇xw̃ε|2 + |w̃ε,α|2 + w̃2

ε

)
dsdx

≤ C
∫
D

∫ sε

0

ψ2
ε

(
|∇xw̃ε|2 + |w̃ε,α|2 + w̃2

ε

)
dsdx,

where we have used ‖ψε,αψε‖L∞(D×(α,α)) ≤ C (Corollary 5.7) for the first inequality,
and Lemma 4.1(iv) for the second inequality.

From Claim 6.3, the normalization (6.1), the estimate in the beginning of the
proof, and the monotonicity of σε(α) in α (Proposition B.1(iv)), we have

(1−Cε2/3)

∫
D

∫ sε

0

ψ2
ε

[
αε−2/3|∇xw̃ε|2 + |(w̃ε)s|2 + w̃2

ε

]
≤ C

∫
D

∫ sε

0

ψ2
ε w̃

2
ε dsdx = C.

By Lemma 4.1(iv), we deduce

(6.3)

∫
D

∫ sε

0

[
ε−2/3|∇xw̃ε|2 + |(w̃ε)s|2 + w̃2

ε

]
≤ C,

which implies our assertion (i). Passing to a subsequence, w̃ε(x, s) converges weakly
in H1

loc(D × [0,∞)) to some function η̃. of x. Moreover, as
∫
D

∫ sε
0
|∇xw̃ε|2 dsdx ≤

Cε2/3, it follows that ∇xη̃ = 0 a.e..
We outline the rest of the proof of Proposition 6.1. First we will show (iii) except

the normalization condition

(6.4)

∫ ∞
0

η̃2 ds = 1.

Second, we will show the estimate (ii). Finally we will use (ii) to derive (6.4) from
(6.1), which completes the proof of (iii).

We claim that η̃ must satisfy the equation in (6.2). To see this claim, note that
the equation for w̃ε is

(6.5)
0 = − α

ε2/3∇x · (ψ2
ε∇xw̃ε)− [ψ2

ε (w̃ε)s]s

+
(
σε(α)−σε(α)

ε2/3 + σε(α)
ε2/3 − ε4/3

ψε,αα
ψε

)
ψ2
ε w̃ε

We argue via the weak formulation.
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Claim 6.4. There exists a constant ā0 such that for each test function z(s) that is
compactly supported in [0,∞),∫ ∞

0

[−zsη̃s + (ā0 − σ∗1s)zη̃] ds = 0.

In particular, η̃ satisfies the equation η̃ss+(ā0−σ∗1s)η̃ = 0 on (0,∞) and η̃s(0) = 0.

Multiplying (6.5) by a test function z = z(s), and integrating over x ∈ D, we
see that the term involving derivatives in x vanishes (by the Neumann boundary
condition ∂w̃ε

∂n = 0), and obtain
(6.6)

0 = −z
∫
D

[ψ2
ε (w̃ε)s]s dx+ z

∫
D

[
σε(α)− σε(α)

ε2/3
+
σε(α)

ε2/3
− ε4/3ψε,αα

ψε

]
ψ2
ε w̃ε dx.

Next, integrate the first term of (6.6) over s ∈ [0, sε], we see that

−
∫ sε

0

z

∫
D

[ψ2
ε (w̃ε)s]s dxds

=

∫ sε

0

∫
D

zsψ
2
ε (w̃ε)s dxds−

[
z

∫
D

ψ2
ε (w̃ε)s dx

]sε
s=0

=

∫ sε

0

∫
D

zsψ
2
ε (w̃ε)s dxds+ ε2/3

[
z

∫
D

ψεψε,αw̃ε dx

]sε
s=0

,

where we have used the boundary condition (w̃ε)s = −ε2/3ψε,αw̃ε/ψε on D×{0, sε}.
Since z(s) has compact support in [0,∞), the boundary term evaluated at s = sε
vanishes, and the remaining boundary term is of order O(ε2/3) (since w̃ε is bounded
in H1(D× (0, sε)) by assertion (i), and hence bounded in L2(D×{0}) by the Trace
Theorem). Hence, we have

(6.7) −
∫ sε

0

z

∫
D

[ψ2
ε (w̃ε)s]s dxds =

∫ sε

0

∫
D

zsψ
2
ε (w̃ε)s dxds+ o(1).

Also, in the support of z(s), (ψε)
2(x, α+ ε2/3s)→ (ψ∗)2(x, α) uniformly, so we may

use (6.7) to integrate (6.6) over s ∈ [0, sε] and pass to the limit to get

(6.8) 0 =

(∫
D

(ψ∗)2(x, α) dx

)[∫ ∞
0

zsη̃s ds+

∫ ∞
0

(σ∗1s− ā0)zη̃ ds

]
where we have used Corollary 5.7 and that ā0 is a subsequential limit of −σε(α)/ε2/3

(see also Lemma 4.3). This proves Claim 6.4. Next, we claim that

(6.9)

∫ ∞
0

η̃2 ds < +∞.

Notice that by normalization of w̃ε (see (6.1)), and the uniform (in ε) positive up-
per/lower bound of ψε (Lemma 4.1(iv)), there exists a fixed constant C0 such

that for each M > 0, and for all ε > 0 sufficiently small,
∫M

0

∫
D
w̃2
ε dxds ≤∫ sε

0

∫
D
w̃2
ε dxds ≤ C0. Letting ε → 0,

∫M
0
η̃2 ds ≤ C0 for all M > 0. i.e. (6.9)

holds.

Claim 6.5. η̃ is a positive solution that satisfies (6.2) with condition (6.4) being
replaced by (6.9).
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By Claim 6.4, η̃ satisfies

(6.10) η̃ss + (ā0 − σ∗1s)η̃ = 0, η̃ ≥ 0 on [0,+∞), and η̃s(0) = 0.

It remains to show that η̃(+∞) = 0, and that the subsequential limit ā0 must
be determined by ã0 of the proposition. By (6.10) and η̃ > 0, η̃ss ≥ 0 for all s
sufficiently large. Hence η̃(+∞) exists in [0,+∞]. By (6.9), η̃(+∞) = 0.

Hence, η̃ is a constant multiple of Airy((σ∗1)1/3s−A0), where A0 is the absolute
value of the first negative root of the derivative of the Airy function Airy(x). In
particular the subsequential limit ā0 given in (6.8) is uniquely determined by ã0 =
(σ∗1)2/3A0 (i.e. the full limit limε→0 σε(α)/ε2/3 exists). This shows Claim 6.5. To
finish the proof of (iii) except for (6.4), it remains to establish the following.

Claim 6.6. w̃ε(x, s)→ η̃(s) locally uniformly in D̄× [0,∞). In particular, for each
M > 0, ‖w̃ε‖L∞(D×[0,M ]) is bounded uniformly in ε.

It is enough to show that for each M > 0,

(6.11) sup
s∈[0,M ]

supx∈D w̃ε(x, s)

infx∈D w̃ε(x, s)
→ 1 as ε↘ 0.

For, assuming (6.11), one can write

(6.12) w̃ε(x, s) = w̃ε(x0, s)(1 + δε(x, s)) for some x0 ∈ D,

where δε(x, s) → 0 in L∞loc(D̄ × [0,+∞)). Now, if we integrate (6.12) over x ∈ D,
then

W̃ε(s) :=
1

|D|

∫
D

w̃ε(x, s) dx = w̃ε(x0, s)(1 + δ̂ε(s)),

where δ̂ε(s) → 0 in L∞loc([0,∞)). Since w̃ε is bounded in H1(D × (0, sε)), one

can easily deduce that W̃ε(s) ∈ H1
loc((0,+∞)) ⊂ C

1/2
loc ([0,+∞)). Therefore, by

Arzelá-Ascoli Theorem, W̃ε(s) and hence w̃ε(x0, s) converges to η̃(s) in Cloc([0,∞)).
Finally, (6.12) implies that w̃ε(x, s)→ η̃(s) locally uniformly in D × [0,+∞).

It remains to show (6.11) in a similar fashion as in Claim 3.6. Assume to the
contrary that there exists some constant c0 > 1, ε = εk → 0, sk → s0 < +∞, such
that

(6.13) sup
x∈D

w̃ε(x, sk) ≥ c0 inf
x∈D

w̃ε(x, sk).

Similarly as before, we extend w̃ε by reflection on D× {0} so that w̃ε is defined on
D × (−sε, sε), and define

Wk(x, τ) :=
w̃ε(x, sk + ε1/3τ/

√
α)

supx′∈D w̃ε(x
′, sk)

in D ×
(
−(sε + sk)

√
α

ε1/3
, (sε − sk)

√
α

ε1/3

)
.

Recall that sε is defined in (4.6). By the equation (6.5) satisfied by w̃ε, Wk satisfies

(6.14)

{
−αα∇x · (ψ

2
ε∇xWk)− (ψ2

εWk,τ )τ

+ 1
α

(
σε

(
α+ ε

2
3 sk + ε τ√

α

)
− ε2 ψε,ααψε

)
ψ2
εWk = 0,

in D ×
(
−(sε + sk)

√
α

ε1/3
, (sε − sk)

√
α

ε1/3

)
, where

α = α(τ) = α+

∣∣∣∣ε 2
3 sk + ε

τ
√
α

∣∣∣∣
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and the boundary conditions
∂
∂nWk = 0 on ∂D ×

(
−(sε + sk)

√
α

ε1/3 , (sε − sk)
√
α

ε1/3

)
Wk,τ = − ε√

α
ψε,α
ψε

Wk on D ×
{
−(sε + sk)

√
α

ε1/3 , (sε − sk)
√
α

ε1/3

}
.

Since sε → +∞ as ε → 0 and that sk remains bounded, we see in particular that
the domain of Wk tends to D × R as k →∞.

Claim 6.7. For each M > 0, σε

(
α+ skε

2
3 + ε

τ
√
α

)
→ 0 as ε→ 0, uniformly for

τ ∈ [−M,M ].

By Lemma 4.1(i), σε are bounded in C1([α, α]) uniformly in ε. Hence we may
write ∣∣∣∣σε(α+ skε

2
3 + ε

τ
√
α

)∣∣∣∣ ≤ |σε(α)|+ C

∣∣∣∣ε2/3sk + ε
τ
√
α

∣∣∣∣
and conclude that σε

(
α+ skε

2
3 + ε τ√

α

)
goes to zero by Lemma 4.3, and bounded-

ness of sk, τ . This proves Claim 6.7.
Since the coefficients of (6.14) are bounded in L∞loc(D×R) uniformly in k, Har-

nack inequality, and the normalization condition supx∈DWk(x, 0) = 1 implies that

Wk are bounded in L∞loc(D×R) uniformly in k. Hence we may apply elliptic Lp es-
timates similarly as in Claim 3.6 to conclude that a subsequence of Wk converges in
L∞loc(D×R) to a positive solution of (ψ0(x, α))−2∇x · (ψ2

0(x, α)∇xW ) +Wττ = 0 in
D×R. (Here we used Claim 6.7.) Now, we apply the following Liouville Theorem,
whose proof is exactly analogous to Proposition C.1 and is skipped.

Proposition 6.8. Let ψ(x) be a smooth positive function defined in D̄, then every
positive solution W to ψ−2∇x · (ψ2∇xW ) +Wtt = 0 in D×R, subject to Neumann
boundary condition on ∂D × R, is necessarily a constant.

So that by normalization supx∈DWk(x, 0) = 1, Wk(x, 0) → 1 uniformly in D.
This contradicts (6.13) and proves (6.11). This establishes Claim 6.6. Claims 6.6
and 6.5 establish assertion (iii) except for condition (6.4).

Next, we proceed to show the estimate in (ii). By the preceding argument in the
proof of Lemma 5.1, specifically the construction of supersolution W in Claim 5.4,
we can show that for all β > 0, there exists s0 > 0 such that

w̃(x, s) ≤

 sup
x ∈ D

0 ≤ s ≤ s0

w̃ε

 [exp(−β(s− s0)) + exp(β(s− (3/2)sε))]

for x ∈ D and s ∈ [s0, sε). Then (ii) follows from Claim 6.6, as the expression inside
paranthesis is bounded uniformly in ε. We do not repeat the details.

For (iii), it remains to show (6.4). By assertion (ii), and that

(6.15) ψε(x, α+ ε2/3s)→ ψ∗(x, α) and w̃ε(x, s)→ η̃(s)

in L∞loc(D̄ × [0,∞)) (by Lemma 4.1(iv) and Claim 6.6 resp.), we may pass to the
limit in (6.1) to obtain∫

D

θ2
α dx =

∫
D

∫ sε

0

ψ2
ε (x, α+ ε2/3s)w̃2

ε (x, s) dsdx→
∫
D

(ψ∗)2(x, α) dx

∫ ∞
0

η̃2 ds
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Upon noting that (see Definition 2.2(ii))

(6.16) ψ∗(x, α) = θα(x) in D,

the proof is completed. �

7. Proof of Theorem 2.3

Proof of Theorem 2.3. First, we note that by Proposition 5.6,

(7.1) ε2/3
∫
D

∫ sε

0

ψεwε dsdx =

∫
D

∫ α

α

uε(x, α) dαdx =

∫
D

ûε dx→
∫
D

θα dx

as ε→ 0. Furthermore, by (6.15), (6.16) and the estimate of Proposition 6.1(ii),

(7.2)

∫
D

∫ sε

0

ψεw̃ε dsdx→
∫
D

ψ∗(x, α) dx

∫ ∞
0

η̃(s) ds =

∫
D

θα(x) dx

∫ ∞
0

η̃(s) ds.

By the definition of wε and w̃ε, there is a function Γ(ε) such that

(7.3) wε(x, s) = Γ(ε)w̃ε(x, s).

By (7.1) and (7.2), we have

(7.4) lim
ε→0

ε2/3Γ(ε) =

(∫ ∞
0

η̃ ds

)−1

.

Hence, by (7.3) and Corollary 6.2,∥∥∥∥∥ε2/3wε(x, (α− α)/ε2/3)−
(∫ ∞

0

η̃ ds

)−1

η̃

(
α− α
ε2/3

)∥∥∥∥∥
L∞(Ω)

→ 0.

By the fact that
(∫∞

0
η̃ ds

)−1
η̃(s) = η∗(s) where η∗ is given in Definition 2.2(iii),

we also have ∥∥∥∥ε2/3wε(x, (α− α)/ε2/3)− η∗
(
α− α
ε2/3

)∥∥∥∥
L∞(Ω)

→ 0.

Using Lemma 4.1(iv), we have

(7.5)

∥∥∥∥ε2/3uε(x, α)− ψε(x, α)η∗
(
α− α
ε2/3

)∥∥∥∥
L∞(Ω)

→ 0.

By the fact that η∗(s) ≤ Ce−βs for some C, β > 0, (6.15) and (6.16), we have

(7.6)

∥∥∥∥(ψε(x, α)− θα(x))η∗
(
α− α
ε2/3

)∥∥∥∥
L∞(Ω)

→ 0.

And (2.7) follows from (7.5) and (7.6). �
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Appendix A. Existence Results

In this section we show the existence of positive solution to (2.1). For this
purpose, we fix positive parameters ε and α > α, and denote (in this section only)
the principal eigenvalue and eigenfunction of the following problem by µ1 and φ1.

(A.1)


α∆xφ+ ε2φαα +m(x)φ+ µφ = 0 in Ω := D × (α, α),
∂φ
∂n = 0 on ∂D × (α, α),
φα = 0 on D × {α, α}.

Theorem A.1. If µ1 ≥ 0, then the equation (2.1) has no positive steady-state. If
µ1 < 0, then the equation (2.1) has at least one positive steady-state.

Proof. First, we prove the non-existence result. Suppose µ1 ≥ 0 and let u be a
non-negative solution of (2.1). Multiply (2.1) by the principal eigenfunction φ1 of
(A.1), and integrate by parts, we obtain

µ1

∫
D

∫ α

α

φ2
1 dαdx+

∫
D

∫ α

α

uûφ1 dαdx = 0.

Since µ1 ≥ 0, both terms are non-negative, and both must be identically zero. i.e.
u ≡ 0.

For the existence result, we consider, for τ ∈ [0, 1], the positive solutions of

(A.2)

{
α∆u+ ε2(u)αα + (m(x)− τ û− (1− τ)u)u = 0 in D × (α, ᾱ),
∂u
∂n = 0 on ∂D × (α, α), (u)α = 0 in D × {α, α}.

Here we recall that û =
∫ α
α
u(x, α) dα. It remains to show the following claim,

from which existence of positive solution to (2.1) follows by a standard topological
degree argument, as the existence of a unique, linearly stable positive solution to
(A.2) when τ = 0 is standard.

Claim A.2. For some δ > 0 independent of τ ∈ [0, 1], any positive solution u of
(A.2) satisfies

δ < ‖u‖L1(Ω) < 1/δ.

For the upper bound, one can integrate (A.2) over Ω to get∫
D

ûm dx = τ

∫
D

û2 dx+ (1− τ)

∫
D

∫ α

α

u2 dαdx

≥
(
τ +

1− τ
α− α

)∫
D

û2 dx

≥ c0
∫
D

û2 dx

≥ c0
|D|

(∫
D

û dx

)2

=
c0
|D|
‖u‖2L1(Ω),

from which the upper bound follows.
For the lower bound, let u = vφ1, where φ1 > 0 is the principal eigenfunction

corresponding to the principal eigenvalue µ1 < 0 of (A.1). Moreover, if we normalize
φ1 by

∫
Ω
φ2

1 = 1, then supΩ φ1 and infΩ φ1 are fixed positive constants independent
of τ , as (A.1) is independent of τ . The equation for v can be written as{

α∇x · (φ2
1∇xv) + ε2(φ2

1vα)α + φ2
1v(−µ1 − τ ûε − (1− τ)u) = 0 in Ω,

∂v
∂n = 0 on ∂D × (α, α), vα = 0 on D × {α, α}.
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Hence, if we divide by v and integrate by parts, we have∫
Ω

φ2
1(µ1 + τ û+ (1− τ)u) dαdx =

∫
Ω

φ2
1

α|∇xv|2 + ε2|vα|2

v2
dαdx > 0.

Hence we have(
sup

Ω
φ1

)2

[τ(α− α) + (1− τ)]‖u‖L1(Ω) > −µ1

∫
Ω

φ2
1 dαdx = −µ1 > 0.

Since µ1 and supΩ φ1 are independent of τ , we have

‖u‖L1(Ω) ≥
−µ1

(supΩ φ1)2[τ(α− α) + (1− τ)]
.

Since the latter term is bounded from below uniformly in τ ∈ [0, 1], the claim is
proved. �

Corollary A.3. If
∫
D
m(x) dx > 0, then for any ε > 0, (2.1) has at least one

positive solution.

Proof. Divide the equation (A.1) by the principal eigenfunction φ1 and integrate
by parts over Ω, we get∫

D

∫ α

α

α|∇xφ1|2 + ε2|φ1,α|2

φ2
1

dαdx+

∫
D

∫ α

α

(m(x) + µ1) dαdx = 0.

Hence for all ε > 0,

µ1 ≤ −
1

|D|

∫
D

m(x) dx < 0,

and the existence of positive solution of (2.1) follows from Theorem A.1. �

Appendix B. Eigenvalue problems with diffusion parameter α and
weight function h(x)

For each α > 0 and h ∈ L∞(D), let λ1 = λ1(α, h) ∈ R and ϕ(x) = ϕ1(x;α, h)
be the normalized principal eigenvalue and principal eigenfunction of the following
problem.

(B.1)

{
−α∆xϕ+ hϕ = λϕ in D,
∂ϕ
∂n = 0 on ∂D,

∫
D
ϕ2 dx = 1.

We shall state and prove a number of properties of λ1 and ϕ1, and its dependence
on the parameters α and h, some of which is folklore among specialists.

Proposition B.1. (i) For each α > 0 and h ∈ L∞(D), the problem (B.1) has
a principal eigenvalue λ1 which is simple, and the corresponding eigenfunc-
tion ϕ1 can be chosen positive and uniquely determined by the constraint∫
D
ϕ2

1 dx = 1.
(ii) For each p > 1, the mapping (α, h) 7→ (λ1, ϕ1(·)) is smooth from R+ ×

L∞(D) to R×W 2,p
N (D), where W 2,p

N (D) = {φ ∈W 2,p(D) : ∂φ∂n = 0 on ∂D}.
(iii) If h ∈ L∞(D) is non-constant, then ∂λ1

∂α (α, h) > 0 for all α > 0.

Proof. Part (i) is well-known. See, e.g. [14, Section 8.12]. In particular, the
principal eigenvalue is given by the variational characterization

(B.2) λ1(α, h) = inf
ϕ∈C1(D)\{0}

∫
D

(α|∇xϕ|2 + hϕ2) dx∫
D
ϕ2 dx

.
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Fix p > N (N being the dimension of D). Consider the following mapping F :

W 2,p
N (D)× R× R+ × L∞(D)→ Lp(D)× R, given by

F (ϕ, λ, α, h) = (α∆xϕ− hϕ+ λϕ,

∫
D

ϕ2 dx− 1),

Then for each α > 0 and h ∈ L∞(D), the principal eigenpair (ϕ1(·;α, h), λ1(α, h))
of (B.1) satisfies

(B.3) F (ϕ1( · ;α, h), λ1(α, h), α, h) = (0, 0).

Assertion (ii) follows from the following claim, in view of the Implicit Function
Theorem and the smooth dependence of the operator F on α and h.

Claim B.2. For each fixed α > 0 and h ∈ L∞(D),

D(ϕ,λ)F (ϕ1( · ;α, h), λ1(α, h), α, h) : W 2,p
N × R → Lp(D)× R

is a bijection.

We shall follow the arguments in the proof of [10, Lemma 2.1]. Suppose for some

(Φ, t) ∈W 2,p
N × R, D(ϕ,λ)F (ϕ1( · ;α, h), λ1(α, h), α, h)[Φ, t] = (0, 0), i.e.

(B.4) α∆xΦ− hΦ + λ1Φ + tϕ1 = 0 in D, and
∂Φ

∂n
= 0 on ∂D,

and

(B.5) 2

∫
D

Φϕ1 dx = 0,

where λ1 = λ(α, h) and ϕ1 = ϕ(x;α, h). The Fredholm alternative implies that∫
D
tϕ2

1 dx = 0, i.e. t = 0. Hence Φ = cϕ1 for some constant c (as λ1 = λ1(α, h)
is a simple eigenvalue). But then (B.5) implies that c = 0. This shows that the
kernel of D(ϕ,λ)F (ϕ1( · ;α, h), λ1(α, h), α, h) is trivial. Now let (f, q) ∈ Lp(D) × R
be given, we need to solve for (Φ, t) in

(B.6) α∆xΦ− hΦ + λ1Φ + tϕ1 = f in D, and
∂Φ

∂n
= 0 on ∂D,

and

(B.7) 2

∫
D

Φϕ1 dx = q.

Set t = (
∫
D
fϕ1 dx)/(

∫
D
ϕ2

1 dx), then
∫
D

(f−tϕ1)ϕ1 dx = 0, so (B.6) has solution of

the form Φ = sϕ1+Φ⊥ where Φ⊥ ∈W 2,p
N (D) is unique and satisfies

∫
D

Φ⊥ϕ1 dx = 0.

Finally, if we set s = q/(2
∫
D
ϕ2

1 dx) then (Φ, t) solves (B.6) and (B.7). This proves
Claim B.2, which implies assertion (ii).

For (iii), we differentiate (B.1) with respect to α,

(B.8)

{
−α∆x

∂ϕ1

∂α + h∂ϕ1

∂α − λ1
∂ϕ1

∂α = ∆xϕ1 + ∂λ1

∂α ϕ1 in D,
∂
∂n

∂ϕ1

∂α = 0 on ∂D, and
∫
D
∂ϕ1

∂α ϕ1 dx = 0.

Multiply (B.8) by ϕ1 and integrate by parts, we have ∂λ1

∂α

∫
D
ϕ2

1 dx =
∫
D
|∇xϕ1|2 dx.

Since h(x) is non-constant in x, ϕ1 = ϕ1( · ;α, h) is non-constant in x and this
implies that ∂λ1

∂α > 0. This proves (iii). �

First, we show that λ1 and ϕ1 are continuous with respect to the weak topology
of R+ × ∩p>1L

p(D).
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Lemma B.3. Let λ1(α, h) and ϕ1( · ;α, h) be the principal eigenpair of (B.1).

(i) For each p > 1, there exists C ′0 = C ′0(p,M,α, α, ∂D) such that

|λ1(α, h)|+ ‖ϕ1( · ;α, h)‖W 2,p(D) ≤ C
′
0

provided α ∈ [α, α] and ‖h‖L∞(D) ≤M .
(ii) If αj → α0 ∈ [α, α], supj≥0 ‖hj‖L∞(D) < +∞ and hj ⇀ h0 in Lp(D) for

all p > 1, then as j → ∞, λ1(αj , hj) → λ1(α0, h0) and ϕ1( · ;αj , hj) ⇀
ϕ1( · ;α0, h0) weakly in W 2,p(D) for all p > 1.

Proof. By (B.2), λ1 := λ1(α, h) forms a bounded sequence in [−‖h‖L∞(D), ‖h‖L∞(D)].
The Lp estimate (for p > N) applied to (B.1) and interpolation inequality together
imply

‖ϕ1‖W 2,p(D) ≤ C‖ϕ1‖Lp(D) ≤
1

2
‖ϕ1‖W 2,p(D) + C‖ϕ1‖L2(D),

where C is a generic constant, depending on ‖h‖L∞(D), α, α and the domain D that
changes from line to line. This proves (i).

For (ii), let αj → α0 ∈ [α, α] and hj be a uniformly bounded sequence in L∞(D)
and hj ⇀ h0 weakly in Lp(D). Denote λ1,j = λ1(αj , hj) and ϕ1,j = ϕ1( · ;αj , hj).
By assertion (i), there are subsequences λ1,j′ and ϕ1,j′ such that λ1(αj , hj) → λ̃

and ϕ1( · ;αj , hj) ⇀ ϕ̃ weakly in W 2,p(D), for some λ̃ ∈ R and ϕ̃ ∈W 2,p(D). Take
α = αj′ , h = hj′ in (B.1), and pass to the weak limit j′ →∞, we deduce{

−α0∆xϕ̃+ h0ϕ̃ = λ̃ϕ̃ in D,
∂ϕ̃
∂n = 0 on ∂D,

∫
D
ϕ̃2 dx = 1.

Hence (ϕ̃, λ̃) is an eigenpair of (B.1) when α = α0, h = h0 and such that ϕ̃ ≥ 0.
Moreover, ϕ̃ is non-trivial, as

∫
D
ϕ̃2 dx = 1. By uniqueness of principal eigenpair,

it follows that λ̃ = λ1(α0, h0) and ϕ̃ = ϕ1( · ;α0, h0). Since the limit is indepen-
dent of subsequence, we deduce that the full sequence λ1(αj , hj) → λ(α0, h0) and
ϕ1( · ;αj , hj) ⇀ ϕ1( · ;α0, h0) weakly in W 2,p(D). This proves the assertion (ii). �

Next, we show the following uniform estimate of (D(ϕ,λ)F )−1.

Lemma B.4. There exists C2 = C2(M,α, α,D) such that for any α ∈ [α, α] and
‖h‖L∞(D) ≤M , if

D(ϕ,λ)F (ϕ1( · ;α, h), λ1(α, h), α, h)[Φ, t] = (f, q),

i.e. (B.6) and (B.7) hold with λ1 = λ(α, h) and ϕ1 = ϕ1(x;α, h), then

(B.9) |t|+ ‖Φ‖W 2,p(D) ≤ C2(|q|+ ‖f‖Lp(D)).

Proof. Let M > 0 be given. Suppose to the contrary that there are αj ∈ [α, α], hj ,
Φj , tj , qj , fj such that

(B.10) sup
j
‖hj‖L∞(D) ≤M, |tj |+ ‖Φj‖W 2,p(D) →∞, |qj |+ ‖fj‖Lp(D) ≤ 1.

Without loss of generality, we may assume αj → α0 ∈ [α, α] and for some h0 ∈
L∞(D), hj ⇀ h0 weakly in Lp(D). Denote

λ1,j = λ1(αj , hj), and ϕ1,j = ϕ1(·;αj , hj) for j ∈ N ∪ {0}.
The above arguments ensure that

Φj = Φ⊥j + qj/(2

∫
D

ϕ2
1,j dx)ϕ1,j , and tj =

∫
D

fjϕ1,j dx/

∫
D

ϕ2
1,j dx
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where Φ⊥j is the unique solution of (B.6) subject to the constraint
∫
D

Φ⊥j ϕ1,j dx = 0.

By the normalization
∫
D
ϕ2

1,j dx = 1, we have

(B.11) Φj = Φ⊥j +
qj
2
ϕ1,j and tj =

∫
D

fjϕ1,j dx.

Since we have shown that |λ1,j | and ‖ϕ1,j‖W 2,p(D) remain bounded uniformly in

j, (B.10) and (B.11) imply that ‖Φ⊥j ‖W 2,p(D) → ∞. Apply Lp estimate to the

equation of Φ⊥j , which is

(B.12)

{
αj∆xΦ⊥j − hjΦ⊥j + λ1,jΦ

⊥
j = fj − (

∫
D
fjϕ1,j dx)ϕ1,j in D,

∂Φ⊥j
∂n = 0 on ∂D, and

∫
D

Φ⊥j ϕ1,j dx = 0.

Using the boundedness of ϕ1,j in W 2,p(D) and hence in L∞(D), we have

‖Φ⊥j ‖W 2,p(D) ≤ C
[
‖Φ⊥j ‖Lp(D) + ‖fj −

(∫
D

fjϕ1,j dx

)
ϕ1,j‖Lp(D)

]
≤ C(‖Φ⊥j ‖L∞(D) + ‖fj‖Lp(D)).

Hence we must have ‖Φ⊥j ‖L∞(D) → ∞ as j → ∞. Define Φ̃j := Φ⊥j /‖Φ⊥j ‖L∞(D),

then Φ̃j satisfies{
αj∆xΦ̃j − hjΦ̃j + λ1,jΦ̃j = f̃j in D,
∂Φ̃j
∂n = 0 on ∂D,

∫
D

Φ̃jϕ1,j dx = 0, and supD Φ̃j = 1,

where f̃j = [fj − (
∫
D
fjϕ1,j dx)ϕ1,j ]/‖Φ⊥j ‖L∞(D) converges to zero in Lp(D) as

j → ∞. By Lp estimates, Φ̃j is bounded uniformly in W 2,p(D). Hence, there is

a subsequence Φ̃j′ that converges, weakly in W 2,p(D) and strongly in C1(D), to

some function Φ̃0. By normalization supD Φ̃0 = limj′

(
supD Φ̃j

)
= 1. Moreover,

Φ̃0 satisfies (using Lemma B.3(ii)){
α0∆xΦ̃0 − h0Φ̃0 + λ1(α0, h0)Φ̃0 = 0 in D,
∂Φ̃0

∂n = 0 on ∂D, and
∫
D

Φ̃0ϕ1,0 dx = 0.

Since Φ̃0 is non-negative, Proposition B.1(i) implies Φ̃0 = cϕ1( · ;α0, h0) = cϕ1,0

but the integral constraint implies that c = 0. i.e. Φ̃0 = 0. This is a contradiction
to supD Φ̃0 = 1. This proves (B.9). �

Proposition B.5. Let λ1(α, h) and ϕ1( · ;α, h) be the principal eigenpair of (B.1).

(i) For each k, there exists C ′k = C ′k(M,α, α,D) such that

(B.13)

k∑
j=0

∣∣∣∣ ∂j∂αj λ1(α, h)

∣∣∣∣+

∥∥∥∥ ∂j∂αj ϕ1( · ;α, h)

∥∥∥∥
W 2,p(D)

≤ C ′k

provided α ∈ [α, α] and ‖h‖L∞(D) ≤M .
(ii) If supj≥0 ‖hj‖L∞(D) < +∞ and hj ⇀ h0 in Lp(D) for all p > 1, then for

each k ≥ 0,

∂k

∂αk
λ1(·, hj)→

∂k

∂αk
λ1(·, h0) in Cloc([0,∞)) as j →∞.
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Moreover, given k ≥ 0, p > 1, and sequence αj → α0 > 0,

∂k

∂αk
ϕ1( · ;αj , hj) ⇀

∂k

∂αk
ϕ1( · ;α0, h0) weakly in W 2,p(D) as j →∞.

Proof. Assertions (i) and (ii) for the case k = 0 are exactly Lemma B.3. We first
prove assertion (i) for k = 1, differentiate the relation (B.3) with respect to α,

(B.14) D(ϕ,λ)F

[
∂

∂α
ϕ1( · ;α, h),

∂

∂α
λ1(α, h)

]
= −DαF,

where the partial derivatives of F are evaluated at (ϕ1( · ;α, h), λ1(α, h), α, h). By
(B.2), we may write

(ϕ′1, λ
′
1) = (D(ϕ,λ)F )−1[−DαF ] = (D(ϕ,λ)F )−1(−∆xϕ1, 0)

and deduce by Lemma B.4 that

|λ′1|+ ‖ϕ′1‖W 2,p(D) ≤ C2‖∆xϕ1‖Lp(D) ≤ C2‖ϕ1‖W 2,p(D) ≤ C.
i.e. assertion (i) holds for k = 1. We argue inductively for k > 1. Suppose (i) holds
for k = K − 1. We can write

(B.15) D(ϕ,λ)F

[
∂K

∂αK
ϕ1( · ;α, h),

∂K

∂αK
λ1(α, h)

]
= FK(α, h)

where

(B.16) FK(α, h) :=

(
−K ∂K−1

∂αK−1
(−∆xϕ1)−

K−1∑
k=1

(
K
k

)
∂k

∂αk
λ1

∂K−k

∂αK−k
ϕ1 , 0

)
By the form of FK , we can deduce the following result.

Claim B.6. ‖FK(α, h)‖L∞(D) ≤ C
∑K−1
k=0

(∣∣∣ ∂k∂αk λ1

∣∣∣+
∥∥∥ ∂k

∂αk
ϕ1

∥∥∥
W 2,p(D)

)
.

By the induction assumption (i.e. (i) holds for k = K−1) we have ‖FK‖Lp(D) ≤
C(M,α, α,D). Hence we may apply Claim B.4 to (B.15) to conclude the assertion
(i) for the case K. This induction argument proves (i).

By Lemma B.3(ii), it remains to prove assertion (ii) for case k ≥ 1. Let αj →
α0 ∈ [α, α] and hj be a uniformly bounded sequence in L∞(D) and hj ⇀ h0 weakly
in Lp(D). Denote λ1,j = λ1(αj , hj) and ϕ1,j = ϕ1( · ;αj , hj). By assertion (i), there

are subsequences λ1,j′ and ϕ1,j′ such that for all k ≥ 0, ∂k

∂αk
λ1(αj′ , hj′) → λ̃k and

∂k

∂αk
ϕ1( · ;αj′ , hj′) ⇀ ϕ̃k weakly in W 2,p(D), for some λ̃k ∈ R and ϕ̃k ∈ W 2,p(D).

Passing to the limit in (B.14), we deduce that

(B.17) D(ϕ,λ)F
[
ϕ̃1, λ̃1

]
= −DαF,

where the partial derivatives of F are evaluated at (ϕ1( · ;α0, h0), λ1(α0, h0), α0, h0).
Since we also have

(B.18) D(ϕ,λ)F

[
∂

∂α
ϕ1( · ;α0, h0),

∂

∂α
λ1(α0, h0)

]
= −DαF,

where the partial derivatives of F are evaluated at (ϕ1( · ;α0, h0), λ1(α0, h0), α0, h0),
we may invert D(ϕ,λ)F in both (B.17) and (B.18), and conclude that

ϕ̃1 =
∂

∂α
ϕ1( · ;α0, h0) and λ̃1 =

∂

∂α
λ1(α0, h0).
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Since the limit is determined independent of the subsequence, we conclude assertion
(ii) for the case k = 1.

Again, we may argue inductively for k > 1. Suppose (ii) is proved for k =
1, ...,K − 1. The following can be easily observed from (B.16).

Claim B.7. If assertion (ii) holds for k = 1, ...,K − 1, then

FK(αj , hj) ⇀ FK(α0, h0)

weakly in Lp(D), where FK is defined in (B.16).

Based on Claim B.7, and the assertion (ii) for the cases k = 1, ...,K− 1, we may
pass to the limit in (B.15). Together with the uniform boundedness of [D(ϕ,λ)F ]−1 :

Lp(D)→W 2,p(D) (Lemma B.4), this implies ∂K

∂αK
λ1(αj , hj)→ ∂K

∂αK
λ1(α0, h0) and

∂K

∂αK
ϕ1(·;αj , hj) ⇀ ϕ1(·;α0, h0) in W 2,p(D).

Thus assertion (ii) follows by induction on k. �

Appendix C. Liouville Theorem for Positive Harmonic Functions in
Cylinder Domain

We give a proof of the Liouville-type theorem for positive harmonic functions in
cylinder domains, since we cannot locate a proper reference for this result.

Proposition C.1. Let k ∈ N, D be a bounded smooth domain in RN and u be
a non-negative harmonic function on Ω := D × Rk ⊂ RN+k, so that ∂u

∂n = 0 on

∂D × Rk. Then u is necessarily a constant.

Proof. Let x ∈ D, y ∈ Rk and let u(x, y) be a non-negative harmonic function on
Ω = D×Rk, subject to Neumann boundary condition on ∂D×Rk. By subtracting
a positive constant from u, we may assume that infΩ u = 0.

Harnack inequality says that there is a constant C > 1 such that for all y′ ∈ Rk,
we have

sup
x∈D,|y−y′|<2

u ≤ C inf
x∈D,|y−y′|<2

u.

Define v(y) = 1
|D|
∫
D
u(x′, y) dy, then v is a harmonic function on Rk and must

be equal to a non-negative constant v0. Hence for each y′ ∈ Rk, there exists x′ ∈ D̄
such that u(x′, y′) = v0. It follows that for each y′ ∈ Rk,

v0 ≤ C inf
x∈D,|y−y′|<2

u(x, y).

Taking infimum in y′ ∈ Rk, it follows that from infΩ u = 0 that v0 = 0. Hence,

1

|D|

∫
D

u(x, y) dx = v(y) = v0 = 0

for all y ∈ Rk. i.e. u ≡ 0 in Ω. �
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