Analysis of a free-boundary tumor model with angiogenesis

Avner Friedman and King-Yeung Lam
Department of Mathematics
The Ohio State University
Columbus, OH, 43210 USA

April 9, 2015

Abstract

We consider a free boundary problem for a spherically symmetric tumor with free boundary $r<R(t)$. In order to receive nutrients u the tumor attracts blood vessel at a rate proportional to $\alpha(t)$, so that $\frac{\partial u}{\partial r}+\alpha(t)(u-\bar{u})=0$ holds on the boundary, where \bar{u} is the nutrient concentration outside the tumor. A parameter μ in the model is proportional to the 'aggressiveness' of the tumor. When α is a constant, the existence and uniqueness of stationary solution is proved. For the more general situation when α depends on time, we show, under various conditions (that are always satisfied if μ is small), that (i) $R(t)$ remains bounded if $\alpha(t)$ remains bounded; (ii) $\lim _{t \rightarrow \infty} R(t)=0$ if $\lim _{t \rightarrow \infty} \alpha(t)=0$; and (iii) $\liminf _{t \rightarrow \infty} R(t)>0$ if $\liminf _{t \rightarrow \infty} \alpha(t)>0$. Surprisingly, we exhibit solutions (when μ is not small) where $\alpha(t) \rightarrow 0$ exponentially in t while $R(t) \rightarrow \infty$ exponentially in t. Finally, we prove the global asymptotic stability of steady state when μ is sufficiently small.

1 Introduction

In a live tissue with uniformly distributed cells the concentration of nutrients, \hat{u}, satisfies a diffusion equation

$$
c \frac{\partial \hat{u}}{\partial t}=\Delta \hat{u}+A\left(u_{B}-\hat{u}\right)-\lambda_{0} \hat{u}
$$

where $A\left(u_{B}-\hat{u}\right)$ is the rate of nutrient concentration supplied by the vascular system and $\lambda_{0} u$ is the consumption rate of nutrients by the cells. This model was proposed in [4] to describe the evolution of spherical tumors with uniformly distributed tumor cells. As a result of cells proliferation and death, the tumor region $\{r<R(t)\}$ varies in time; see also [1, 2, 3, 4, 5, 8], and the references therein, for other models developed over the last few decades where the tumor's evolution is represented in the form of a free-boundary problem.

We assume that the nutrient concentration outside the tumor is a constant $\overline{\bar{u}}$. Let $\tilde{\tilde{u}}$ denote the critical concentration below which cells cannot survive in the sense that

$$
A\left(u_{B}-\tilde{\tilde{u}}\right)-\lambda_{0} \tilde{\tilde{u}}<0, \quad \text { or } \quad \tilde{\tilde{u}}>\frac{u_{B}}{1+\lambda_{0} / A} .
$$

We also assume that the proliferation (or death) rate of cells is proportional to $\hat{u}-\overline{\bar{u}}$, taking it to be $\nu(\hat{u}-\overline{\bar{u}})$ for some positive constant ν. The parameter ν, in the case of a tumor,
represents aggressiveness of the tumor: large ν means faster proliferation rate, provided the tumor receives sufficient nutrients, i.e. provided $\hat{u}>\tilde{\tilde{u}}$.

Setting

$$
u=\hat{u}-\frac{u_{B}}{1+\lambda_{0} / A}, \quad \tilde{u}=\tilde{\tilde{u}}-\frac{u_{B}}{1+\lambda_{0} / A}, \quad \bar{u}=\overline{\bar{u}}-\frac{u_{B}}{1+\lambda_{0} / A}, \quad \lambda=A+\lambda_{0},
$$

we get

$$
c \frac{\partial u}{\partial t}=\Delta u-\lambda u \quad \text { in } \quad r<R(t) .
$$

Since nutrients enter the sphere by the vascular system, using homogenization [9] it is natural to assume that

$$
\frac{\partial u}{\partial r}+\alpha(t)(u-\bar{u})=0 \quad \text { on } \quad r=R(t)
$$

where $\alpha(t)$ is a positive-valued function which depends on the density of the blood vessels; this function may vary in time. Noting that $\nu(\hat{u}-\tilde{\tilde{u}})=\nu(u-\tilde{u})$, we also have,

$$
\frac{d R(t)}{d t}=\frac{\nu}{R(t)^{2}} \int_{0}^{R(t)} r^{2}(u(r, t)-\tilde{u}) d r .
$$

By the maximum principle, if $0 \leq u(r, 0) \leq \bar{u}$ then $0 \leq u(r, t) \leq \bar{u}$; hence if $\tilde{u}>\bar{u}$ then the tumor shrinks and $R(t) \searrow 0$ as $t \rightarrow \infty$. We shall henceforth exclude this case, and always assume that $\tilde{u}<\bar{u}$.

Tumor cells are known to secrete cytokines that stimulate the vascular system to grow toward the tumor, a process called angiogenesis, which results in an increase in $\alpha(t)$. On the other hand, if the tumor is treated with anti-angiogenic drugs, $\alpha(t)$ will decrease and may become very small and the starved tumor will shrink. In the limiting ischemic case where $\alpha(t) \rightarrow 0$, we expect that $R(t)$ will actually decrease to zero as $t \rightarrow \infty$.

The above system with the boundary condition $u=\bar{u}$ on $r=R(t)$ (which is formally the case $\alpha(t)=\infty$) was studied in [7].

In Section 3, we first show that for any $\alpha>0$ and $\eta=\frac{\tilde{u}}{\bar{u}} \in(0,1)$ there exists a unique stationary solution $u_{*}(r)$ with radius R_{*} which depends only on the parameters α and η. Moreover, $R_{*} \rightarrow 0$ as $\alpha \rightarrow 0$, and R_{*} approaches the radius of the stationary solution studied in [7], as $\alpha \rightarrow \infty$.

We next consider the more general situation when α depends on t and show, under some conditions (which are always satisfied if $\frac{c \nu}{\lambda}$ is sufficiently small), that
(a) $R(t)$ remains bounded if $\alpha(t)$ is uniformly bounded (Section 4);
(b) $R(t) \rightarrow 0$ as $t \rightarrow \infty$ if $\alpha(t) \rightarrow 0$ as $t \rightarrow \infty$ (Section 5);
(c) $\liminf _{t \rightarrow \infty} R(t)>0$ if $\liminf _{t \rightarrow \infty} \alpha(t)>0$ (Section 6).

But, surprisingly, we give examples (Section 7) (when $\frac{c \nu}{\gamma}$ is not small) where $\alpha(t) \rightarrow 0$ as $t \rightarrow \infty$ while $R(t) \rightarrow \infty$ as $t \rightarrow \infty$. Finally in Sections 8 and 9 we prove, when $\alpha(t) \rightarrow \alpha_{*}$ for some $\alpha_{*}>0$, that if $c \nu / \gamma$ is sufficiently small then the steady state solution corresponding to the case $\alpha=\alpha_{*}$ is globally asymptotically stable.

2 Preliminaries

We simplify the system of (u, R) in Section 1 by a change of variables:

$$
v^{\prime}=\sqrt{\lambda} r, \quad t^{\prime}=\lambda / c t, \quad \alpha^{\prime}\left(t^{\prime}\right)=\frac{\alpha(t)}{\sqrt{\lambda}}, \quad \mu=\frac{c \nu}{\lambda}, \quad u^{\prime}\left(r^{\prime}, t^{\prime}\right)=u(r, t), \quad R^{\prime}\left(t^{\prime}\right)=\sqrt{\lambda} R(t)
$$

and after dropping the " $/$ ", we get the following simpler system:

$$
\begin{gather*}
\frac{\partial u}{\partial t}=\Delta u-u \quad \text { in } \quad r<R(t), \tag{1}\\
\frac{\partial u}{\partial r}+\alpha(t)(u-\bar{u})=0 \quad \text { on } \quad r=R(t), \tag{2}\\
\frac{d R}{d t}=\frac{\mu}{R(t)^{2}} \int_{0}^{R(t)}(u-\tilde{u}) r^{2} d r, \quad \tilde{u} \in(0, \bar{u}) . \tag{3}
\end{gather*}
$$

We prescribe an initial condition:

$$
\begin{equation*}
u(r, 0)=u_{0}(r), \quad \text { where } \quad 0 \leq u_{0}(r) \leq \bar{u} \quad \text { for } \quad 0 \leq r \leq R(0) . \tag{4}
\end{equation*}
$$

As in [7] one can prove that the system (1) - (4) has a unique global solution, $0<u(r, t)<\bar{u}$ if $0 \leq r \leq R(t), t>0$, and

$$
\begin{equation*}
-\frac{\mu \tilde{u}}{3} \leq \frac{1}{R} \frac{d R}{d t} \leq \frac{\mu(\bar{u}-\tilde{u})}{3} \quad \text { for all } t>0 \tag{5}
\end{equation*}
$$

Next, we introduce the functions

$$
\begin{equation*}
f(s)=\frac{\sinh s}{s}, \quad g(s)=\frac{f^{\prime}(s)}{f(s)}=\operatorname{coth} s-\frac{1}{s} \quad \text { and } \quad h(s)=\frac{f^{\prime}(s)}{s f(s)}=\frac{g(s)}{s}, \tag{6}
\end{equation*}
$$

and note, by direct computation, that

$$
\begin{equation*}
f^{\prime \prime}(s)+\frac{2}{s} f^{\prime}(s)=f(s) . \tag{7}
\end{equation*}
$$

The following three lemmas will be used in the paper.
Lemma 2.1. The function $g(s)$ has the following properties:
(i) $g(0)=0$,
(ii) $\lim _{s \rightarrow \infty} g(s)=1$,
(iii) $g^{\prime}(0)=\frac{1}{3}$,
(iv) $g^{\prime}(s)>0$ for $s \geq 0$.

Lemma 2.2. The function $h(s)$ has the following properties:

$$
\text { (i) } h^{\prime}(s)<0 \text { for } s>0, \quad \text { (ii) } \lim _{s \rightarrow 0} h(s)=\frac{1}{3}, \quad \text { (iii) } \lim _{s \rightarrow \infty} h(s)=0 \text {. }
$$

A direct consequence of Lemma 2.2 is the following:
Corollary 2.3. For any $0<\tilde{u}<\bar{u}$, there exists an $a_{0}>0$ such that

$$
h\left(a_{0}\right)=\frac{f^{\prime}\left(a_{0}\right)}{a_{0} f\left(a_{0}\right)}=\frac{1}{3} \frac{\tilde{u}}{\bar{u}} .
$$

Lemma 2.4. The following identity holds for any $k \in[0,1]$:

$$
\int_{k R}^{R} r^{2} f\left(\frac{a r}{R}\right) d r=\frac{R^{3}}{a}\left[f^{\prime}(a)-k^{2} f^{\prime}(k a)\right] .
$$

The proofs of Lemmas 2.1, 2.2 and 2.4 are given in the appendix.

$3 \alpha(t)=$ constant

In this section we consider the case where $\alpha(t) \equiv$ const. $\equiv \alpha$, and establish the existence of a unique steady state solution. A (radially symmetric) steady state solution of (1) and (2) (with $\alpha(t)=\alpha$), must have the form

$$
\begin{equation*}
u_{*}(r)=\frac{\alpha \bar{u}}{\alpha+g\left(R_{*}\right)} \frac{f(r)}{f\left(R_{*}\right)} \quad \text { for } 0<r<R_{*}, \tag{8}
\end{equation*}
$$

where by (3)

$$
\begin{equation*}
\frac{1}{3} \tilde{u} R_{*}^{3}=\int_{0}^{R_{*}} u_{*}(r) r^{2} d r \tag{9}
\end{equation*}
$$

Substituting (8) into (9) and using Lemma 2.4, we find that

$$
\begin{equation*}
h\left(R_{*}\right)=\frac{g\left(R_{*}\right)}{R_{*}}=\frac{\eta}{3}\left(1+\frac{g\left(R_{*}\right)}{\alpha}\right), \tag{10}
\end{equation*}
$$

where $\eta=\frac{\tilde{u}}{\bar{u}}$ and $g(s)$ is defined in (6).
In [7] the problem (1) - (3) was considered with the boundary condition (2) replaced by the boundary condition $u=\bar{u}$. This corresponds formally to the case $\alpha=\infty$. The existence of a unique steady state was proved, with $u_{*}=\bar{u} f(r) / f(R)$ and radius $R=R_{*, D}$ given by (10) with $\alpha=\infty$.

Theorem 3.1. For any $\alpha>0$, and $0<\tilde{u}<\bar{u}$, there exists a unique steady state solution of (1) - (3), given by (8), (10), i.e. there exists a unique solution R_{*} of (10). Furthermore, setting $\eta=\frac{\tilde{u}}{\bar{u}}$, the function $R_{*}=R_{*}(\alpha, \eta)$ is strictly increasing in α and strictly decreasing in η. Finally, for each $\eta \in(0,1), R_{*} \rightarrow 0$ as $\alpha \rightarrow 0$, and $R_{*} \rightarrow R_{*, D}$, as $\alpha \rightarrow \infty$.

Proof of Theorem 3.1. Define a function $\Lambda:[0, \infty) \rightarrow \mathbb{R}$ by

$$
\Lambda(s):=g(s)-\frac{\tilde{u}}{3 \bar{u}}\left(1+\frac{g(s)}{\alpha}\right) s
$$

Lemma 3.2. There exists $R_{*}>0$ such that

$$
\Lambda(s)=g(s)-\frac{\tilde{u}}{3 \bar{u}}\left(1+\frac{g(s)}{\alpha}\right) s= \begin{cases}0 & \text { when } s=0, \text { or } s=R_{*}, \tag{11}\\ >0 & \text { when } 0<s<R_{*}, \\ <0 & \text { when } s>R_{*} .\end{cases}
$$

Moreover, $\Lambda^{\prime}(0)>0>\Lambda^{\prime}\left(R_{*}\right)$.
Proof. Clearly, we have $\Lambda(0)=0$. To prove the rest of (11), we first recall that, by Lemma $2.2, g(s) / s=h(s)$ satisfies

$$
\left(\frac{g(s)}{s}\right)^{\prime}<0 \text { for } s>0, \quad \lim _{s \rightarrow 0} \frac{g(s)}{s}=\frac{1}{3}, \quad \lim _{s \rightarrow \infty} \frac{g(s)}{s}=0
$$

Using also the facts that $g^{\prime}(s)>0$ for all $s \geq 0$ and $\lim _{s \rightarrow \infty} g(s)=1$, we deduce that $(\Lambda(s) / s)^{\prime}<0$ for all $s>0$. Also, since $\lim _{s \rightarrow \infty} g(s)=1$,

$$
\lim _{s \rightarrow 0} \frac{\Lambda(s)}{s}=\frac{1}{3}-\frac{\tilde{u}}{3 \bar{u}}>0, \quad \lim _{s \rightarrow \infty} \frac{\Lambda(s)}{s}=-\frac{\tilde{u}}{3 \bar{u}}\left(1+\frac{1}{\alpha}\right)<0
$$

Hence there exists a unique $R_{*}>0$ such that (11) holds. Moreover,

$$
\Lambda^{\prime}(0)=\lim _{s \rightarrow 0} \frac{\Lambda(s)}{s}=\frac{1}{3}\left(1-\frac{\tilde{u}}{\bar{u}}\right)>0,
$$

and that

$$
\Lambda^{\prime}\left(R_{*}\right)=\left.\left[s \frac{\Lambda(s)}{s}\right]^{\prime}\right|_{s=R_{*}}=\left.R_{*}\left(\frac{\Lambda(s)}{s}\right)^{\prime}\right|_{s=R_{*}}<0
$$

By (10), for each $\alpha>0$, the system (1) - (3) has a steady state solution with radius R_{*} if and only if $\Lambda\left(R_{*}\right)=0$. Hence the theorem follows, by (11) and the monotonicity of $\Lambda(s) / s$ with respect to α and η.

$4 \quad R(t)$ is bounded

Theorem 4.1. If $\alpha(t)$ is uniformly bounded, and

$$
\begin{equation*}
\mu(\bar{u}-\tilde{u})<1, \tag{12}
\end{equation*}
$$

then $R(t)$ is uniformly bounded.
Proof. Integrating (1) and using (2), we get

$$
\begin{aligned}
\int_{0}^{R(t)} r^{2} u(r, t) d r= & \int_{0}^{t} R^{2}(t) u(R(t) t) \dot{R}(t) d t+\int_{0}^{R(0)} r^{2} u_{0}(r) d r \\
& +\int_{0}^{t} R^{2}(t)[-\alpha(t)(u(R(t), t)-\bar{u})] d t-\int_{0}^{t} \int_{0}^{R(t)} r^{2} u(r, t) d r d t
\end{aligned}
$$

and, by (3),

$$
\int_{0}^{R(t)} r^{2} u(r, t) d r=\frac{1}{\mu} R^{2}(t) \dot{R}(t)+\frac{1}{3} R^{3}(t) \tilde{u} .
$$

Setting $\rho(t)=\frac{1}{3} R^{3}(t)$ we can then write
$\frac{1}{\mu} \rho^{\prime}(t)=-\left(\tilde{u}+\frac{1}{\mu}\right) \rho(t)-\tilde{u} \int_{0}^{t} \rho(t) d t+\int_{0}^{t} \alpha(t) R^{2}(t)[\bar{u}-u(R(t), t)] d t+\int_{0}^{t} u(R(t), t) \rho^{\prime}(t) d t+A_{1}$
where

$$
\begin{equation*}
A_{1}=\int_{0}^{R(0)} r^{2} u_{0}(r) d r+\frac{1}{\mu} \rho(0) . \tag{13}
\end{equation*}
$$

Claim 4.2. Suppose for some $t_{0}, \dot{R}\left(t_{0}\right)=0$ and $\ddot{R}\left(t_{0}\right) \geq 0$, then $R\left(t_{0}\right)<B:=\frac{3 \alpha\left(t_{0}\right) \bar{u}}{\tilde{u}}$.
To prove the claim, we differentiate (13) at $t=t_{0}$ to obtain

$$
\begin{aligned}
\frac{1}{\mu} \rho^{\prime \prime}\left(t_{0}\right) & =-\left(\tilde{u}+\frac{1}{\mu}\right) \rho^{\prime}\left(t_{0}\right)-\tilde{u} \rho\left(t_{0}\right)+\alpha\left(t_{0}\right) R^{2}\left(t_{0}\right)\left[\bar{u}-u\left(R\left(t_{0}\right), t_{0}\right)\right]+u\left(R\left(t_{0}\right), t_{0}\right) \rho^{\prime}\left(t_{0}\right) \\
& <-\frac{\tilde{u}}{3} R^{3}\left(t_{0}\right)+\alpha\left(t_{0}\right) R^{2}\left(t_{0}\right) \bar{u} \\
& =\frac{\tilde{u}}{3} R^{2}\left(t_{0}\right)\left(-R\left(t_{0}\right)+\frac{3 \alpha\left(t_{0}\right) \bar{u}}{\tilde{u}}\right) .
\end{aligned}
$$

Noting that $\rho^{\prime \prime}\left(t_{0}\right) \geq 0$, we conclude that $R\left(t_{0}\right)<B$.

Lemma 4.3. Suppose that for some $0 \leq \tau_{1}<\tau_{2}$, $\dot{R}(t) \geq 0$ in $\left(\tau_{1}, \tau_{2}\right)$ and $R\left(\tau_{1}\right) \geq$ $3\left(\sup _{\tau_{1}<t<\tau_{2}} \alpha\right) \frac{\bar{u}}{\bar{u}}$, then

$$
\begin{equation*}
\left.\frac{1}{\mu} \rho^{\prime}\right|_{\tau_{1}} ^{\tau_{2}} \leq\left.\left(\bar{u}-\tilde{u}-\frac{1}{\mu}\right) \rho\right|_{\tau_{1}} ^{\tau_{2}} \tag{14}
\end{equation*}
$$

Proof. We set $t=\tau_{i}(i=1,2)$ in (13), and subtract, to obtain (after canceling A_{1})
$\left.\frac{1}{\mu} \rho^{\prime}\right|_{\tau_{1}} ^{\tau_{2}}=-\left.\left(\tilde{u}+\frac{1}{\mu}\right) \rho\right|_{\tau_{1}} ^{\tau_{2}}-\tilde{u} \int_{\tau_{1}}^{\tau_{2}} \rho(t) d t+\int_{\tau_{1}}^{\tau_{2}} \alpha(t) R^{2}(t)[\bar{u}-u(R(t), t)] d t+\int_{\tau_{1}}^{\tau_{2}} u(R(t), t) \rho^{\prime}(t) d t$.
Using the inequality $\int_{\tau_{1}}^{\tau_{2}} u(R(t), t) \rho^{\prime}(t) d t \leq \bar{u} \rho \tau_{\tau_{1}}^{\tau_{2}}$, which follows from $\dot{R} \geq 0$, we deduce that

$$
\begin{equation*}
\left.\frac{1}{\mu} \rho^{\prime}\right|_{\tau_{1}} ^{\tau_{2}} \leq\left.\left(\bar{u}-\tilde{u}-\frac{1}{\mu}\right) \rho\right|_{\tau_{1}} ^{\tau_{2}}-\tilde{u} \int_{\tau_{1}}^{\tau_{2}} \rho(t) d t+\bar{u} \int_{\tau_{1}}^{\tau_{2}} \alpha(t) R^{2}(t) d t \tag{16}
\end{equation*}
$$

Since $R\left(\tau_{1}\right) \geq 3\left(\sup _{t} \alpha\right) \frac{\bar{u}}{\tilde{u}}$, the sum of last two terms is non-positive, and (14) follows.
We proceed to show that $R(t)$ is uniformly bounded. Suppose to the contrary that $\sup _{t} R=$ $+\infty$, then one of the following two scenarios holds:
(a) There exists a $T_{0}>0$ such that $\dot{R}(t) \geq 0$, for all $t \geq T_{0}$.
(b) There exists a sequence of intervals $\left(s_{n}, t_{n}\right)$ such that

$$
R^{\prime}(t)>0 \quad \text { in } \quad\left(s_{n}, t_{n}\right), \quad R\left(s_{n}\right) \leq B, \quad \dot{R}\left(s_{n}\right)=0, \quad R\left(t_{n}\right) \rightarrow+\infty
$$

where $B=\frac{3 \bar{u}}{\tilde{u}}\left(\sup _{t} \alpha\right)$.
To see that this exhausts all the possibilities, suppose that (a) does not hold, i.e., there exists a sequence $\bar{t}_{n} \rightarrow \infty$ such that $\dot{R}\left(\bar{t}_{n}\right)<0$. This, together with $\sup _{t} R=+\infty$, imply that there is a sequence of local maximum points $\tilde{t}_{n} \rightarrow \infty$ such that $R\left(\tilde{t}_{n}\right) \rightarrow \infty$. Hence we can choose, for each n, a maximal interval $\left(s_{n}, t_{n}\right)$ such that

$$
R\left(t_{n}\right)>\max \left\{R\left(t_{n-1}\right), n, B\right\}, \quad \dot{R}\left(s_{n}\right)=\dot{R}\left(t_{n}\right)=0, \quad \dot{R}(t)>0 \quad \text { in } \quad\left(s_{n}, t_{n}\right)
$$

Noting that $\ddot{R}\left(s_{n}\right) \geq 0$, we conclude by Claim 4.2 that $R\left(s_{n}\right) \leq \frac{3 \bar{u}}{\tilde{u}} \alpha\left(s_{n}\right) \leq B$, which yields the case (b).

We proceed to treat each case separately.
Case (a). By increasing T_{0}, we may assume without loss of generality that $R\left(T_{0}\right) \geq$ $3\left(\sup _{t} \alpha\right) \frac{\bar{u}}{\tilde{u}}$. Therefore, for any $t>T_{0}$, by setting $\tau_{1}=T_{0}$ and $\tau_{2}=t$, Lemma 4.3 yields

$$
\rho^{\prime}(t)-\rho^{\prime}\left(T_{0}\right)<-\beta\left(\rho(t)-\rho\left(T_{0}\right)\right), \quad \text { where } \quad \beta=1+\mu(\tilde{u}-\bar{u})>0 .
$$

Multiplying both sides by $e^{\beta t}$, and rearranging, we have

$$
\left(e^{\beta t} \rho(t)\right)^{\prime}<e^{\beta t}\left(\rho^{\prime}\left(T_{0}\right)+\beta \rho\left(T_{0}\right)\right)
$$

Integrating both sides from T_{0} to t, we get

$$
e^{\beta t} \rho(t)-e^{\beta T_{0}} \rho\left(T_{0}\right)<\frac{1}{\beta}\left(e^{\beta t}-e^{\beta T_{0}}\right)\left(\rho^{\prime}\left(T_{0}\right)+\beta \rho\left(T_{0}\right)\right),
$$

so that for any $t>T_{0}$,

$$
\rho(t)<e^{-\beta\left(t-T_{0}\right)} \rho\left(T_{0}\right)+\frac{1}{\beta}\left(1-e^{-\beta\left(t-T_{0}\right)}\right)\left(\rho^{\prime}\left(T_{0}\right)+\beta \rho\left(T_{0}\right)\right) .
$$

But this implies that $\rho(t)=\frac{1}{3} R^{3}(t)$ remains uniformly bounded for all $t>T_{0}$, which is a contradiction to $\sup _{t} R=+\infty$.
Case (b). By replacing s_{n} by some $s_{n}^{\prime} \in\left(s_{n}, t_{n}\right)$, we may assume that $R\left(s_{n}\right)=B$. Lemma 4.3 then implies that

$$
\rho^{\prime}(t)<-\beta\left(\rho(t)-\rho\left(s_{n}\right)\right)+\rho^{\prime}\left(s_{n}\right) \quad \text { for any } s_{n}<t<t_{n} .
$$

Multiplying both sides by $e^{\beta t}$, we get

$$
\left(e^{\beta t} \rho(t)\right)^{\prime}<e^{\beta t}\left(\beta \rho\left(s_{n}\right)+\rho^{\prime}\left(s_{n}\right)\right)=e^{\beta t}\left(\beta B_{1}+\rho^{\prime}\left(s_{n}\right)\right),
$$

where $B_{1}=\frac{1}{3} B^{3}=9\left(\frac{\bar{u} \sup _{t} \alpha}{\tilde{u}}\right)^{3}$. Using also the inequality $\rho^{\prime} \leq \mu(\bar{u}-\tilde{u}) \rho$, which follows from (3), we find that

$$
\left(e^{\beta t} \rho(t)\right)^{\prime}<e^{\beta t}\left[\beta B_{1}+\mu(\bar{u}-\tilde{u}) \rho\left(s_{n}\right)\right]=e^{\beta t} B_{1}[\beta+\mu(\bar{u}-\tilde{u})] .
$$

Integrating from s_{n} to t_{n}, we deduce that

$$
e^{\beta t_{n}} \rho\left(t_{n}\right)-e^{\beta s_{n}} B_{1}<\left(e^{\beta t_{n}}-e^{\beta s_{n}}\right) B_{1}\left[1+\frac{\mu(\bar{u}-\tilde{u})}{\beta}\right],
$$

so that

$$
\rho\left(t_{n}\right) \leq e^{-\beta\left(t_{n}-s_{n}\right)} B_{1}+\left(1-e^{-\beta\left(t_{n}-s_{n}\right)}\right) B_{1}\left[1+\frac{\mu(\bar{u}-\tilde{u})}{\beta}\right]<B_{1}\left[1+\frac{\mu(\bar{u}-\tilde{u})}{\beta}\right] .
$$

This implies again that $\rho\left(t_{n}\right)$ is bounded uniformly in n, which is a contradiction. This completes the proof of Theorem 4.1.

Remark 4.4. The last inequality implies that if $R(t)$ is uniformly bounded in t but is not monotone increasing for all large t (that is, we are in Case (b) with $R\left(t_{n}\right) \rightarrow \infty$ dropped) then

$$
\limsup _{t \rightarrow \infty} R(t) \leq\left\{3 B_{1}\left[1+\frac{\mu(\bar{u}-\tilde{u})}{\beta}\right]\right\}^{\frac{1}{3}}=\left(\frac{3 \bar{u} \sup _{t} \alpha}{\tilde{u}}\right)\left[1+\frac{\mu(\bar{u}-\tilde{u})}{\beta}\right]^{\frac{1}{3}} .
$$

Indeed this follows by taking the t_{n} such that $\lim _{t \rightarrow \infty} R\left(t_{n}\right)=\limsup _{t \rightarrow \infty} R(t)$.
In the next theorem we prove the uniform boundedness of $R(t)$ under different assumptions than in Theorem 4.1, and by an entirely different method. Recall that $h(s)=\frac{\operatorname{coth} s}{s}-\frac{1}{s^{2}}$, and that, by Lemma 2.2, h^{-1} is well-defined in the interval ($0, \frac{1}{3}$).
Theorem 4.5. Let $\eta=\frac{\tilde{u}}{\bar{u}} \in(0,1)$ and h be given as in (6). If

$$
\begin{equation*}
\mu(\bar{u}-\tilde{u})<\frac{9}{\eta h^{-1}\left(\frac{\eta}{3}\right)^{2}} \tag{17}
\end{equation*}
$$

then $R(t)$ remains uniformly bounded.

Remark 4.6. It is interesting to compare Theorem 4.5 with Theorem 4.1. If $\eta=\frac{\tilde{u}}{\bar{u}}$ is near 1 then $a=h^{-1}(\eta)$ is near 0 so that (17) is less restrictive than the condition (12) assumed in Theorem 4.1. On the other hand, if η is near 0 then $a=h^{-1}(\eta)$ is near ∞, and the condition (17) is more restrictive than the condition (12). Note also that, in contrast with Theorem 4.1, Theorem 4.5 does not require the uniform boundedness of $\alpha(t)$ in t.

Remark 4.7. The case when formally $\alpha(t) \equiv \infty$, that is, when the boundary condition is $u=\bar{u}$, was considered in [7] where it was proved (see [7, Theorem 5.1]) that $R(t)$ is bounded if $\mu\left(\bar{u}+e^{-1 / \mu}\right)<1$. The proof of Theorem 4.5 is completely different from the proof in [7], and it extends also to the case where $u=\bar{u}$ on the free boundary (under different conditions than in [7]).

Proof of Theorem 4.5. Let $a_{0}=h^{-1}\left(\frac{\eta}{3}\right)$. By the assumption (17) and the monotonicity of h (Lemma 2.2), we may choose a positive constant a slightly greater than a_{0} such that

$$
\begin{equation*}
\frac{\mu}{3}(\bar{u}-\tilde{u}) a^{2} h(a)<1 \quad \text { and } \quad h(a)=\frac{f^{\prime}(a)}{a f(a)}<\frac{\tilde{u}}{3 \bar{u}} . \tag{18}
\end{equation*}
$$

To prove the theorem, we suppose that $\limsup _{t \rightarrow \infty} R(t)=+\infty$, and derive a contradiction.
Claim 4.8. For any $M_{0}, T_{0}>0$, there exist positive numbers τ_{1}, τ_{2} such that

$$
\tau_{2}-\tau_{1}>T_{0}, \quad R(t) \geq M_{0} \quad \text { for all } t \in\left(\tau_{1}, \tau_{2}\right), \quad \text { and } \quad \dot{R}\left(\tau_{2}\right) \geq 0
$$

It remains to show the claim for any $M_{0}>\inf _{t>0} R(t)$. To prove the claim, take τ_{0} such that $R\left(\tau_{0}\right)=M_{0}$ and fix $\tau_{2}>\tau_{0}$ so that $R\left(\tau_{2}\right) / M_{0}>\exp \left(\mu(\bar{u}-\tilde{u}) T_{0}\right)$, and $\dot{R}\left(\tau_{2}\right)>0$. Let $\tau_{1}=\inf \left\{\tau_{0}<t<\tau_{2}: R\left(t^{\prime}\right)>M_{0}\right.$ for all $\left.t^{\prime} \in\left(t, \tau_{2}\right)\right\}$, then $R\left(\tau_{1}\right)=M_{0}$ and $R(t) \geq M_{0}$ for all $t \in\left(\tau_{1}, \tau_{2}\right)$. Also, from the fact $\dot{R}(t) \leq \mu(\bar{u}-\tilde{u}) R(t)$, it follows that

$$
\tau_{2}-\tau_{1} \geq \frac{1}{\mu(\bar{u}-\tilde{u})} \log \left(\frac{R\left(\tau_{2}\right)}{R\left(\tau_{1}\right)}\right)
$$

Hence $\tau_{2}-\tau_{1}>T_{0}$ by our choice of τ_{2}. This completes the proof of the claim.
We are now going to construct a supersolution w for $\tau_{1}<t<\tau_{2}$ and use it to estimate the right-hand side of (3) at $t=\tau_{2}$ and show that $\dot{R}\left(\tau_{2}\right)<0$, which is a contradiction; this will complete the proof of the theorem. To construct the supersolution w we take M_{0} such that

$$
M_{0}^{2}>\frac{a^{2}}{1-a^{2} h(a) \mu(\bar{u}-\tilde{u}) / 3}
$$

which gives

$$
\begin{equation*}
-a^{2} h(a) \cdot \frac{\mu}{3}(\bar{u}-\tilde{u})+1-\frac{a^{2}}{M_{0}^{2}}>0, \tag{19}
\end{equation*}
$$

and choose (using (18)) a positive constant T_{0} such that

$$
T_{0}>-\log \left(\frac{\tilde{u}}{\bar{u}}-3 h(a)\right)
$$

which gives

$$
\begin{equation*}
\frac{\bar{u} e^{-t}}{3}-\frac{\tilde{u}}{3}+\bar{u} h(a)<0 \quad \text { for all } t \geq T_{0} . \tag{20}
\end{equation*}
$$

Let

$$
w:=\bar{u} e^{-\left(t-\tau_{1}\right)}+\frac{\bar{u}}{f(a)} f\left(\frac{a r}{R(t)}\right) .
$$

We claim that w is a supersolution. We first check the differential inequality: For $t \in\left[\tau_{1}, \tau_{2}\right]$,

$$
\begin{aligned}
& w_{t}-\Delta w+w \\
= & \frac{\bar{u}}{f(a)} f^{\prime}\left(\frac{a r}{R(t)}\right) \cdot \frac{-a r}{R^{2}(t)} \dot{R}(t)+\left(1-\frac{a^{2}}{R^{2}(t)}\right) \frac{\bar{u}}{f(a)} f\left(\frac{a r}{R(t)}\right) \\
= & \frac{\bar{u}}{f(a)} f\left(\frac{a r}{R(t)}\right)\left[-\frac{f^{\prime}\left(\frac{a r}{R(t)}\right)}{f\left(\frac{a r}{R(t)}\right)} \frac{a r}{R(t)} \frac{\dot{R}(t)}{R(t)}+\left(1-\frac{a^{2}}{R^{2}(t)}\right)\right] .
\end{aligned}
$$

Setting $w_{1}:=\frac{\bar{u}}{f(a)} f\left(\frac{a r}{R(t)}\right)$, we obtain

$$
\begin{aligned}
& w_{t}-\Delta w+w \\
\geq & w_{1}\left[-\left(\sup _{s \in(0, a)} \frac{f^{\prime}(s)}{f(s)} s\right) \max \left\{0, \frac{\dot{R}(t)}{R(t)}\right\}+\left(1-\frac{a^{2}}{R^{2}(t)}\right)\right] \\
\geq & w_{1}\left[-a \frac{f^{\prime}(a)}{f(a)} \cdot \frac{\mu}{3}(\bar{u}-\tilde{u})+\left(1-\frac{a^{2}}{R^{2}(t)}\right)\right] \\
\geq & w_{1}\left[-a^{2} h(a) \cdot \frac{\mu}{3}(\bar{u}-\tilde{u})+1-\frac{a^{2}}{M_{0}^{2}}\right]>0
\end{aligned}
$$

by (19). Next, we observe that

$$
\left.\left[w_{r}+\alpha(t)(w-\bar{u})\right]\right|_{r=R(t)}>0,
$$

as $w_{r}(R(t), t)>0, w-\bar{u} \geq 0$ and $\alpha(t) \geq 0$. Since also $u\left(r, \tau_{1}\right)<\bar{u}<w\left(r, \tau_{1}\right)$, we conclude, by comparison, that $u(r, t) \leq w(r, t)$ for $0 \leq r \leq R(t)$ and $t \in\left[\tau_{1}, \tau_{2}\right]$. Hence,

$$
\begin{aligned}
\frac{\dot{R}}{R} & =\frac{\mu}{R^{3}} \int_{0}^{R} r^{2}(u(r, t)-\tilde{u}) d r \\
& \leq \frac{\mu}{R^{3}} \int_{0}^{R} r^{2}(w(r, t)-\tilde{u}) d r \\
& =\frac{\mu}{R^{3}} \int_{0}^{R} r^{2}\left[\bar{u} e^{-\left(t-\tau_{1}\right)}+\frac{\bar{u}}{f(a)} f\left(\frac{a r}{R}\right)-\tilde{u}\right] d r .
\end{aligned}
$$

By integration, using Lemma 2.4, we then get

$$
\begin{aligned}
\frac{\dot{R}}{R} & \leq \frac{\mu}{R^{3}}\left\{\frac{R^{3}}{3}\left[\bar{u} e^{-\left(t-\tau_{1}\right)}-\tilde{u}\right]+\frac{\bar{u}}{f(a)} \frac{R^{3}}{a} f^{\prime}(a)\right\} \\
& =\mu\left\{\frac{\bar{u} e^{-\left(t-\tau_{1}\right)}-\tilde{u}}{3}+\bar{u} h(a)\right\} .
\end{aligned}
$$

Hence, by (20),

$$
\frac{\dot{R}\left(\tau_{2}\right)}{R\left(\tau_{2}\right)} \leq \mu\left\{\frac{\bar{u} e^{-\left(\tau_{2}-\tau_{1}\right)}-\tilde{u}}{3}+\bar{u} h(a)\right\}<0
$$

which is a contradiction to the fact that $\dot{R}\left(\tau_{2}\right) \geq 0$.
$5 \quad R(t) \rightarrow 0$
Lemma 5.1. If $R(t)$ is uniformly bounded and $\lim _{t \rightarrow 0} \alpha(t)=0$, then $\liminf _{t \rightarrow \infty} R(t)=0$.
Proof. If the assertion is not true, then

$$
\begin{equation*}
R_{1} \leq R(t) \leq R_{2} \tag{21}
\end{equation*}
$$

for some positive constants R_{1}, R_{2} and all $t>0$. Set

$$
\begin{equation*}
C_{*}=\sup _{R_{1} \leq r \leq R_{2}} f(r), \quad c_{0}=\inf _{R_{1} \leq r \leq R_{2}} \frac{d}{d r} f(r) \tag{22}
\end{equation*}
$$

where $f(r)=\frac{\sinh (r)}{r}$, and note that $c_{0}>0$.
Let ϵ be a small number such that

$$
\epsilon C_{*}<\frac{\tilde{u}}{3}
$$

and choose a large number t_{0} such that

$$
\alpha(t)<c_{1}:=\frac{\epsilon c_{0}}{\bar{u}} \quad \text { if } t>t_{0} .
$$

Consider the function

$$
\begin{equation*}
w(r, t)=\bar{u} e^{-\left(t-t_{0}\right)}+\epsilon f(r) \quad \text { for } t>t_{0} . \tag{23}
\end{equation*}
$$

It satisfies (1) and $w\left(r, t_{0}\right)>\bar{u} \geq u\left(r, t_{0}\right)$. Since also

$$
\frac{\partial w}{\partial r}+\alpha(t)(w-\bar{u})>\epsilon \frac{d}{d r} f(r)-\alpha(t) \bar{u}>\epsilon c_{0}-c_{1} \bar{u}=0 \quad \text { on } r=R(t),
$$

we conclude that w is a supersolution for $t>t_{0}$, so that

$$
u(r, t)<w(r, t) \quad \text { if } \quad t \geq t_{0}
$$

It follows that

$$
u(r, t)-\tilde{u}<w(r, t)-\tilde{u}=\bar{u} e^{-\left(t-t_{0}\right)}+\epsilon C_{*}-\tilde{u}<-\frac{\tilde{u}}{3}
$$

if $t \geq t_{1}$, where t_{1} is chosen large enough such that

$$
\bar{u} e^{-\left(t_{1}-t_{0}\right)}=\frac{\tilde{u}}{3} .
$$

Hence, for all $t>t_{1}$,

$$
\frac{d R(t)}{d t}=\frac{\mu}{R(t)^{2}} \int_{0}^{R(t)}(u-\tilde{u}) r^{2} d r<-\frac{\mu \tilde{u}}{9} R(t)
$$

and $R(t)$ decreases exponentially to zero as $t \rightarrow \infty$, thus contradicting (21).
Theorem 5.2. If $\lim _{t \rightarrow 0} \alpha(t)=0$ and (12) (i.e. $\left.\mu(\bar{u}-\tilde{u})<1\right)$ holds, then $R(t) \rightarrow 0$ as $t \rightarrow \infty$.

Proof. We first note, by Theorem 4.1, that $R(t)$ is uniformly bounded.
Suppose the assertion of the theorem is not true, then, in view of Lemma 5.1, there exists a positive constant γ_{0} and sequences $t_{n}, \tilde{t}_{n} \rightarrow \infty$ such that for all n

$$
\tilde{t}_{n}<t_{n}<\tilde{t}_{n+1}, \quad \rho\left(t_{n}\right)>\gamma_{0}, \quad \rho\left(\tilde{t}_{n}\right)<\gamma_{0}, \quad \rho^{\prime}\left(t_{n}\right)>0>\rho^{\prime}\left(\tilde{t}_{n}\right),
$$

where we recall that $\rho(t)=\frac{1}{3} R^{3}(t)$. Let

$$
s_{n}=\inf \left\{s^{\prime}: s^{\prime}<t_{n}, \text { and } \rho^{\prime}(t)>0 \text { for all } t \in\left(s^{\prime}, t_{n}\right]\right\} ;
$$

clearly $s_{n} \in\left(\tilde{t}_{n}, t_{n}\right), s_{n} \rightarrow \infty$ as $n \rightarrow \infty, \rho^{\prime}\left(s_{n}\right)=0$ and $\rho^{\prime \prime}\left(s_{n}\right) \geq 0$. By Claim 4.2,

$$
\begin{equation*}
R\left(s_{n}\right) \leq \frac{3 \bar{u}}{\tilde{u}} \alpha\left(s_{n}\right) . \tag{24}
\end{equation*}
$$

We conclude that there exists a sequence of disjoint intervals $\left(s_{n}, t_{n}\right)$ such that

$$
\begin{equation*}
\rho^{\prime}(t)>0 \quad \text { in } \quad\left(s_{n}, t_{n}\right), \quad s_{n} \rightarrow \infty, \quad \rho\left(s_{n}\right) \leq 9\left(\frac{\tilde{u}}{\bar{u}} \sup _{\left(s_{n}, \infty\right)} \alpha\right)^{3} \rightarrow 0 \tag{25}
\end{equation*}
$$

and, by taking n sufficiently large, say $n \geq n_{0}$,

$$
\begin{equation*}
\rho\left(t_{n}\right) \geq \gamma_{0}>9\left(\frac{\tilde{u}}{\bar{u}} \sup _{\left(s_{n}, \infty\right)} \alpha\right)^{3}>0 \quad \text { for all } n \geq n_{0} \tag{26}
\end{equation*}
$$

By (25) and (26), we may choose $s_{n}^{\prime} \in\left(s_{n}, t_{n}\right)$ such that

$$
\begin{equation*}
\rho\left(s_{n}^{\prime}\right)=9\left(\frac{\tilde{u}}{\bar{u}} \sup _{\left(s_{n}^{\prime}, \infty\right)} \alpha\right)^{3} . \tag{27}
\end{equation*}
$$

As $n \rightarrow \infty, s_{n}^{\prime} \rightarrow \infty$ and hence the right-hand side of (27) tends to zero, and so does $\rho\left(s_{n}^{\prime}\right)$. Therefore, for all n sufficiently large, we have

$$
\begin{equation*}
\rho\left(s_{n}^{\prime}\right)<\frac{\gamma_{0} \beta}{2 \beta+\mu(\bar{u}-\tilde{u})}, \tag{28}
\end{equation*}
$$

where $\beta=1+\mu(\tilde{u}-\bar{u})>0$. In view of (25) and (27), the assumptions of Lemma 4.3 hold with $\tau_{1}=s_{n}^{\prime}$ and $\tau_{2} \in\left[s_{n}^{\prime}, t\right]$. Hence, by (14),

$$
\begin{equation*}
\rho^{\prime}(t)-\rho^{\prime}\left(s_{n}^{\prime}\right) \leq-\beta\left(\rho(t)-\rho\left(s_{n}^{\prime}\right)\right) \quad \text { for all } t \in\left[s_{n}^{\prime}, t_{n}\right] . \tag{29}
\end{equation*}
$$

By repeating the argument of Case (b) of Proof of Theorem 4.1, we then deduce that

$$
\rho\left(t_{n}\right)<e^{-\beta\left(t_{n}-s_{n}^{\prime}\right)} \rho\left(s_{n}^{\prime}\right)+\rho\left(s_{n}^{\prime}\right)(1+\mu(\bar{u}-\tilde{u}) / \beta) .
$$

Hence, by (28),

$$
\begin{equation*}
\rho\left(t_{n}\right)<\rho\left(s_{n}^{\prime}\right)(2+\mu(\bar{u}-\tilde{u}) / \beta)<\gamma_{0}, \tag{30}
\end{equation*}
$$

and this is a contradiction to the fact that $\rho\left(t_{n}\right) \geq \gamma_{0}$ for all n.

$6 \quad \liminf R(t)>0$

In this section we show that if $\alpha(t) \nrightarrow 0$ as $t \rightarrow \infty$, then $R(t)$ stays bounded away from zero for all $t \geq 0$. Moreover, there is a positive lower bound of $\lim _{\inf }^{t \rightarrow \infty}$ $R(t)$ that is independent of initial data $\left(u_{0}, R_{0}\right)$.

Proposition 6.1. If $\liminf _{t \rightarrow \infty} \alpha(t)=\alpha_{1}>0$, then there exists a positive constant $\delta_{0}>0$ independent of initial conditions $\left(u_{0}, R_{0}\right)$ such that $\liminf _{t \rightarrow \infty} R(t) \geq \delta_{0}$.

Proof. Choose a small constant $\delta_{0}>0$ such that

$$
\begin{equation*}
f\left(\delta_{0}\right)<\frac{\bar{u}+\tilde{u}}{2 \tilde{u}}, \quad \frac{\sup _{r \in\left[0, \delta_{0}\right]} f^{\prime}(r)}{f\left(\delta_{0}\right)}<\delta_{0}, \quad \text { and } \quad \frac{\bar{u}+\tilde{u}}{2} \delta_{0}<\frac{\bar{u}-\tilde{u}}{2} \frac{\alpha_{1}}{2} . \tag{31}
\end{equation*}
$$

This is indeed possible since

$$
\lim _{s \rightarrow 0^{+}} f(s)=1, \quad \lim _{s \rightarrow 0^{+}} \frac{f^{\prime}(s)}{s f(s)}=\lim _{s \rightarrow 0^{+}} h(s)=\frac{1}{3}, \quad \text { and } \quad \frac{\bar{u}+\tilde{u}}{2 \tilde{u}}>1 .
$$

Claim 6.2. There exists a sequence $t_{n} \rightarrow \infty$ such that $R\left(t_{n}\right)>\delta_{0}$.
Suppose to the contrary that there exists $t_{0}>0$ such that

$$
R(t) \leq \delta_{0} \quad \text { and } \quad \alpha(t) \geq \frac{\alpha_{1}}{2} \quad \text { for all } t \geq t_{0}
$$

and introduce the function

$$
\begin{equation*}
w(r, t)=\frac{\bar{u}+\tilde{u}}{2} \frac{f(r)}{f\left(\delta_{0}\right)}-\bar{u} e^{-\left(t-t_{0}\right)} . \tag{32}
\end{equation*}
$$

Then $w_{t}-\frac{1}{r^{2}}\left(r^{2} w_{r}\right)_{r}+w=0, w\left(r, t_{0}\right) \leq 0$ for all $r \in\left[0, R_{0}\right]$, and,

$$
\begin{aligned}
\left.\left(w_{r}+\alpha w\right)\right|_{r=R(t)} & =\frac{\bar{u}+\tilde{u}}{2}\left(\frac{f^{\prime}(R(t))}{f\left(\delta_{0}\right)}+\alpha(t) \frac{f(R(t))}{f\left(\delta_{0}\right)}\right)-\alpha(t) \bar{u} e^{-\left(t-t_{0}\right)} \\
& \leq \frac{\bar{u}+\tilde{u}}{2}\left(\delta_{0}+\alpha(t)\right) \\
& <\alpha(t) \bar{u}
\end{aligned}
$$

where the last two inequalities follow from the last two inequalities in (31) and the fact that $\alpha(t) \geq \alpha_{1} / 2$. Hence, by comparison, $u(r, t) \geq w(r, t)$ for all $0<r<R(t)$ and $t>t_{0}$. But then

$$
\begin{equation*}
R(t)^{2} \dot{R}(t) \geq \int_{0}^{R(t)}(w(r, t)-\tilde{u}) r^{2} d r \geq \int_{0}^{R(t)}\left(\frac{\bar{u}+\tilde{u}}{2 f\left(\delta_{0}\right)}-\bar{u} e^{-\left(t-t_{0}\right)}-\tilde{u}\right) r^{2} d r . \tag{33}
\end{equation*}
$$

Hence

$$
\liminf _{t \rightarrow \infty} \frac{\dot{R}(t)}{R(t)} \geq \int_{0}^{R(t)}\left(\frac{\bar{u}+\tilde{u}}{2 f\left(\delta_{0}\right)}-\tilde{u}\right) \frac{r^{2}}{R(t)^{3}} d r=\frac{1}{3}\left(\frac{\bar{u}+\tilde{u}}{2 f\left(\delta_{0}\right)}-\tilde{u}\right),
$$

where the right hand side is a positive constant, by the first condition in (31). This contradicts the assumption $R(t) \leq \delta_{0}$ for all $t \geq t_{0}$, which completes the proof of Claim 6.2

Next, choose δ_{0} as above, and $\theta \in(0,1)$ such that

$$
\begin{equation*}
\theta^{3 / \tilde{u}}<\frac{1}{\bar{u}}\left[\frac{\tilde{u}+\bar{u}}{2 f\left(\delta_{0}\right)}-\tilde{u}\right], \tag{34}
\end{equation*}
$$

which is possible since the right hand side is positive by the first condition in (31).
Claim 6.3. $\liminf _{t \rightarrow \infty} R(t) \geq \delta_{1}:=\theta \delta_{0}$.
To prove Claim 6.3, suppose for contradiction that $\liminf _{t \rightarrow \infty} R(t)<\delta_{1}$. Then, by Claim 6.2, there exists a sequence $\tau_{j} \rightarrow \infty$ such that $\tau_{2 j-1}<\tau_{2 j}<\tau_{2 j+1}$,

$$
R\left(\tau_{2 j-1}\right)>\delta_{0}, \quad R\left(\tau_{2 j}\right)<\delta_{1}, \quad \text { and } \quad \dot{R}\left(\tau_{2 j}\right) \leq 0
$$

Hence there exist $0<t_{0}<t_{1}$ such that $\alpha(t) \geq \alpha_{1} / 2$ for all $t \geq t_{0}$, and

$$
\begin{equation*}
R\left(t_{i}\right)=\delta_{i} \text { for } i=0,1, \quad \delta_{1}<R(t)<\delta_{0} \text { for all } t \in\left(t_{0}, t_{1}\right), \quad \dot{R}\left(t_{1}\right) \leq 0, \tag{35}
\end{equation*}
$$

and $\delta_{1}=\theta \delta_{0}$. By (3), $\frac{\dot{R}(t)}{R(t)} \geq-\frac{\tilde{u}}{3}$, so that (35) implies the inequality

$$
\begin{equation*}
t_{1}-t_{0} \geq-\frac{3}{\tilde{u}} \log \theta . \tag{36}
\end{equation*}
$$

The function $w(r, t)$ defined in (32) is a subsolution for $t \in\left[t_{0}, t_{1}\right]$. This implies, by comparison, that $u(r, t) \geq w(r, t)$ for all $0<r<R(t)$ and $t_{0}<t<t_{1}$. Hence by (33) and (36),

$$
\dot{R}\left(t_{1}\right) \geq \int_{0}^{R\left(t_{1}\right)}\left(\frac{\bar{u}+\tilde{u}}{2 f\left(\delta_{0}\right)}-\bar{u} \theta^{3 / \tilde{u}}-\tilde{u}\right) r^{2} d r .
$$

But the right-hand side is positive by (34), which contradicts the fact that $\dot{R}\left(t_{1}\right) \leq 0$.

7 Blow up solutions

In this section we show a partial converse of Theorem 4.1.
Theorem 7.1. Suppose $\mu \bar{u}>1$. Then for any \tilde{u} sufficiently small, there exist a function $\alpha(t)$ and initial conditions $\left(u_{0}, R_{0}\right)$ such that $\lim _{t \rightarrow \infty} \alpha(t)=0$ and the radius $R(t)$ of the solution (u, R) increases to infinity exponentially fast as $t \rightarrow \infty$.

Proof. Define

$$
\begin{equation*}
\beta(a, k)=\bar{u}\left[\frac{f^{\prime}(a)-k^{2} f^{\prime}(k a)}{a f(a)}-\frac{1-k^{3}}{3} \frac{f(k a)}{f(a)}-\frac{\tilde{u}}{3 \bar{u}}\right] . \tag{37}
\end{equation*}
$$

Claim 7.2. There exist numbers $a>0$ and $0<k<1$ such that for any \tilde{u} sufficiently small,

$$
\begin{equation*}
\mu \beta(a, k) g(k a) k a=\mu \beta(a, k) \frac{f^{\prime}(k a)}{f(k a)} k a>1 . \tag{38}
\end{equation*}
$$

To prove the claim, write the left-hand side of (38) as

$$
\mu \bar{u} k g(k a)\left[g(a)-\frac{\tilde{u}}{3 \bar{u}} a-k^{2} \frac{f^{\prime}(k a)}{f(a)}-\frac{1-k^{3}}{3} \frac{f(k a)}{f(a)} a\right] .
$$

Fix some $k \in\left((\mu \bar{u})^{-1}, 1\right)$ and $c \in(1, \mu \bar{u} k)$, then as $\alpha \rightarrow+\infty$,

$$
g(k a) \rightarrow 1, \quad g(a) \rightarrow 1, \quad \frac{f^{\prime}(k a)}{f(a)} \rightarrow 0, \quad \text { and } \quad \frac{f(k a)}{f(a)} a \rightarrow 0,
$$

which imply that there exists a positive constant a_{1} such that

$$
\begin{equation*}
\mu \bar{u} k g\left(k a_{1}\right)\left[g\left(a_{1}\right)-\frac{\mu \bar{u} k-c}{\mu \bar{u} k}-k^{2} \frac{f^{\prime}\left(k a_{1}\right)}{f\left(a_{1}\right)}-\frac{1-k^{3}}{3} \frac{f\left(k a_{1}\right)}{f\left(a_{1}\right)} a_{1}\right] \approx c>1 . \tag{39}
\end{equation*}
$$

If \tilde{u} is sufficiently small such that

$$
0<\tilde{u} \leq \frac{\mu \bar{u} k-c}{\mu \bar{u} k} \frac{3 \bar{u}}{a_{1}}
$$

then (38) follows from (39).
Now, let a, k and \tilde{u} be given as in Claim 7.2. Define a continuous function

$$
w(r, t)= \begin{cases}0 & \text { for } 0 \leq r \leq k R(t) \\ \frac{\bar{u}}{f(a)}\left[f\left(\frac{a r}{R(t)}\right)-f(a k)\right] & \text { for } k R(t)<r \leq R(t) .\end{cases}
$$

Then one may compute, using Lemma 2.4, that

$$
\begin{equation*}
\frac{\mu}{R^{3}} \int_{0}^{R}(w(r, t)-\tilde{u}) r^{2} d r=\mu \beta(a, k)>0 \quad \text { for all } t \geq 0 \tag{40}
\end{equation*}
$$

We claim that for any initial condition $u_{0}>w(r, 0)$ and any $\alpha(t)$ satisfying

$$
\begin{equation*}
\alpha(t) \geq \frac{f^{\prime}(a)}{f(k a)} \frac{a}{R(0)} e^{-\mu \beta(a, k) t} \tag{41}
\end{equation*}
$$

the radius $R(t)$ of the solution (u, R) increases to ∞ exponentially fast as $t \rightarrow \infty$. To prove it we introduce the set

$$
I_{2}=\left\{\tilde{t} \geq 0: \frac{\dot{R}(t)}{R(t)} \geq \mu \beta(a, k) \text { for all } t \in[0, \tilde{t}]\right\}
$$

and it suffices to show that $I_{2}=[0,+\infty)$, since then $R(t) \geq R(0) e^{\mu \beta(a, k) t}$ for all $t \geq 0$.
By using the fact that $u_{0}(r)<w(r, 0)$ and (40) in (3), we have

$$
\frac{\dot{R}(0)}{R(0)}=\frac{\mu}{R(0)^{3}} \int_{0}^{R(0)}\left(u_{0}(r)-\tilde{u}\right) r^{2} d r>\frac{\mu}{R(0)^{3}} \int_{0}^{R(0)}(w(r, 0)-\tilde{u}) r^{2} d r=\mu \beta(a, k) .
$$

Hence $I_{2} \supset\left[0, \delta_{1}\right)$ for some $\delta_{1}>0$.
Next, suppose to the contrary that $I_{2} \neq[0,+\infty)$. By the closedness and connectedness of I_{2}, we may assume that $I_{2}=\left[0, T_{0}\right]$ for some $T_{0}>0$. We proceed to show that $w(r, t)$ is a
subsolution for $0 \leq t \leq T_{0}+\delta$ for some $\delta>0$. In the region of (r, t) where $w(r, t)>0$ (i.e. $k R(t)<r \leq R(t))$,

$$
\begin{aligned}
& w_{t}-\frac{1}{r^{2}}\left(r^{2} w_{r}\right)_{r}+w \\
= & \frac{\bar{u} f\left(\frac{a r}{R}\right)}{f(a)}\left[-\frac{f^{\prime}\left(\frac{a r}{R}\right)}{f\left(\frac{a r}{R}\right)} \frac{a r}{R} \frac{\dot{R}}{R}+\left(1-\frac{a^{2}}{R^{2}}\right)-\frac{f(k a)}{f(a)} \frac{f(a)}{f\left(\frac{a r}{R}\right)}\right] \\
\leq & \frac{\bar{u} f\left(\frac{a r}{R}\right)}{f(a)}\left[-\frac{f^{\prime}(k a)}{f(k a)} k a \frac{\dot{R}}{R}+\left(1-\frac{a^{2}}{R^{2}}\right)-\frac{f(k a)}{f\left(\frac{a r}{R}\right)}\right] \\
\leq & \frac{\bar{u} f\left(\frac{a r}{R}\right)}{f(a)}\left[1-\frac{f^{\prime}(k a)}{f(k a)} k a \frac{\dot{R}}{R}\right] \\
\leq & \frac{\bar{u} f\left(\frac{a r}{R}\right)}{f(a)}\left[1-\frac{f^{\prime}(k a)}{f(k a)} k a \mu \beta(a, k)\right]<0
\end{aligned}
$$

for all $0 \leq t \leq T_{0}$ and by our choice of k, a and \tilde{u} in Claim 7.2. By continuity, $w_{t}-\frac{1}{r^{2}}\left(r^{2} w_{r}\right)_{r}+$ $w<0$ also if $k R(t)<r<R(t), 0 \leq t \leq T_{0}+\delta$ for some $\delta>0$.

Next, by our choice of $\alpha(t)$, the boundary condition for a subsolution is also satisfied:

$$
\begin{aligned}
w_{r}+\left.\alpha(t)(w-\bar{u})\right|_{r=R(t)} & =\bar{u} \frac{f^{\prime}(a)}{f(a)} \frac{a}{R(t)}+\alpha(t)\left[\bar{u}\left(1-\frac{f(a k)}{f(a)}\right)-\bar{u}\right] \\
& =\bar{u} \frac{f(a k)}{f(a)}\left[\frac{f^{\prime}(a)}{f(a k)} \frac{a}{R(t)}-\alpha(t)\right] \\
& <\bar{u} \frac{f(a k)}{f(a)}\left[\frac{f^{\prime}(a)}{f(a k)} \frac{a}{R(0)} e^{-\mu \beta(a, k) t}-\alpha(t)\right] \leq 0
\end{aligned}
$$

for $0 \leq t \leq T_{0}$ and then, by continuity, for $0 \leq t \leq T_{0}+\delta$.
Since also $w(r, 0)<u_{0}(r)$, we deduce that w is a subsolution for $0 \leq t \leq T_{0}+\delta$, so that $w(r, t)<u(r, t)$ for all $0<t \leq T_{0}+\delta$ and $0 \leq r \leq R(t)$. Hence,

$$
\frac{\dot{R}(t)}{R(t)} \geq \frac{\mu}{R(t)^{3}} \int_{0}^{R(t)}(w(r, t)-\tilde{u}) r^{2} d r=\mu \beta(a, k) \quad \text { for all } 0 \leq t \leq T_{0}+\delta
$$

and this contradicts the maximality of T_{0}, and finishes the proof.
Remark 7.3. By the arguments presented in the proof of Theorem 7.1, a sufficient condition for blow-up of $R(t)$ is given by

$$
\mu \sup _{a>0,0<k<1} \beta(a, k) \frac{f^{\prime}(k a)}{f(k a)} k a>1,
$$

where $\beta(a, k)$ is given by (37).

8 Global Asymptotic Stability of Steady State

In this section we prove that the stationary solution $\left(u_{*}(r), R_{*}\right)$ defined by (8), (10) with $\alpha=\alpha_{*}>0$ is globally asymptotically stable provided μ is sufficiently small independently of initial data; for clarity we first consider the case where $\alpha(t)=$ const. $=\alpha_{*}$.

Theorem 8.1. There exists a number μ_{0} such that for any $\mu \in\left(0, \mu_{0}\right)$ and any initial data u_{0}, R_{0}, the solution of system (1) - (4) with $\alpha(t) \equiv$ const. $=\alpha_{*}$ satisfies:

$$
\lim _{t \rightarrow \infty} R(t)=R_{*}, \quad \text { and } \quad \lim _{t \rightarrow \infty} u(r, t)=u_{*}(r) .
$$

Remark 8.2. The case $\alpha=+\infty$, i.e. with the boundary condition $u=\bar{u}$, was considered in [7], and the present proof follows the same procedure; however, in [7] the parameter μ_{0} depends on initial conditions (namely, on bounds on $\left\|u_{0}\right\|_{L^{\infty}}$ and R_{0}), while in the present case we are able to show (using results from Section 4) that μ_{0} does not depend on the initial data.

Lemma 8.3. Let δ_{0}, Γ be two given positive numbers, and assume, for some $\gamma \in(0, \Gamma]$, that

$$
\left|R(t)-R_{*}\right| \leq \gamma, \quad R(t) \geq \delta_{0}, \quad \text { and } \quad\left|u(r, t)-u_{*}(r)\right| \leq \gamma \quad \text { for all } t \geq 0
$$

Then there exist a number $\mu_{0}>0$ and constants A, β, depending on δ_{0}, Γ, but independent of $\mu, \gamma \in(0, \Gamma]$ such that if $\mu \in\left(0, \mu_{0}\right]$,

$$
\begin{equation*}
\left|R(t)-R_{*}\right| \leq A \gamma\left(\mu+e^{-\beta t}\right), \quad\left|u(r, t)-u_{*}(r)\right| \leq A \gamma\left(\mu+e^{-\beta t}\right) . \tag{42}
\end{equation*}
$$

Proof. Let $v=v(r, t)$ be defined by

$$
v(r, t)=\frac{\alpha \bar{u}}{\alpha+g(R(t))} \frac{f(r)}{f(R(t))} .
$$

Then

$$
\begin{equation*}
\left|u_{*}(r, t)-v(r, t)\right| \leq A\left|R(t)-R_{*}\right| . \tag{43}
\end{equation*}
$$

Introducing the differential operator $L[\phi]:=\phi_{t}-\frac{1}{r^{2}}\left(r^{2} \phi_{r}\right)_{r}+\phi$, we have

$$
\begin{aligned}
L[v] & =v \dot{R}(t)\left[\frac{-g^{\prime}(R(t))}{\alpha+g(R(t))}-\frac{f^{\prime}(R(t))}{f(R(t))}\right] \\
& =v \mu\left(\int_{0}^{R(t)} \frac{r^{2}}{R(t)^{2}}(u(r, t)-\tilde{u}) d r\right)\left[\frac{-g^{\prime}(R(t))}{\alpha+g(R(t))}-g(R(t))\right] .
\end{aligned}
$$

By the assumptions of the lemma,

$$
-A \gamma \mu \leq L[v] \leq A \gamma \mu
$$

where here, and in the remainder of the proof, A denotes a generic constant depending on Γ but independent of μ and γ. This, in turn, implies that for all $K>0$ and $\beta_{1} \in(0,1]$, that

$$
\begin{equation*}
L\left[v+A \gamma \mu+K e^{-\beta_{1} t}\right] \geq 0 \geq L\left[v-A \gamma \mu-K e^{-\beta_{1} t}\right] \tag{44}
\end{equation*}
$$

and $\left(\frac{\partial}{\partial r}+\alpha\right)\left(v \pm\left(A \gamma \mu+K e^{-\beta_{1} t}\right)\right) \gtreqless \alpha \bar{u}$ on the free boundary.
Next, by (43), (note here that the generic constant A may change from line to line, but remains independent of μ, and $\gamma \in[0, \Gamma])$

$$
\begin{aligned}
|u(r, 0)-v(r, 0)| & \leq\left|u(r, 0)-u_{*}(r)\right|+\left|u_{*}(r)-v(r, 0)\right| \\
& \leq \gamma+A\left|R(0)-R_{*}\right| \leq A \gamma .
\end{aligned}
$$

Taking $K=A \gamma$ in (44), we get, by comparison,

$$
\begin{equation*}
|u(r, t)-v(r, t)| \leq A \gamma\left(\mu+e^{-\beta_{1} t}\right) . \tag{45}
\end{equation*}
$$

We next note that, by Lemma 2.4,

$$
\begin{aligned}
\int_{0}^{R(t)}(v(r, t)-\tilde{u}) r^{2} d r & =\frac{\alpha \bar{u}}{\alpha+g(R(t))} \frac{1}{f(R(t))} \int_{0}^{R(t)} f(r) r^{2} d r-\frac{\tilde{u}}{3} R(t)^{3} \\
& =\frac{\alpha \bar{u}}{\alpha+g(R(t))} \frac{R(t)^{2} f^{\prime}(R(t))}{f(R(t))}-\frac{\tilde{u}}{3} R(t)^{3} \\
& =\frac{\alpha \bar{u}}{\alpha+g(R(t))} R(t)^{2} g(R(t))-\frac{\tilde{u}}{3} R(t)^{3} \\
& =\frac{\alpha \bar{u}}{\alpha+g(R(t))} R(t)^{3}\left[\frac{g(R(t))}{R(t)}-\frac{\tilde{u}}{3 \bar{u}}\left(1+\frac{g(R(t))}{\alpha}\right)\right] .
\end{aligned}
$$

Thus, letting $E(t)=\frac{1}{R(t)^{2}} \int_{0}^{R(t)}(u(r, t)-v(r, t)) r^{2} d r$, and using (3), we obtain

$$
\begin{aligned}
\dot{R}(t) & =\frac{1}{R(t)^{2}} \int_{0}^{R(t)}(u(r, t)-\tilde{u}) r^{2} d r \\
& =\frac{\alpha \bar{u}}{\alpha+g(R(t))}\left[g(R(t))-\frac{\tilde{u}}{3 \bar{u}}\left(1+\frac{g(R(t))}{\alpha}\right) R(t)\right]+E(t) .
\end{aligned}
$$

Thus, the differential equations for $R=R(t)$ can be written in the form

$$
\begin{equation*}
\dot{R}(t)=G(R(t))+E(t) \tag{46}
\end{equation*}
$$

where

$$
G(s)=\frac{\alpha \bar{u}}{\alpha+g(s)}\left[g(s)-\frac{\tilde{u}}{3 \bar{u}}\left(1+\frac{g(s)}{\alpha}\right) s\right] .
$$

and from (45),

$$
\begin{equation*}
|E(t)| \leq A \gamma\left(\mu+e^{-\beta_{1} t}\right) R(t) \tag{47}
\end{equation*}
$$

Let $G_{ \pm \mu}(R)=G(R) \pm A \mu \gamma R$, then

$$
G_{-\mu}(R(t))-A \gamma e^{-\beta_{1} t} \leq G(R(t))+E(t) \leq G_{\mu}(R(t))+A \gamma e^{-\beta_{1} t} R(t) .
$$

Lemma 8.4. There exists a positive constant $\mu_{0}>0$ (depending on Γ but independent of γ) such that for any $\mu \in\left(0, \mu_{0}\right]$, there exist numbers $R_{*, \pm \mu}$ for which the following holds:

$$
G_{ \pm \mu}^{\prime}\left(R_{*, \pm \mu}\right)<0, \quad \text { and } \quad G_{ \pm \mu}(R)= \begin{cases}>0 & \text { when } 0<R<R_{*, \pm \mu} \tag{48}\\ =0 & \text { when } R=R_{*, \pm \mu}, \\ <0 & \text { when } R>R_{*, \pm \mu},\end{cases}
$$

Proof. By Lemma 3.2, there exists an $R_{*}>0$ such that

$$
G(R)=\left\{\begin{array}{ll}
=0 & \text { when } R=0, R_{*}, \\
>0 & \text { when } 0<R<R_{*}, \\
<0 & \text { when } R>R_{*},
\end{array} \quad \text { and } \quad G^{\prime}(0)>0>G^{\prime}\left(R_{*}\right) .\right.
$$

The lemma then follows from this and the fact that

$$
\lim _{R \rightarrow \infty} \frac{G(R)}{R}=\frac{\alpha \bar{u}}{\alpha+1}\left[-\frac{\tilde{u}}{3 \bar{u}}\left(1+\frac{1}{\alpha}\right)\right]<0 .
$$

From the above proof we also have, for $\mu \in\left(0, \mu_{0}\right]$,

$$
\begin{equation*}
R_{*,-\mu} \leq R_{*} \leq R_{*, \mu} \quad \text { and } \quad 0 \leq R_{*, \mu}-R_{*,-\mu} \leq A \mu \gamma \tag{49}
\end{equation*}
$$

By Lemma 8.4 and by possibly taking μ_{0} smaller, there exists positive constants c_{0}, C_{0} such that for all $\mu \in\left(0, \mu_{0}\right]$,

$$
\begin{cases}G_{ \pm \mu}(R) \geq-c_{0}\left(R-R_{*, \pm \mu}\right) & \text { when } \max \left\{\delta_{0}, R_{*}-\Gamma\right\}<R<R_{*, \pm \mu} \tag{50}\\ G_{ \pm \mu}(R) \leq-c_{0}\left(R-R_{*, \pm \mu}\right) & \text { when } R_{*, \pm \mu}<R<R_{*}+\Gamma .\end{cases}
$$

Using the fact that $R_{*, \pm \mu}$ are constants independent of t, we combine (46) and (47) to get

$$
\frac{d}{d t}\left(R(t)-R_{*, \mu}\right) \leq G_{\mu}(R(t))+A \gamma e^{-\beta_{1} t} R(t)
$$

which, in view of (50) and the boundedness of $R(t) \leq R_{*}+\Gamma$,

$$
\frac{d}{d t}\left(R(t)-R_{*, \mu}\right) \leq-c_{0}\left(R(t)-R_{*, \mu}\right)+A \gamma e^{-\beta_{1} t}
$$

whenever $R(t)>R_{*, \mu}$, with another constant A. By integration, we then conclude that for some $\beta_{2} \in\left(0, \beta_{1}\right]$, and another constant A,

$$
R(t)-R_{*, \mu} \leq A \gamma e^{-\beta_{2} t}
$$

and deduce, by (49), that

$$
R(t)-R_{*} \leq A \gamma\left(\mu+e^{-\beta_{2} t}\right)
$$

Similarly, using the lower bound for $E(t)$ in (47), one can prove that

$$
R(t)-R_{*} \geq-A \gamma\left(\mu+e^{-\beta_{2} t}\right)
$$

This completes the proof of the first part of (42). The second part of (42) follows by combining (43) and (45).

Proof of Theorem 8.1. We take $\mu<\frac{1}{\bar{u}-\bar{u}}$ so that by Theorem 4.1, $R(t)$ is uniformly bounded. By Proposition 6.1 and Remark 4.4, we have $0 \leq u_{0}(r) \leq \bar{u}$ for all r, and

$$
\begin{equation*}
\delta_{0} \leq \liminf _{t \rightarrow \infty} R(t) \leq \limsup _{t \rightarrow \infty} R(t) \leq B_{2}:=\left(\frac{3 \bar{u} \sup _{t} \alpha}{\tilde{u}}\right)\left[1+\frac{\mu(\bar{u}-\tilde{u})}{\beta}\right]^{\frac{1}{3}} \tag{51}
\end{equation*}
$$

where $\delta_{0}>0$ is given in Proposition 6.1. Indeed, if (51) does not hold then, by Remark 4.4 and Proposition 6.1, we deduce that $R(t)$ is a monotone function for all large t, and $\lim _{t \rightarrow \infty} R(t)>0$. But then, by slightly modifying the proof of [6, Chapter 6, Theorem 5]
we conclude that $\lim _{t \rightarrow \infty} R(t)=R_{*}$ and $\lim _{t \rightarrow \infty} u(r, t)=u_{*}(r)$, where $\left(u_{*}, R_{*}\right)$ is the unique stationary solution corresponding to α_{*}.

We can now proceed with the proof of Theorem 8.1 assuming, for simplicity, that

$$
\begin{equation*}
0 \leq u_{0}(r) \leq \bar{u} \text { for all } r, \quad \frac{\delta_{0}}{2} \leq R(t) \leq B_{2}+1 \quad \text { for all } t \geq 0 \tag{52}
\end{equation*}
$$

We shall establish the stability of the stationary solution by repeated application of the Lemma 8.3. Indeed, combining (5) and Theorem 4.1 or Theorem 4.5, we know that for some μ_{0} (depending on $\Gamma=B_{2}+1$ and $\delta_{0}>0$ as given in Proposition 6.1), the assumptions of the lemma hold true. Hence, we have

$$
\left|R(t)-R_{*}\right| \leq A \gamma\left(\mu+e^{-\beta t}\right) \leq 2 A \mu \gamma \quad \text { for } t \geq T_{0}:=-\frac{1}{\beta} \log \mu
$$

Next, fix any μ such that $2 A \mu<1$ and define $\beta_{3}>0$ by

$$
2 A \mu=e^{-\beta_{3} T_{0}}
$$

Given $T>0$, let n be the largest integer that satisfies $n T_{0} \leq t<(n+1) T_{0}$. Then

$$
\begin{aligned}
\left|R(t)-R_{*}\right| & \leq \gamma(2 A \mu)^{n}=\gamma e^{-\beta_{3} n T_{0}}=\gamma e^{-\beta_{3} t} e^{-\beta_{3}\left(n T_{0}-t\right)} \\
& \leq \gamma e^{\beta_{3} T_{0}} e^{-\beta_{3} t}=B_{0} e^{-\beta_{3} t} . \quad\left(B_{0}=\gamma e^{B_{3} T_{0}} .\right)
\end{aligned}
$$

It follows that $\lim _{t \rightarrow \infty} R(t)=R_{*}$ and by [6, Chapter 6 , Theorem 5], $\lim _{t \rightarrow \infty} u(r, t)=u_{*}(r)$.

We proceed to extend Theorem 8.1 to the case where $\alpha(t)$ is not constant.
Theorem 8.5. Suppose for some positive constant $\alpha_{*}, \lim _{t \rightarrow \infty} \alpha(t)=\alpha_{*}$. Then there exists a number μ_{0} such that for any $\mu \in\left(0, \mu_{0}\right)$ and any initial data u_{0}, R_{0}, the solution of system (1) - (4) satisfies:

$$
\lim _{t \rightarrow \infty} R(t)=R_{*}, \quad \text { and } \quad \lim _{t \rightarrow \infty} u(r, t)=u_{*}(r)
$$

Lemma 8.6. Let δ_{0}, Γ be two given positive numbers, and assume, for some $\gamma \in(0, \Gamma]$, that

$$
\left|R(t)-R_{*}\right| \leq \gamma, \quad R(t) \geq \delta_{0}, \quad \text { and } \quad\left|u(r, t)-u_{*}(r)\right| \leq \gamma \quad \text { for all } t \geq 0
$$

Then there exist a number $\mu_{0}>0$ and constants A, β, depending on δ_{0}, Γ but independent of $\mu, \gamma \in(0, \Gamma]$ such that if $\mu \in\left(0, \mu_{0}\right]$, then

$$
\begin{equation*}
\left|R(t)-R_{*}\right| \leq A\left[(\gamma+\vartheta)\left(\mu+e^{-\beta t}\right)+\vartheta\right] \tag{53}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|u(r, t)-u_{*}(r)\right| \leq A\left[(\gamma+\vartheta)\left(\mu+e^{-\beta t}\right)+\vartheta\right] \tag{54}
\end{equation*}
$$

where $\vartheta=\sup _{t>0}\left|\alpha(t)-\alpha_{*}\right|$.

Proof. Let $\alpha^{+}=\sup _{t>0} \alpha(t)$ and $\alpha^{-}=\inf _{t>0} \alpha(t)$, and define $v^{ \pm}=v^{ \pm}(r, t)$ by

$$
v^{ \pm}(r, t)=\frac{\alpha^{ \pm} \bar{u}}{\alpha^{ \pm}+g(R(t))} \frac{f(r)}{f(R(t))},
$$

then

$$
\begin{equation*}
\left|u_{*}(r, t)-v^{ \pm}(r, t)\right| \leq A\left(\left|R(t)-R_{*}\right|+\vartheta\right) \leq A(\gamma+\vartheta) \tag{55}
\end{equation*}
$$

Proceeding as in Lemma 8.3, with $K=A(\gamma+\vartheta)$, we get, by comparison,

$$
\begin{equation*}
\left|u(r, t)-v^{ \pm}(r, t)\right| \leq A(\gamma+\vartheta)\left(\mu+e^{-\beta_{1} t}\right) \tag{56}
\end{equation*}
$$

and then also

$$
\begin{equation*}
\dot{R}(t)=G^{ \pm}(R(t))+E^{ \pm}(t) \tag{57}
\end{equation*}
$$

where

$$
G^{ \pm}(s)=\frac{\alpha^{ \pm} \bar{u}}{\alpha^{ \pm}+g(s)}\left[g(s)-\frac{\tilde{u}}{3 \bar{u}}\left(1+\frac{g(s)}{\alpha^{ \pm}}\right) s\right],
$$

$E^{ \pm}(t)=\frac{1}{R(t)^{2}} \int_{0}^{R(t)}\left(u(r, t)-v^{ \pm}(r, t)\right) r^{2} d r$, and

$$
\begin{equation*}
\left|E^{ \pm}(t)\right| \leq A(\gamma+\vartheta)\left(\mu+e^{-\beta_{1} t}\right) R(t) \tag{58}
\end{equation*}
$$

Let $G_{\mu}^{ \pm}(R)=G^{ \pm}(R) \pm A \mu(\gamma+\vartheta) R$, then

$$
G_{\mu}^{-}(R(t))-A(\gamma+\vartheta) e^{-\beta_{1} t} \leq G^{ \pm}(R(t))+E^{ \pm}(t) \leq G_{\mu}^{+}(R(t))+A(\gamma+\vartheta) e^{-\beta_{1} t}
$$

The proof of Lemma 8.4 can now be repeated and together with (57) we obtain, similarly to (50), the estimate

$$
\begin{aligned}
\frac{d}{d t}\left(R(t)-R_{*, \mu}^{+}\right) & \leq-c_{0}\left(R(t)-R_{*, \mu}^{+}\right)_{+}+A(\gamma+\vartheta) e^{-\beta_{1} t} R(t) \\
& \leq-c_{0}\left(R(t)-R_{*, \mu}^{+}\right)+A(\gamma+\vartheta) e^{-\beta_{1} t}
\end{aligned}
$$

whenever $R(t)>R_{*, \mu}^{+}\left(R_{*, \mu}^{ \pm}\right.$being the unique positive root of $\left.G_{\mu}^{ \pm}\right)$, for some new constant A, so that for some $\beta_{2} \in\left(0, \beta_{1}\right]$,

$$
R(t)-R_{*, \mu}^{+} \leq A(\gamma+\vartheta) e^{-\beta_{2} t},
$$

and then also

$$
R(t)-R_{*} \leq A(\gamma+\vartheta)\left(\mu+e^{-\beta_{2} t}\right)+A \vartheta .
$$

Similarly,

$$
R(t)-R_{*} \geq-A(\gamma+\vartheta)\left(\mu+e^{-\beta_{2} t}\right)-A \vartheta
$$

And the proof of (53) is complete. The proof of (54) follows from (55) and (56).
Proof of Theorem 8.1. We take $\mu<\frac{1}{\bar{u}-\bar{u}}$ so that by Theorem 4.1, $R(t)$ is uniformly bounded. By Proposition 6.1 and Remark 4.4, arguing as in Proof of Theorem 8.1, we may assume that

$$
\begin{equation*}
0 \leq u_{0}(r) \leq \bar{u} \quad \text { for all } r, \quad \frac{\delta_{0}}{2} \leq R(t) \leq B_{2}+1 \quad \text { for all } t \geq 0 \tag{59}
\end{equation*}
$$

where $B_{2}=\left(\frac{3 \bar{u} \sup \alpha}{\tilde{u}}\right)\left[1+\frac{\mu(\bar{u}-\tilde{u})}{\beta}\right]^{\frac{1}{3}}$. We can now establish the stability of the stationary solution by repeated application of the Lemma 8.6. Indeed, combining (5) and Theorem 4.1 or Theorem 4.5, we know that for some μ_{0} (depending on $\Gamma=B_{2}+1$ and $\delta_{0}>0$ as given in Proposition 6.1), the hypothesis of the lemma hold true. Taking μ small such that $2 A \mu<1$, and defining T_{0} by $e^{-\beta T_{0}}=\mu$, we have (recall that A is a generic constant independent of γ and ϑ, and may change from one line to another)

$$
\left|R(t)-R_{*}\right| \leq A(\gamma+\vartheta)\left(\mu+e^{-\beta t}\right)+A \vartheta \leq 2 A \mu \gamma+A \vartheta \quad \text { for } t \geq T_{0}
$$

Finally, if we define $\beta_{3}>0$ by

$$
2 A \mu=e^{-\beta_{3} T_{0}}
$$

and, given $t>0$, let n be the largest integer that satisfies $n T_{0} \leq t<(n+1) T_{0}$, then we have

$$
\begin{aligned}
\left|R(t)-R_{*}\right| & \leq \gamma(2 A \mu)^{n}+\frac{A \vartheta}{1-2 A \mu}=\gamma e^{-\beta_{3} n T_{0}}+\frac{A \vartheta}{1-2 A \mu}=\gamma e^{-\beta_{3} t} e^{-\beta_{3}\left(n T_{0}-t\right)}+\frac{A \vartheta}{1-2 A \mu} \\
& \leq \gamma e^{\beta_{3} T_{0}} e^{-\beta_{3} t}+\frac{A \vartheta}{1-2 A \mu}=B_{0} e^{-\beta_{3} t}+\frac{A \vartheta}{1-2 A \mu}, \quad \text { where } B_{0}=\gamma e^{B_{3} T_{0}} .
\end{aligned}
$$

If $\vartheta=0$, i.e. $\alpha(t)=\alpha_{*}$ for all large positive t, then $\left|R(t)-R_{*}\right|$ decreases exponentially in t, and by [6, Theorem 5, Chapter 6], $\lim _{t \rightarrow \infty} u(r, t)=u_{*}(r)$ also exponentially.

Otherwise, $\lim \sup _{t \rightarrow \infty}\left|R(t)-R_{*}\right| \leq \frac{A \sup _{t \geq T}\left|\alpha(t)-\alpha_{*}\right|}{1-\beta}$ for any $T>0$, and taking $T \rightarrow \infty$, we deduce that $\lim _{t \rightarrow \infty}\left|R(t)-R_{*}\right|=0$. Finally, as before, it follows similarly from [6, Theorem 5, Chapter 6] that $\lim _{t \rightarrow \infty} u(r, t)=u_{*}(r)$.

A Appendix

Proof of Lemma 2.1. From the identity $f^{\prime \prime}(s)+\frac{2}{s} f^{\prime}(s)=f(s)$, we have

$$
g^{\prime}(s)=\frac{f^{\prime \prime}(s)}{f(s)}-\left(\frac{f^{\prime}(s)}{f(s)}\right)^{2}=-\frac{2}{s} \frac{f^{\prime}(s)}{f(s)}+1-\left(\frac{f^{\prime}(s)}{f(s)}\right)^{2}
$$

that is,

$$
\begin{equation*}
g^{\prime}(s)=-\frac{2}{s} g(s)+1-g^{2}(s) \tag{60}
\end{equation*}
$$

From the power series expansions

$$
f(s)=\sum_{k=0}^{\infty} \frac{s^{2 k}}{(2 k+1)!}, \quad f^{\prime}(s)=\sum_{k=1}^{\infty} \frac{2 k}{(2 k+1)!} s^{2 k-1}, \quad g(s)=\frac{s}{3}-\frac{s^{3}}{45}+\frac{2}{945} s^{5}+\ldots
$$

we deduce that

$$
\begin{equation*}
g(0)=0, \quad g^{\prime}(0)=\frac{1}{3}, \quad \text { and } \quad g^{\prime}(s)>0 \quad \text { for all small and positive } s . \tag{61}
\end{equation*}
$$

Moreover, since $g(s)=\operatorname{coth} s-\frac{1}{s}$, we also have

$$
\begin{equation*}
\lim _{s \rightarrow+\infty} g(s)=1 \tag{62}
\end{equation*}
$$

Let $I_{1}:=\left\{\bar{s} \in(0,+\infty): g^{\prime}(s)>0\right.$ for all $\left.s \in(0, \bar{s})\right\}$. We claim that $I_{1}=(0, \infty)$. Otherwise there is a bounded interval $I_{1}=\left(0, s_{0}\right]$, with $g^{\prime}\left(s_{0}\right)=0$ and $g^{\prime}(s)>0$ for all $s \in\left(0, s_{0}\right)$. Then $g^{\prime \prime}\left(s_{0}\right) \leq 0$. But by differentiating (60) at $s=s_{0}$, we get (by the fact that for all $s>0$, $g(s)>0$ and hence $h(s)>0$)

$$
g^{\prime \prime}\left(s_{0}\right)=\frac{2}{s_{0}^{2}} g\left(s_{0}\right)>0
$$

which is a contradiction.
Proof of Lemma 2.2. First, we observe that by straightforward calculations, that

$$
\begin{equation*}
s h^{\prime}(s)=1-3 h(s)-s^{2} h(s) . \tag{63}
\end{equation*}
$$

Also, by power series expansion,

$$
h(s)=\frac{\frac{s}{3}+\frac{s^{3}}{30}+\ldots}{s+\frac{s^{3}}{6}+\ldots}=\frac{1}{3}+\left(\frac{1}{30}-\frac{1}{18}\right) s^{2}+\cdots=\frac{1}{3}-\frac{s^{2}}{45}+\ldots
$$

Therefore, $h^{\prime}(s)<0$ for all s positive and sufficiently small. Let

$$
I_{1}=\left\{\bar{s} \in(0,+\infty): h^{\prime}(s)<0 \text { for all } s \in(0, \bar{s})\right\} .
$$

It remains to show that $I_{1}=(0, \infty)$. Suppose $I_{1}=\left(0, s_{0}\right]$, then $h^{\prime}\left(s_{0}\right)=0, h^{\prime}(s)<0$ for all $s \in\left(0, s_{0}\right)$, and $h^{\prime \prime}(s) \geq 0$. Differentiating (63) at $s=s_{0}$, we get (using the fact that for $s>0$, $g(s)>0$ and hence $h(s)=g(s) / s>0)$

$$
s_{0} h^{\prime \prime}\left(s_{0}\right)=\left(s h^{\prime}\right)^{\prime}\left(s_{0}\right)=-2 s_{0} h^{2}\left(s_{0}\right)<0,
$$

which is a contradiction.
Proof of Lemma 2.4. For $a, R>0$ and $0<k<1$,

$$
\begin{aligned}
\int_{k R}^{R} r^{2} f\left(\frac{a r}{R}\right) d r & =\frac{R^{3}}{a^{3}} \int_{a k}^{a} s^{2} f(s) d s \\
& =\frac{R^{3}}{a^{3}} \int_{a k}^{a}\left(s^{2} f^{\prime}(s)\right)^{\prime} d s \quad \text { as }\left(s^{2} f^{\prime}(s)\right)^{\prime}=s^{2} f(s), \\
& =\frac{R^{3}}{a}\left[f^{\prime}(a)-k^{2} f^{\prime}(k a)\right] .
\end{aligned}
$$

Acknowledgement

This research was partially supported by the Mathematical Biosciences Institute and the National Foundation under grant DMS-0931642.

References

[1] J.A. Adam, A simplified mathematical model of tumor growth, Math. Biosciences, 81, 229-244, 1986.
[2] J.A. Adam, A mathematical model of tumor growth, II. Effect of geometry and spatial non-uniformity on stability, Math. Biosciences, 86, 183-211, 1987.
[3] H.M. Byrne, The effect of time delays on the dynamics of avascular tumor growth, Math. Biosciences, 144, 83-117, 1997.
[4] H.M. Byrne and M.A.J. Chaplain, Growth of nonnecrotic tumors in the presence and absence of inhibitors, Math. Biosciences, 130, 151-181, 1995.
[5] H.M. Byrne and M.A.J. Chaplain, Growth of necrotic tumors in the presence and absence of inhibitors, Math. Biosciences, 135, 187-216, 1996.
[6] A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Englewood Cliffs, N.J., 1964. Preprinted by Dover Publications, Minnesota, N.Y., 2002.
[7] A. Friedman and F. Reitich, Analysis of a mathematical model for the growth of tumors, J. Math. Biol., 38, 262-284, 1999.
[8] H.P. Greenspan, Models for the growth of a solid tumor by diffusion, Studies in Appl. Math., 52, 317-340, 1972.
[9] C. Xue, A. Friedman and C.K. Sen, A mathematical model of ischemic cutaneous wounds, Proc. Natl. Acad. Sci. U.S.A., 106, 16782-16787, 2009.

