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Abstract

We consider a free boundary problem for a spherically symmetric tumor with free
boundary r < R(t). In order to receive nutrients u the tumor attracts blood vessel at a
rate proportional to α(t), so that ∂u

∂r +α(t)(u− ū) = 0 holds on the boundary, where ū is
the nutrient concentration outside the tumor. A parameter µ in the model is proportional
to the ‘aggressiveness’ of the tumor. When α is a constant, the existence and uniqueness
of stationary solution is proved. For the more general situation when α depends on time,
we show, under various conditions (that are always satisfied if µ is small), that (i) R(t)
remains bounded if α(t) remains bounded; (ii) limt→∞R(t) = 0 if limt→∞ α(t) = 0; and
(iii) lim inft→∞R(t) > 0 if lim inft→∞ α(t) > 0. Surprisingly, we exhibit solutions (when
µ is not small) where α(t) → 0 exponentially in t while R(t) → ∞ exponentially in t.
Finally, we prove the global asymptotic stability of steady state when µ is sufficiently
small.

1 Introduction

In a live tissue with uniformly distributed cells the concentration of nutrients, û, satisfies a
diffusion equation

c
∂û

∂t
= ∆û+A(uB − û)− λ0û

where A(uB− û) is the rate of nutrient concentration supplied by the vascular system and λ0u
is the consumption rate of nutrients by the cells. This model was proposed in [4] to describe
the evolution of spherical tumors with uniformly distributed tumor cells. As a result of cells
proliferation and death, the tumor region {r < R(t)} varies in time; see also [1, 2, 3, 4, 5, 8],
and the references therein, for other models developed over the last few decades where the
tumor’s evolution is represented in the form of a free-boundary problem.

We assume that the nutrient concentration outside the tumor is a constant ¯̄u. Let ˜̃u denote
the critical concentration below which cells cannot survive in the sense that

A(uB − ˜̃u)− λ0
˜̃u < 0, or ˜̃u >

uB
1 + λ0/A

.

We also assume that the proliferation (or death) rate of cells is proportional to û− ¯̄u, taking
it to be ν(û − ¯̄u) for some positive constant ν. The parameter ν, in the case of a tumor,
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represents aggressiveness of the tumor: large ν means faster proliferation rate, provided the
tumor receives sufficient nutrients, i.e. provided û > ˜̃u.

Setting

u = û− uB
1 + λ0/A

, ũ = ˜̃u− uB
1 + λ0/A

, ū = ¯̄u− uB
1 + λ0/A

, λ = A+ λ0,

we get

c
∂u

∂t
= ∆u− λu in r < R(t).

Since nutrients enter the sphere by the vascular system, using homogenization [9] it is natural
to assume that

∂u

∂r
+ α(t)(u− ū) = 0 on r = R(t),

where α(t) is a positive-valued function which depends on the density of the blood vessels;
this function may vary in time. Noting that ν(û− ˜̃u) = ν(u− ũ), we also have,

dR(t)

dt
=

ν

R(t)2

∫ R(t)

0
r2(u(r, t)− ũ) dr.

By the maximum principle, if 0 ≤ u(r, 0) ≤ ū then 0 ≤ u(r, t) ≤ ū; hence if ũ > ū then
the tumor shrinks and R(t)↘ 0 as t→∞. We shall henceforth exclude this case, and always
assume that ũ < ū.

Tumor cells are known to secrete cytokines that stimulate the vascular system to grow
toward the tumor, a process called angiogenesis, which results in an increase in α(t). On the
other hand, if the tumor is treated with anti-angiogenic drugs, α(t) will decrease and may
become very small and the starved tumor will shrink. In the limiting ischemic case where
α(t)→ 0, we expect that R(t) will actually decrease to zero as t→∞.

The above system with the boundary condition u = ū on r = R(t) (which is formally the
case α(t) =∞) was studied in [7].

In Section 3, we first show that for any α > 0 and η = ũ
ū ∈ (0, 1) there exists a unique

stationary solution u∗(r) with radius R∗ which depends only on the parameters α and η.
Moreover, R∗ → 0 as α→ 0, and R∗ approaches the radius of the stationary solution studied
in [7], as α→∞.

We next consider the more general situation when α depends on t and show, under some
conditions (which are always satisfied if cν

λ is sufficiently small), that

(a) R(t) remains bounded if α(t) is uniformly bounded (Section 4);

(b) R(t)→ 0 as t→∞ if α(t)→ 0 as t→∞ (Section 5);

(c) lim inf
t→∞

R(t) > 0 if lim inf
t→∞

α(t) > 0 (Section 6).

But, surprisingly, we give examples (Section 7) (when cν
γ is not small) where α(t)→ 0 as

t→∞ while R(t)→∞ as t→∞. Finally in Sections 8 and 9 we prove, when α(t)→ α∗ for
some α∗ > 0, that if cν/γ is sufficiently small then the steady state solution corresponding to
the case α = α∗ is globally asymptotically stable.
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2 Preliminaries

We simplify the system of (u,R) in Section 1 by a change of variables:

v′ =
√
λr, t′ = λ/ct, α′(t′) =

α(t)√
λ
, µ =

cν

λ
, u′(r′, t′) = u(r, t), R′(t′) =

√
λR(t),

and after dropping the “ ′ ”, we get the following simpler system:

∂u

∂t
= ∆u− u in r < R(t), (1)

∂u

∂r
+ α(t)(u− ū) = 0 on r = R(t), (2)

dR

dt
=

µ

R(t)2

∫ R(t)

0
(u− ũ)r2 dr, ũ ∈ (0, ū). (3)

We prescribe an initial condition:

u(r, 0) = u0(r), where 0 ≤ u0(r) ≤ ū for 0 ≤ r ≤ R(0). (4)

As in [7] one can prove that the system (1) - (4) has a unique global solution, 0 < u(r, t) < ū
if 0 ≤ r ≤ R(t), t > 0, and

−µũ
3
≤ 1

R

dR

dt
≤ µ(ū− ũ)

3
for all t > 0. (5)

Next, we introduce the functions

f(s) =
sinh s

s
, g(s) =

f ′(s)

f(s)
= coth s− 1

s
and h(s) =

f ′(s)

sf(s)
=
g(s)

s
, (6)

and note, by direct computation, that

f ′′(s) +
2

s
f ′(s) = f(s). (7)

The following three lemmas will be used in the paper.

Lemma 2.1. The function g(s) has the following properties:

(i) g(0) = 0, (ii) lim
s→∞

g(s) = 1, (iii) g′(0) =
1

3
, (iv) g′(s) > 0 for s ≥ 0.

Lemma 2.2. The function h(s) has the following properties:

(i) h′(s) < 0 for s > 0, (ii) lim
s→0

h(s) =
1

3
, (iii) lim

s→∞
h(s) = 0.

A direct consequence of Lemma 2.2 is the following:

Corollary 2.3. For any 0 < ũ < ū, there exists an a0 > 0 such that

h(a0) =
f ′(a0)

a0f(a0)
=

1

3

ũ

ū
.

Lemma 2.4. The following identity holds for any k ∈ [0, 1] :∫ R

kR
r2f

(ar
R

)
dr =

R3

a

[
f ′(a)− k2f ′(ka)

]
.

The proofs of Lemmas 2.1, 2.2 and 2.4 are given in the appendix.
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3 α(t) = constant

In this section we consider the case where α(t) ≡ const. ≡ α, and establish the existence of
a unique steady state solution. A (radially symmetric) steady state solution of (1) and (2)
(with α(t) = α), must have the form

u∗(r) =
αū

α+ g(R∗)

f(r)

f(R∗)
for 0 < r < R∗, (8)

where by (3)
1

3
ũR3
∗ =

∫ R∗

0
u∗(r)r

2 dr. (9)

Substituting (8) into (9) and using Lemma 2.4, we find that

h(R∗) =
g(R∗)

R∗
=
η

3

(
1 +

g(R∗)

α

)
, (10)

where η = ũ
ū and g(s) is defined in (6).

In [7] the problem (1) - (3) was considered with the boundary condition (2) replaced by
the boundary condition u = ū. This corresponds formally to the case α =∞. The existence
of a unique steady state was proved, with u∗ = ūf(r)/f(R) and radius R = R∗,D given by
(10) with α =∞.

Theorem 3.1. For any α > 0, and 0 < ũ < ū, there exists a unique steady state solution
of (1) - (3), given by (8), (10), i.e. there exists a unique solution R∗ of (10). Furthermore,
setting η = ũ

ū , the function R∗ = R∗(α, η) is strictly increasing in α and strictly decreasing in
η. Finally, for each η ∈ (0, 1), R∗ → 0 as α→ 0, and R∗ → R∗,D, as α→∞.

Proof of Theorem 3.1. Define a function Λ : [0,∞)→ R by

Λ(s) := g(s)− ũ

3ū

(
1 +

g(s)

α

)
s,

Lemma 3.2. There exists R∗ > 0 such that

Λ(s) = g(s)− ũ

3ū

(
1 +

g(s)

α

)
s =


0 when s = 0, or s = R∗,
> 0 when 0 < s < R∗,
< 0 when s > R∗.

(11)

Moreover, Λ′(0) > 0 > Λ′(R∗).

Proof. Clearly, we have Λ(0) = 0. To prove the rest of (11), we first recall that, by Lemma
2.2, g(s)/s = h(s) satisfies(

g(s)

s

)′
< 0 for s > 0, lim

s→0

g(s)

s
=

1

3
, lim

s→∞

g(s)

s
= 0.

Using also the facts that g′(s) > 0 for all s ≥ 0 and lims→∞ g(s) = 1, we deduce that
(Λ(s)/s)′ < 0 for all s > 0. Also, since lims→∞ g(s) = 1,

lim
s→0

Λ(s)

s
=

1

3
− ũ

3ū
> 0, lim

s→∞

Λ(s)

s
= − ũ

3ū

(
1 +

1

α

)
< 0,
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Hence there exists a unique R∗ > 0 such that (11) holds. Moreover,

Λ′(0) = lim
s→0

Λ(s)

s
=

1

3

(
1− ũ

ū

)
> 0,

and that

Λ′(R∗) =

[
s

Λ(s)

s

]′∣∣∣∣
s=R∗

= R∗

(
Λ(s)

s

)′∣∣∣∣
s=R∗

< 0.

By (10), for each α > 0, the system (1) - (3) has a steady state solution with radius R∗ if
and only if Λ(R∗) = 0. Hence the theorem follows, by (11) and the monotonicity of Λ(s)/s
with respect to α and η.

4 R(t) is bounded

Theorem 4.1. If α(t) is uniformly bounded, and

µ(ū− ũ) < 1, (12)

then R(t) is uniformly bounded.

Proof. Integrating (1) and using (2), we get∫ R(t)

0
r2u(r, t) dr =

∫ t

0
R2(t)u(R(t)t)Ṙ(t) dt+

∫ R(0)

0
r2u0(r) dr

+

∫ t

0
R2(t)[−α(t)(u(R(t), t)− ū)] dt−

∫ t

0

∫ R(t)

0
r2u(r, t) dr dt

and, by (3), ∫ R(t)

0
r2u(r, t) dr =

1

µ
R2(t)Ṙ(t) +

1

3
R3(t)ũ.

Setting ρ(t) = 1
3R

3(t) we can then write

1

µ
ρ′(t) = −

(
ũ+

1

µ

)
ρ(t)−ũ

∫ t

0
ρ(t) dt+

∫ t

0
α(t)R2(t)[ū−u(R(t), t)] dt+

∫ t

0
u(R(t), t)ρ′(t) dt+A1

(13)
where

A1 =

∫ R(0)

0
r2u0(r) dr +

1

µ
ρ(0).

Claim 4.2. Suppose for some t0, Ṙ(t0) = 0 and R̈(t0) ≥ 0, then R(t0) < B := 3α(t0)ū
ũ .

To prove the claim, we differentiate (13) at t = t0 to obtain

1

µ
ρ′′(t0) = −

(
ũ+

1

µ

)
ρ′(t0)− ũρ(t0) + α(t0)R2(t0)[ū− u(R(t0), t0)] + u(R(t0), t0)ρ′(t0)

< − ũ
3
R3(t0) + α(t0)R2(t0)ū

=
ũ

3
R2(t0)

(
−R(t0) +

3α(t0)ū

ũ

)
.

Noting that ρ′′(t0) ≥ 0, we conclude that R(t0) < B.
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Lemma 4.3. Suppose that for some 0 ≤ τ1 < τ2, Ṙ(t) ≥ 0 in (τ1, τ2) and R(τ1) ≥
3(supτ1<t<τ2 α) ūũ , then

1

µ
ρ′
∣∣τ2
τ1
≤
(
ū− ũ− 1

µ

)
ρ
∣∣τ2
τ1
. (14)

Proof. We set t = τi (i = 1, 2) in (13), and subtract, to obtain (after canceling A1)

1

µ
ρ′
∣∣τ2
τ1

= −
(
ũ+

1

µ

)
ρ
∣∣τ2
τ1
−ũ
∫ τ2

τ1

ρ(t) dt+

∫ τ2

τ1

α(t)R2(t)[ū−u(R(t), t)] dt+

∫ τ2

τ1

u(R(t), t)ρ′(t) dt.

(15)
Using the inequality

∫ τ2
τ1
u(R(t), t)ρ′(t) dt ≤ ūρ

∣∣τ2
τ1

, which follows from Ṙ ≥ 0, we deduce that

1

µ
ρ′
∣∣τ2
τ1
≤
(
ū− ũ− 1

µ

)
ρ
∣∣τ2
τ1
− ũ

∫ τ2

τ1

ρ(t) dt+ ū

∫ τ2

τ1

α(t)R2(t) dt. (16)

Since R(τ1) ≥ 3(supt α) ūũ , the sum of last two terms is non-positive, and (14) follows.

We proceed to show thatR(t) is uniformly bounded. Suppose to the contrary that suptR =
+∞, then one of the following two scenarios holds:

(a) There exists a T0 > 0 such that Ṙ(t) ≥ 0, for all t ≥ T0.

(b) There exists a sequence of intervals (sn, tn) such that

R′(t) > 0 in (sn, tn), R(sn) ≤ B, Ṙ(sn) = 0, R(tn)→ +∞.

where B = 3ū
ũ (supt α).

To see that this exhausts all the possibilities, suppose that (a) does not hold, i.e., there
exists a sequence t̄n →∞ such that Ṙ(t̄n) < 0. This, together with suptR = +∞, imply that
there is a sequence of local maximum points t̃n → ∞ such that R(t̃n) → ∞. Hence we can
choose, for each n, a maximal interval (sn, tn) such that

R(tn) > max {R(tn−1), n,B} , Ṙ(sn) = Ṙ(tn) = 0, Ṙ(t) > 0 in (sn, tn).

Noting that R̈(sn) ≥ 0, we conclude by Claim 4.2 that R(sn) ≤ 3ū
ũ α(sn) ≤ B, which yields

the case (b).
We proceed to treat each case separately.

Case (a). By increasing T0, we may assume without loss of generality that R(T0) ≥
3(supt α) ūũ . Therefore, for any t > T0, by setting τ1 = T0 and τ2 = t, Lemma 4.3 yields

ρ′(t)− ρ′(T0) < −β(ρ(t)− ρ(T0)), where β = 1 + µ(ũ− ū) > 0.

Multiplying both sides by eβt, and rearranging, we have

(eβtρ(t))′ < eβt(ρ′(T0) + βρ(T0)).

Integrating both sides from T0 to t, we get

eβtρ(t)− eβT0ρ(T0) <
1

β
(eβt − eβT0)(ρ′(T0) + βρ(T0)),
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so that for any t > T0,

ρ(t) < e−β(t−T0)ρ(T0) +
1

β
(1− e−β(t−T0))(ρ′(T0) + βρ(T0)).

But this implies that ρ(t) = 1
3R

3(t) remains uniformly bounded for all t > T0, which is a
contradiction to suptR = +∞.

Case (b). By replacing sn by some s′n ∈ (sn, tn), we may assume that R(sn) = B. Lemma
4.3 then implies that

ρ′(t) < −β(ρ(t)− ρ(sn)) + ρ′(sn) for any sn < t < tn.

Multiplying both sides by eβt, we get

(eβtρ(t))′ < eβt(βρ(sn) + ρ′(sn)) = eβt(βB1 + ρ′(sn)),

where B1 = 1
3B

3 = 9
(
ū supt α

ũ

)3
. Using also the inequality ρ′ ≤ µ(ū− ũ)ρ, which follows from

(3), we find that

(eβtρ(t))′ < eβt[βB1 + µ(ū− ũ)ρ(sn)] = eβtB1[β + µ(ū− ũ)].

Integrating from sn to tn, we deduce that

eβtnρ(tn)− eβsnB1 < (eβtn − eβsn)B1

[
1 +

µ(ū− ũ)

β

]
,

so that

ρ(tn) ≤ e−β(tn−sn)B1 + (1− e−β(tn−sn))B1

[
1 +

µ(ū− ũ)

β

]
< B1

[
1 +

µ(ū− ũ)

β

]
.

This implies again that ρ(tn) is bounded uniformly in n, which is a contradiction. This
completes the proof of Theorem 4.1.

Remark 4.4. The last inequality implies that if R(t) is uniformly bounded in t but is not
monotone increasing for all large t (that is, we are in Case (b) with R(tn)→∞ dropped) then

lim sup
t→∞

R(t) ≤
{

3B1

[
1 +

µ(ū− ũ)

β

]} 1
3

=

(
3ū supt α

ũ

)[
1 +

µ(ū− ũ)

β

] 1
3

.

Indeed this follows by taking the tn such that lim
t→∞

R(tn) = lim sup
t→∞

R(t).

In the next theorem we prove the uniform boundedness of R(t) under different assumptions
than in Theorem 4.1, and by an entirely different method. Recall that h(s) = coth s

s − 1
s2

, and
that, by Lemma 2.2, h−1 is well-defined in the interval (0, 1

3).

Theorem 4.5. Let η = ũ
ū ∈ (0, 1) and h be given as in (6). If

µ(ū− ũ) <
9

ηh−1(η3 )2
(17)

then R(t) remains uniformly bounded.
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Remark 4.6. It is interesting to compare Theorem 4.5 with Theorem 4.1. If η = ũ
ū is near 1

then a = h−1(η) is near 0 so that (17) is less restrictive than the condition (12) assumed in
Theorem 4.1. On the other hand, if η is near 0 then a = h−1(η) is near ∞, and the condition
(17) is more restrictive than the condition (12). Note also that, in contrast with Theorem 4.1,
Theorem 4.5 does not require the uniform boundedness of α(t) in t.

Remark 4.7. The case when formally α(t) ≡ ∞, that is, when the boundary condition is
u = ū, was considered in [7] where it was proved (see [7, Theorem 5.1]) that R(t) is bounded
if µ(ū + e−1/µ) < 1. The proof of Theorem 4.5 is completely different from the proof in [7],
and it extends also to the case where u = ū on the free boundary (under different conditions
than in [7]).

Proof of Theorem 4.5. Let a0 = h−1(η3 ). By the assumption (17) and the monotonicity of h
(Lemma 2.2), we may choose a positive constant a slightly greater than a0 such that

µ

3
(ū− ũ)a2h(a) < 1 and h(a) =

f ′(a)

af(a)
<

ũ

3ū
. (18)

To prove the theorem, we suppose that lim sup
t→∞

R(t) = +∞, and derive a contradiction.

Claim 4.8. For any M0, T0 > 0, there exist positive numbers τ1, τ2 such that

τ2 − τ1 > T0, R(t) ≥M0 for all t ∈ (τ1, τ2), and Ṙ(τ2) ≥ 0.

It remains to show the claim for any M0 > inft>0R(t). To prove the claim, take τ0 such
that R(τ0) = M0 and fix τ2 > τ0 so that R(τ2)/M0 > exp(µ(ū − ũ)T0), and Ṙ(τ2) > 0. Let
τ1 = inf{τ0 < t < τ2 : R(t′) > M0 for all t′ ∈ (t, τ2)}, then R(τ1) = M0 and R(t) ≥M0 for all
t ∈ (τ1, τ2). Also, from the fact Ṙ(t) ≤ µ(ū− ũ)R(t), it follows that

τ2 − τ1 ≥
1

µ(ū− ũ)
log

(
R(τ2)

R(τ1)

)
.

Hence τ2 − τ1 > T0 by our choice of τ2. This completes the proof of the claim.
We are now going to construct a supersolution w for τ1 < t < τ2 and use it to estimate

the right-hand side of (3) at t = τ2 and show that Ṙ(τ2) < 0, which is a contradiction; this
will complete the proof of the theorem. To construct the supersolution w we take M0 such
that

M2
0 >

a2

1− a2h(a)µ(ū− ũ)/3

which gives

−a2h(a) · µ
3

(ū− ũ) + 1− a2

M2
0

> 0, (19)

and choose (using (18)) a positive constant T0 such that

T0 > − log

(
ũ

ū
− 3h(a)

)
,

which gives
ūe−t

3
− ũ

3
+ ūh(a) < 0 for all t ≥ T0. (20)
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Let

w := ūe−(t−τ1) +
ū

f(a)
f

(
ar

R(t)

)
.

We claim that w is a supersolution. We first check the differential inequality: For t ∈ [τ1, τ2],

wt −∆w + w

=
ū

f(a)
f ′
(
ar

R(t)

)
· −ar
R2(t)

Ṙ(t) +

(
1− a2

R2(t)

)
ū

f(a)
f

(
ar

R(t)

)
=

ū

f(a)
f

(
ar

R(t)

)[
−
f ′( ar

R(t))

f( ar
R(t))

ar

R(t)

Ṙ(t)

R(t)
+

(
1− a2

R2(t)

)]
.

Setting w1 := ū
f(a)f

(
ar
R(t)

)
, we obtain

wt −∆w + w

≥ w1

[
−

(
sup
s∈(0,a)

f ′(s)

f(s)
s

)
max

{
0,
Ṙ(t)

R(t)

}
+

(
1− a2

R2(t)

)]

≥ w1

[
−af

′(a)

f(a)
· µ

3
(ū− ũ) +

(
1− a2

R2(t)

)]
≥ w1

[
−a2h(a) · µ

3
(ū− ũ) + 1− a2

M2
0

]
> 0

by (19). Next, we observe that

[wr + α(t)(w − ū)]
∣∣
r=R(t)

> 0,

as wr(R(t), t) > 0, w − ū ≥ 0 and α(t) ≥ 0. Since also u(r, τ1) < ū < w(r, τ1), we conclude,
by comparison, that u(r, t) ≤ w(r, t) for 0 ≤ r ≤ R(t) and t ∈ [τ1, τ2]. Hence,

Ṙ

R
=

µ

R3

∫ R

0
r2(u(r, t)− ũ) dr

≤ µ

R3

∫ R

0
r2(w(r, t)− ũ) dr

=
µ

R3

∫ R

0
r2

[
ūe−(t−τ1) +

ū

f(a)
f
(ar
R

)
− ũ
]
dr.

By integration, using Lemma 2.4, we then get

Ṙ

R
≤ µ

R3

{
R3

3
[ūe−(t−τ1) − ũ] +

ū

f(a)

R3

a
f ′(a)

}
= µ

{
ūe−(t−τ1) − ũ

3
+ ūh(a)

}
.

Hence, by (20),

Ṙ(τ2)

R(τ2)
≤ µ

{
ūe−(τ2−τ1) − ũ

3
+ ūh(a)

}
< 0,

which is a contradiction to the fact that Ṙ(τ2) ≥ 0.
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5 R(t)→ 0

Lemma 5.1. If R(t) is uniformly bounded and lim
t→0

α(t) = 0, then lim inf
t→∞

R(t) = 0.

Proof. If the assertion is not true, then

R1 ≤ R(t) ≤ R2 (21)

for some positive constants R1, R2 and all t > 0. Set

C∗ = sup
R1≤r≤R2

f(r), c0 = inf
R1≤r≤R2

d

dr
f(r) (22)

where f(r) = sinh(r)
r , and note that c0 > 0.

Let ε be a small number such that

εC∗ <
ũ

3
,

and choose a large number t0 such that

α(t) < c1 :=
εc0

ū
if t > t0.

Consider the function
w(r, t) = ūe−(t−t0) + εf(r) for t > t0. (23)

It satisfies (1) and w(r, t0) > ū ≥ u(r, t0). Since also

∂w

∂r
+ α(t)(w − ū) > ε

d

dr
f(r)− α(t)ū > εc0 − c1ū = 0 on r = R(t),

we conclude that w is a supersolution for t > t0, so that

u(r, t) < w(r, t) if t ≥ t0.

It follows that

u(r, t)− ũ < w(r, t)− ũ = ūe−(t−t0) + εC∗ − ũ < −
ũ

3

if t ≥ t1, where t1 is chosen large enough such that

ūe−(t1−t0) =
ũ

3
.

Hence, for all t > t1,

dR(t)

dt
=

µ

R(t)2

∫ R(t)

0
(u− ũ)r2 dr < −µũ

9
R(t),

and R(t) decreases exponentially to zero as t→∞, thus contradicting (21).

Theorem 5.2. If lim
t→0

α(t) = 0 and (12) (i.e. µ(ū− ũ) < 1) holds, then R(t)→ 0 as t→∞.
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Proof. We first note, by Theorem 4.1, that R(t) is uniformly bounded.
Suppose the assertion of the theorem is not true, then, in view of Lemma 5.1, there exists

a positive constant γ0 and sequences tn, t̃n →∞ such that for all n

t̃n < tn < t̃n+1, ρ(tn) > γ0, ρ(t̃n) < γ0, ρ′(tn) > 0 > ρ′(t̃n),

where we recall that ρ(t) = 1
3R

3(t). Let

sn = inf{s′ : s′ < tn, and ρ′(t) > 0 for all t ∈ (s′, tn]};

clearly sn ∈ (t̃n, tn), sn →∞ as n→∞, ρ′(sn) = 0 and ρ′′(sn) ≥ 0. By Claim 4.2,

R(sn) ≤ 3ū

ũ
α(sn). (24)

We conclude that there exists a sequence of disjoint intervals (sn, tn) such that

ρ′(t) > 0 in (sn, tn), sn →∞, ρ(sn) ≤ 9

(
ũ

ū
sup

(sn,∞)
α

)3

→ 0, (25)

and, by taking n sufficiently large, say n ≥ n0,

ρ(tn) ≥ γ0 > 9

(
ũ

ū
sup

(sn,∞)
α

)3

> 0 for all n ≥ n0. (26)

By (25) and (26), we may choose s′n ∈ (sn, tn) such that

ρ(s′n) = 9

(
ũ

ū
sup

(s′n,∞)
α

)3

. (27)

As n → ∞, s′n → ∞ and hence the right-hand side of (27) tends to zero, and so does ρ(s′n).
Therefore, for all n sufficiently large, we have

ρ(s′n) <
γ0β

2β + µ(ū− ũ)
, (28)

where β = 1 + µ(ũ − ū) > 0. In view of (25) and (27), the assumptions of Lemma 4.3 hold
with τ1 = s′n and τ2 ∈ [s′n, t]. Hence, by (14),

ρ′(t)− ρ′(s′n) ≤ −β(ρ(t)− ρ(s′n)) for all t ∈ [s′n, tn]. (29)

By repeating the argument of Case (b) of Proof of Theorem 4.1, we then deduce that

ρ(tn) < e−β(tn−s′n)ρ(s′n) + ρ(s′n)(1 + µ(ū− ũ)/β).

Hence, by (28),
ρ(tn) < ρ(s′n)(2 + µ(ū− ũ)/β) < γ0, (30)

and this is a contradiction to the fact that ρ(tn) ≥ γ0 for all n.
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6 lim inf
t→∞

R(t) > 0

In this section we show that if α(t) 6→ 0 as t→∞, then R(t) stays bounded away from zero
for all t ≥ 0. Moreover, there is a positive lower bound of lim inft→∞R(t) that is independent
of initial data (u0, R0).

Proposition 6.1. If lim inft→∞ α(t) = α1 > 0, then there exists a positive constant δ0 > 0
independent of initial conditions (u0, R0) such that lim inf

t→∞
R(t) ≥ δ0.

Proof. Choose a small constant δ0 > 0 such that

f(δ0) <
ū+ ũ

2ũ
,

supr∈[0,δ0] f
′(r)

f(δ0)
< δ0, and

ū+ ũ

2
δ0 <

ū− ũ
2

α1

2
. (31)

This is indeed possible since

lim
s→0+

f(s) = 1, lim
s→0+

f ′(s)

sf(s)
= lim

s→0+
h(s) =

1

3
, and

ū+ ũ

2ũ
> 1.

Claim 6.2. There exists a sequence tn →∞ such that R(tn) > δ0.

Suppose to the contrary that there exists t0 > 0 such that

R(t) ≤ δ0 and α(t) ≥ α1

2
for all t ≥ t0,

and introduce the function

w(r, t) =
ū+ ũ

2

f(r)

f(δ0)
− ūe−(t−t0). (32)

Then wt − 1
r2

(r2wr)r + w = 0, w(r, t0) ≤ 0 for all r ∈ [0, R0], and,

(wr + αw)
∣∣
r=R(t)

=
ū+ ũ

2

(
f ′(R(t))

f(δ0)
+ α(t)

f(R(t))

f(δ0)

)
− α(t)ūe−(t−t0)

≤ ū+ ũ

2
(δ0 + α(t))

< α(t)ū

where the last two inequalities follow from the last two inequalities in (31) and the fact that
α(t) ≥ α1/2. Hence, by comparison, u(r, t) ≥ w(r, t) for all 0 < r < R(t) and t > t0. But
then

R(t)2Ṙ(t) ≥
∫ R(t)

0
(w(r, t)− ũ)r2 dr ≥

∫ R(t)

0

(
ū+ ũ

2f(δ0)
− ūe−(t−t0) − ũ

)
r2 dr. (33)

Hence

lim inf
t→∞

Ṙ(t)

R(t)
≥
∫ R(t)

0

(
ū+ ũ

2f(δ0)
− ũ
)

r2

R(t)3
dr =

1

3

(
ū+ ũ

2f(δ0)
− ũ
)
,

where the right hand side is a positive constant, by the first condition in (31). This contradicts
the assumption R(t) ≤ δ0 for all t ≥ t0, which completes the proof of Claim 6.2

12



Next, choose δ0 as above, and θ ∈ (0, 1) such that

θ3/ũ <
1

ū

[
ũ+ ū

2f(δ0)
− ũ
]
, (34)

which is possible since the right hand side is positive by the first condition in (31).

Claim 6.3. lim inf
t→∞

R(t) ≥ δ1 := θδ0.

To prove Claim 6.3, suppose for contradiction that lim inft→∞R(t) < δ1. Then, by Claim
6.2, there exists a sequence τj →∞ such that τ2j−1 < τ2j < τ2j+1,

R(τ2j−1) > δ0, R(τ2j) < δ1, and Ṙ(τ2j) ≤ 0.

Hence there exist 0 < t0 < t1 such that α(t) ≥ α1/2 for all t ≥ t0, and

R(ti) = δi for i = 0, 1, δ1 < R(t) < δ0 for all t ∈ (t0, t1), Ṙ(t1) ≤ 0, (35)

and δ1 = θδ0. By (3), Ṙ(t)
R(t) ≥ −

ũ
3 , so that (35) implies the inequality

t1 − t0 ≥ −
3

ũ
log θ. (36)

The function w(r, t) defined in (32) is a subsolution for t ∈ [t0, t1]. This implies, by comparison,
that u(r, t) ≥ w(r, t) for all 0 < r < R(t) and t0 < t < t1. Hence by (33) and (36),

Ṙ(t1) ≥
∫ R(t1)

0

(
ū+ ũ

2f(δ0)
− ūθ3/ũ − ũ

)
r2 dr.

But the right-hand side is positive by (34), which contradicts the fact that Ṙ(t1) ≤ 0.

7 Blow up solutions

In this section we show a partial converse of Theorem 4.1.

Theorem 7.1. Suppose µū > 1. Then for any ũ sufficiently small, there exist a function α(t)
and initial conditions (u0, R0) such that limt→∞ α(t) = 0 and the radius R(t) of the solution
(u,R) increases to infinity exponentially fast as t→∞.

Proof. Define

β(a, k) = ū

[
f ′(a)− k2f ′(ka)

af(a)
− 1− k3

3

f(ka)

f(a)
− ũ

3ū

]
. (37)

Claim 7.2. There exist numbers a > 0 and 0 < k < 1 such that for any ũ sufficiently small,

µβ(a, k)g(ka)ka = µβ(a, k)
f ′(ka)

f(ka)
ka > 1. (38)
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To prove the claim, write the left-hand side of (38) as

µūkg(ka)

[
g(a)− ũ

3ū
a− k2 f

′(ka)

f(a)
− 1− k3

3

f(ka)

f(a)
a

]
.

Fix some k ∈ ((µū)−1, 1) and c ∈ (1, µūk), then as α→ +∞,

g(ka)→ 1, g(a)→ 1,
f ′(ka)

f(a)
→ 0, and

f(ka)

f(a)
a→ 0,

which imply that there exists a positive constant a1 such that

µūkg(ka1)

[
g(a1)− µūk − c

µūk
− k2 f

′(ka1)

f(a1)
− 1− k3

3

f(ka1)

f(a1)
a1

]
≈ c > 1. (39)

If ũ is sufficiently small such that

0 < ũ ≤ µūk − c
µūk

3ū

a1
,

then (38) follows from (39).
Now, let a, k and ũ be given as in Claim 7.2. Define a continuous function

w(r, t) =

{
0 for 0 ≤ r ≤ kR(t),
ū

f(a)

[
f
(

ar
R(t)

)
− f(ak)

]
for kR(t) < r ≤ R(t).

Then one may compute, using Lemma 2.4, that

µ

R3

∫ R

0
(w(r, t)− ũ)r2 dr = µβ(a, k) > 0 for all t ≥ 0. (40)

We claim that for any initial condition u0 > w(r, 0) and any α(t) satisfying

α(t) ≥ f ′(a)

f(ka)

a

R(0)
e−µβ(a,k)t, (41)

the radius R(t) of the solution (u,R) increases to ∞ exponentially fast as t → ∞. To prove
it we introduce the set

I2 =

{
t̃ ≥ 0 :

Ṙ(t)

R(t)
≥ µβ(a, k) for all t ∈ [0, t̃]

}
,

and it suffices to show that I2 = [0,+∞), since then R(t) ≥ R(0)eµβ(a,k)t for all t ≥ 0.
By using the fact that u0(r) < w(r, 0) and (40) in (3), we have

Ṙ(0)

R(0)
=

µ

R(0)3

∫ R(0)

0
(u0(r)− ũ)r2 dr >

µ

R(0)3

∫ R(0)

0
(w(r, 0)− ũ)r2 dr = µβ(a, k).

Hence I2 ⊃ [0, δ1) for some δ1 > 0.
Next, suppose to the contrary that I2 6= [0,+∞). By the closedness and connectedness of

I2, we may assume that I2 = [0, T0] for some T0 > 0. We proceed to show that w(r, t) is a
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subsolution for 0 ≤ t ≤ T0 + δ for some δ > 0. In the region of (r, t) where w(r, t) > 0 (i.e.
kR(t) < r ≤ R(t)),

wt −
1

r2
(r2wr)r + w

=
ūf(arR )

f(a)

[
−
f ′
(
ar
R

)
f
(
ar
R

) ar
R

Ṙ

R
+

(
1− a2

R2

)
− f(ka)

f(a)

f(a)

f(arR )

]

≤
ūf(arR )

f(a)

[
−f
′(ka)

f(ka)
ka
Ṙ

R
+

(
1− a2

R2

)
− f(ka)

f(arR )

]

≤
ūf(arR )

f(a)

[
1− f ′(ka)

f(ka)
ka
Ṙ

R

]

≤
ūf(arR )

f(a)

[
1− f ′(ka)

f(ka)
kaµβ(a, k)

]
< 0

for all 0 ≤ t ≤ T0 and by our choice of k, a and ũ in Claim 7.2. By continuity, wt− 1
r2

(r2wr)r+
w < 0 also if kR(t) < r < R(t), 0 ≤ t ≤ T0 + δ for some δ > 0.

Next, by our choice of α(t), the boundary condition for a subsolution is also satisfied:

wr + α(t)(w − ū)
∣∣
r=R(t)

= ū
f ′(a)

f(a)

a

R(t)
+ α(t)

[
ū

(
1− f(ak)

f(a)

)
− ū
]

= ū
f(ak)

f(a)

[
f ′(a)

f(ak)

a

R(t)
− α(t)

]
< ū

f(ak)

f(a)

[
f ′(a)

f(ak)

a

R(0)
e−µβ(a,k)t − α(t)

]
≤ 0

for 0 ≤ t ≤ T0 and then, by continuity, for 0 ≤ t ≤ T0 + δ.
Since also w(r, 0) < u0(r), we deduce that w is a subsolution for 0 ≤ t ≤ T0 + δ, so that

w(r, t) < u(r, t) for all 0 < t ≤ T0 + δ and 0 ≤ r ≤ R(t). Hence,

Ṙ(t)

R(t)
≥ µ

R(t)3

∫ R(t)

0
(w(r, t)− ũ)r2 dr = µβ(a, k) for all 0 ≤ t ≤ T0 + δ

and this contradicts the maximality of T0, and finishes the proof.

Remark 7.3. By the arguments presented in the proof of Theorem 7.1, a sufficient condition
for blow-up of R(t) is given by

µ sup
a>0,0<k<1

β(a, k)
f ′(ka)

f(ka)
ka > 1,

where β(a, k) is given by (37).

8 Global Asymptotic Stability of Steady State

In this section we prove that the stationary solution (u∗(r), R∗) defined by (8), (10) with
α = α∗ > 0 is globally asymptotically stable provided µ is sufficiently small independently of
initial data; for clarity we first consider the case where α(t) = const. = α∗.
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Theorem 8.1. There exists a number µ0 such that for any µ ∈ (0, µ0) and any initial data
u0, R0, the solution of system (1) - (4) with α(t) ≡ const. = α∗ satisfies:

lim
t→∞

R(t) = R∗, and lim
t→∞

u(r, t) = u∗(r).

Remark 8.2. The case α = +∞, i.e. with the boundary condition u = ū, was considered
in [7], and the present proof follows the same procedure; however, in [7] the parameter µ0

depends on initial conditions (namely, on bounds on ‖u0‖L∞ and R0), while in the present
case we are able to show (using results from Section 4) that µ0 does not depend on the initial
data.

Lemma 8.3. Let δ0,Γ be two given positive numbers, and assume, for some γ ∈ (0,Γ], that

|R(t)−R∗| ≤ γ, R(t) ≥ δ0, and |u(r, t)− u∗(r)| ≤ γ for all t ≥ 0.

Then there exist a number µ0 > 0 and constants A, β, depending on δ0,Γ, but independent of
µ, γ ∈ (0,Γ] such that if µ ∈ (0, µ0],

|R(t)−R∗| ≤ Aγ(µ+ e−βt), |u(r, t)− u∗(r)| ≤ Aγ(µ+ e−βt). (42)

Proof. Let v = v(r, t) be defined by

v(r, t) =
αū

α+ g(R(t))

f(r)

f(R(t))
.

Then
|u∗(r, t)− v(r, t)| ≤ A|R(t)−R∗|. (43)

Introducing the differential operator L[φ] := φt − 1
r2

(
r2φr

)
r

+ φ, we have

L[v] = vṘ(t)

[
−g′(R(t))

α+ g(R(t))
− f ′(R(t))

f(R(t))

]
= vµ

(∫ R(t)

0

r2

R(t)2
(u(r, t)− ũ) dr

)[
−g′(R(t))

α+ g(R(t))
− g(R(t))

]
.

By the assumptions of the lemma,

−Aγµ ≤ L[v] ≤ Aγµ

where here, and in the remainder of the proof, A denotes a generic constant depending on Γ
but independent of µ and γ. This, in turn, implies that for all K > 0 and β1 ∈ (0, 1], that

L[v +Aγµ+Ke−β1t] ≥ 0 ≥ L[v −Aγµ−Ke−β1t], (44)

and ( ∂∂r + α)(v ± (Aγµ+Ke−β1t)) R αū on the free boundary.
Next, by (43), (note here that the generic constant A may change from line to line, but

remains independent of µ, and γ ∈ [0,Γ])

|u(r, 0)− v(r, 0)| ≤ |u(r, 0)− u∗(r)|+ |u∗(r)− v(r, 0)|
≤ γ +A|R(0)−R∗| ≤ Aγ.
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Taking K = Aγ in (44), we get, by comparison,

|u(r, t)− v(r, t)| ≤ Aγ(µ+ e−β1t). (45)

We next note that, by Lemma 2.4,∫ R(t)

0
(v(r, t)− ũ)r2 dr =

αū

α+ g(R(t))

1

f(R(t))

∫ R(t)

0
f(r)r2 dr − ũ

3
R(t)3

=
αū

α+ g(R(t))

R(t)2f ′(R(t))

f(R(t))
− ũ

3
R(t)3

=
αū

α+ g(R(t))
R(t)2g(R(t))− ũ

3
R(t)3

=
αū

α+ g(R(t))
R(t)3

[
g(R(t))

R(t)
− ũ

3ū

(
1 +

g(R(t))

α

)]
.

Thus, letting E(t) = 1
R(t)2

∫ R(t)
0 (u(r, t)− v(r, t))r2 dr, and using (3), we obtain

Ṙ(t) =
1

R(t)2

∫ R(t)

0
(u(r, t)− ũ)r2 dr

=
αū

α+ g(R(t))

[
g(R(t))− ũ

3ū

(
1 +

g(R(t))

α

)
R(t)

]
+ E(t).

Thus, the differential equations for R = R(t) can be written in the form

Ṙ(t) = G(R(t)) + E(t) (46)

where

G(s) =
αū

α+ g(s)

[
g(s)− ũ

3ū

(
1 +

g(s)

α

)
s

]
.

and from (45),
|E(t)| ≤ Aγ(µ+ e−β1t)R(t). (47)

Let G±µ(R) = G(R)±AµγR, then

G−µ(R(t))−Aγe−β1t ≤ G(R(t)) + E(t) ≤ Gµ(R(t)) +Aγe−β1tR(t).

Lemma 8.4. There exists a positive constant µ0 > 0 (depending on Γ but independent of γ)
such that for any µ ∈ (0, µ0], there exist numbers R∗,±µ for which the following holds:

G′±µ(R∗,±µ) < 0, and G±µ(R) =


> 0 when 0 < R < R∗,±µ,
= 0 when R = R∗,±µ,
< 0 when R > R∗,±µ,

(48)

Proof. By Lemma 3.2, there exists an R∗ > 0 such that

G(R) =


= 0 when R = 0, R∗,
> 0 when 0 < R < R∗,
< 0 when R > R∗,

and G′(0) > 0 > G′(R∗).
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The lemma then follows from this and the fact that

lim
R→∞

G(R)

R
=

αū

α+ 1

[
− ũ

3ū

(
1 +

1

α

)]
< 0.

From the above proof we also have, for µ ∈ (0, µ0],

R∗,−µ ≤ R∗ ≤ R∗,µ and 0 ≤ R∗,µ −R∗,−µ ≤ Aµγ. (49)

By Lemma 8.4 and by possibly taking µ0 smaller, there exists positive constants c0, C0 such
that for all µ ∈ (0, µ0],{

G±µ(R) ≥ −c0(R−R∗,±µ) when max{δ0, R∗ − Γ} < R < R∗,±µ,
G±µ(R) ≤ −c0(R−R∗,±µ) when R∗,±µ < R < R∗ + Γ.

(50)

Using the fact that R∗,±µ are constants independent of t, we combine (46) and (47) to get

d

dt
(R(t)−R∗,µ) ≤ Gµ(R(t)) +Aγe−β1tR(t)

which, in view of (50) and the boundedness of R(t) ≤ R∗ + Γ,

d

dt
(R(t)−R∗,µ) ≤ −c0(R(t)−R∗,µ) +Aγe−β1t

whenever R(t) > R∗,µ, with another constant A. By integration, we then conclude that for
some β2 ∈ (0, β1], and another constant A,

R(t)−R∗,µ ≤ Aγe−β2t,

and deduce, by (49), that
R(t)−R∗ ≤ Aγ(µ+ e−β2t).

Similarly, using the lower bound for E(t) in (47), one can prove that

R(t)−R∗ ≥ −Aγ(µ+ e−β2t).

This completes the proof of the first part of (42). The second part of (42) follows by combining
(43) and (45).

Proof of Theorem 8.1. We take µ < 1
ū−ũ so that by Theorem 4.1, R(t) is uniformly bounded.

By Proposition 6.1 and Remark 4.4, we have 0 ≤ u0(r) ≤ ū for all r, and

δ0 ≤ lim inf
t→∞

R(t) ≤ lim sup
t→∞

R(t) ≤ B2 :=

(
3ū supt α

ũ

)[
1 +

µ(ū− ũ)

β

] 1
3

(51)

where δ0 > 0 is given in Proposition 6.1. Indeed, if (51) does not hold then, by Remark
4.4 and Proposition 6.1, we deduce that R(t) is a monotone function for all large t, and
limt→∞R(t) > 0. But then, by slightly modifying the proof of [6, Chapter 6, Theorem 5]

18



we conclude that limt→∞R(t) = R∗ and limt→∞ u(r, t) = u∗(r), where (u∗, R∗) is the unique
stationary solution corresponding to α∗.

We can now proceed with the proof of Theorem 8.1 assuming, for simplicity, that

0 ≤ u0(r) ≤ ū for all r,
δ0

2
≤ R(t) ≤ B2 + 1 for all t ≥ 0. (52)

We shall establish the stability of the stationary solution by repeated application of the
Lemma 8.3. Indeed, combining (5) and Theorem 4.1 or Theorem 4.5, we know that for some
µ0 (depending on Γ = B2 + 1 and δ0 > 0 as given in Proposition 6.1), the assumptions of the
lemma hold true. Hence, we have

|R(t)−R∗| ≤ Aγ(µ+ e−βt) ≤ 2Aµγ for t ≥ T0 := − 1

β
logµ.

Next, fix any µ such that 2Aµ < 1 and define β3 > 0 by

2Aµ = e−β3T0 .

Given T > 0, let n be the largest integer that satisfies nT0 ≤ t < (n+ 1)T0. Then

|R(t)−R∗| ≤ γ(2Aµ)n = γe−β3nT0 = γe−β3te−β3(nT0−t)

≤ γeβ3T0e−β3t = B0e
−β3t. (B0 = γeB3T0 .)

It follows that limt→∞R(t) = R∗ and by [6, Chapter 6, Theorem 5], limt→∞ u(r, t) = u∗(r).

We proceed to extend Theorem 8.1 to the case where α(t) is not constant.

Theorem 8.5. Suppose for some positive constant α∗, limt→∞ α(t) = α∗. Then there exists
a number µ0 such that for any µ ∈ (0, µ0) and any initial data u0, R0, the solution of system
(1) - (4) satisfies:

lim
t→∞

R(t) = R∗, and lim
t→∞

u(r, t) = u∗(r).

Lemma 8.6. Let δ0,Γ be two given positive numbers, and assume, for some γ ∈ (0,Γ], that

|R(t)−R∗| ≤ γ, R(t) ≥ δ0, and |u(r, t)− u∗(r)| ≤ γ for all t ≥ 0.

Then there exist a number µ0 > 0 and constants A, β, depending on δ0,Γ but independent of
µ, γ ∈ (0,Γ] such that if µ ∈ (0, µ0], then

|R(t)−R∗| ≤ A
[
(γ + ϑ)(µ+ e−βt) + ϑ

]
, (53)

and
|u(r, t)− u∗(r)| ≤ A

[
(γ + ϑ)(µ+ e−βt) + ϑ

]
, (54)

where ϑ = supt>0 |α(t)− α∗|.
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Proof. Let α+ = supt>0 α(t) and α− = inft>0 α(t), and define v± = v±(r, t) by

v±(r, t) =
α±ū

α± + g(R(t))

f(r)

f(R(t))
,

then
|u∗(r, t)− v±(r, t)| ≤ A(|R(t)−R∗|+ ϑ) ≤ A(γ + ϑ). (55)

Proceeding as in Lemma 8.3, with K = A(γ + ϑ), we get, by comparison,

|u(r, t)− v±(r, t)| ≤ A(γ + ϑ)(µ+ e−β1t), (56)

and then also
Ṙ(t) = G±(R(t)) + E±(t), (57)

where

G±(s) =
α±ū

α± + g(s)

[
g(s)− ũ

3ū

(
1 +

g(s)

α±

)
s

]
,

E±(t) = 1
R(t)2

∫ R(t)
0 (u(r, t)− v±(r, t))r2 dr, and

|E±(t)| ≤ A(γ + ϑ)(µ+ e−β1t)R(t). (58)

Let G±µ (R) = G±(R)±Aµ(γ + ϑ)R, then

G−µ (R(t))−A(γ + ϑ)e−β1t ≤ G±(R(t)) + E±(t) ≤ G+
µ (R(t)) +A(γ + ϑ)e−β1t.

The proof of Lemma 8.4 can now be repeated and together with (57) we obtain, similarly to
(50), the estimate

d

dt
(R(t)−R+

∗,µ) ≤ −c0(R(t)−R+
∗,µ)+ +A(γ + ϑ)e−β1tR(t)

≤ −c0(R(t)−R+
∗,µ) +A(γ + ϑ)e−β1t

whenever R(t) > R+
∗,µ (R±∗,µ being the unique positive root of G±µ ), for some new constant A,

so that for some β2 ∈ (0, β1],

R(t)−R+
∗,µ ≤ A(γ + ϑ)e−β2t,

and then also
R(t)−R∗ ≤ A(γ + ϑ)(µ+ e−β2t) +Aϑ.

Similarly,
R(t)−R∗ ≥ −A(γ + ϑ)(µ+ e−β2t)−Aϑ.

And the proof of (53) is complete. The proof of (54) follows from (55) and (56).

Proof of Theorem 8.1. We take µ < 1
ū−ũ so that by Theorem 4.1, R(t) is uniformly bounded.

By Proposition 6.1 and Remark 4.4, arguing as in Proof of Theorem 8.1, we may assume that

0 ≤ u0(r) ≤ ū for all r,
δ0

2
≤ R(t) ≤ B2 + 1 for all t ≥ 0, (59)
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where B2 =
(

3ū supα
ũ

) [
1 + µ(ū−ũ)

β

] 1
3
. We can now establish the stability of the stationary

solution by repeated application of the Lemma 8.6. Indeed, combining (5) and Theorem 4.1
or Theorem 4.5, we know that for some µ0 (depending on Γ = B2 + 1 and δ0 > 0 as given in
Proposition 6.1), the hypothesis of the lemma hold true. Taking µ small such that 2Aµ < 1,
and defining T0 by e−βT0 = µ, we have (recall that A is a generic constant independent of γ
and ϑ, and may change from one line to another)

|R(t)−R∗| ≤ A(γ + ϑ)(µ+ e−βt) +Aϑ ≤ 2Aµγ +Aϑ for t ≥ T0

Finally, if we define β3 > 0 by
2Aµ = e−β3T0

and, given t > 0, let n be the largest integer that satisfies nT0 ≤ t < (n+ 1)T0, then we have

|R(t)−R∗| ≤ γ(2Aµ)n +
Aϑ

1− 2Aµ
= γe−β3nT0 +

Aϑ

1− 2Aµ
= γe−β3te−β3(nT0−t) +

Aϑ

1− 2Aµ

≤ γeβ3T0e−β3t +
Aϑ

1− 2Aµ
= B0e

−β3t +
Aϑ

1− 2Aµ
, where B0 = γeB3T0 .

If ϑ = 0, i.e. α(t) = α∗ for all large positive t, then |R(t)− R∗| decreases exponentially in t,
and by [6, Theorem 5, Chapter 6], limt→∞ u(r, t) = u∗(r) also exponentially.

Otherwise, lim supt→∞ |R(t)− R∗| ≤
A supt≥T |α(t)−α∗|

1−β for any T > 0, and taking T → ∞,
we deduce that limt→∞ |R(t)−R∗| = 0. Finally, as before, it follows similarly from [6, Theorem
5, Chapter 6] that limt→∞ u(r, t) = u∗(r).

A Appendix

Proof of Lemma 2.1. From the identity f ′′(s) + 2
sf
′(s) = f(s), we have

g′(s) =
f ′′(s)

f(s)
−
(
f ′(s)

f(s)

)2

= −2

s

f ′(s)

f(s)
+ 1−

(
f ′(s)

f(s)

)2

,

that is,

g′(s) = −2

s
g(s) + 1− g2(s). (60)

From the power series expansions

f(s) =

∞∑
k=0

s2k

(2k + 1)!
, f ′(s) =

∞∑
k=1

2k

(2k + 1)!
s2k−1, g(s) =

s

3
− s3

45
+

2

945
s5 + . . .

we deduce that

g(0) = 0, g′(0) =
1

3
, and g′(s) > 0 for all small and positive s. (61)

Moreover, since g(s) = coth s− 1
s , we also have

lim
s→+∞

g(s) = 1. (62)
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Let I1 := {s̄ ∈ (0,+∞) : g′(s) > 0 for all s ∈ (0, s̄)}. We claim that I1 = (0,∞). Otherwise
there is a bounded interval I1 = (0, s0], with g′(s0) = 0 and g′(s) > 0 for all s ∈ (0, s0). Then
g′′(s0) ≤ 0. But by differentiating (60) at s = s0, we get (by the fact that for all s > 0,
g(s) > 0 and hence h(s) > 0)

g′′(s0) =
2

s2
0

g(s0) > 0,

which is a contradiction.

Proof of Lemma 2.2. First, we observe that by straightforward calculations, that

sh′(s) = 1− 3h(s)− s2h(s). (63)

Also, by power series expansion,

h(s) =
s
3 + s3

30 + . . .

s+ s3

6 + . . .
=

1

3
+

(
1

30
− 1

18

)
s2 + · · · = 1

3
− s2

45
+ . . .

Therefore, h′(s) < 0 for all s positive and sufficiently small. Let

I1 = {s̄ ∈ (0,+∞) : h′(s) < 0 for all s ∈ (0, s̄)}.

It remains to show that I1 = (0,∞). Suppose I1 = (0, s0], then h′(s0) = 0, h′(s) < 0 for all
s ∈ (0, s0), and h′′(s) ≥ 0. Differentiating (63) at s = s0, we get (using the fact that for s > 0,
g(s) > 0 and hence h(s) = g(s)/s > 0)

s0h
′′(s0) = (sh′)′(s0) = −2s0h

2(s0) < 0,

which is a contradiction.

Proof of Lemma 2.4. For a,R > 0 and 0 < k < 1,∫ R

kR
r2f

(ar
R

)
dr =

R3

a3

∫ a

ak
s2f(s) ds

=
R3

a3

∫ a

ak
(s2f ′(s))′ ds as (s2f ′(s))′ = s2f(s),

=
R3

a
[f ′(a)− k2f ′(ka)].
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