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Abstract. Limiting profiles of solutions to a 2×2 Lotka-Volterra competition-
diffusion-advection system, when the strength of the advection tends to infinity,
are determined. The two species, competing in a heterogeneous environment,
are identical except for their dispersal strategies: One is just random diffusion
while the other is “smarter” - a combination of random diffusion and a directed
movement up the environmental gradient. With important progress made, it
has been conjectured in [2] and [3] that for large advection the “smarter” species
will concentrate near a selected subset of positive local maximum points of the
environment function. In this paper, we establish this conjecture in one space
dimension, with the peaks located and the limiting profiles determined, under
mild hypotheses on the environment function.

1. Introduction. An interesting but perhaps curious phenomenon in the compe-
tition of two species with different (random) dispersal rates but otherwise being
identical is that the slower diffuser always prevails! More precisely, consider the
following Lotka-Volterra competition-diffusion system







Ut = d1∆U + U(m(x) − U − V ) in Ω × (0, T ),
Vt = d2∆V + V (m(x) − U − V ) in Ω × (0, T ),
∂U
∂ν = ∂V

∂ν = 0 on ∂Ω × (0, T ),
(1)

where ∆ =
∑n

i=1
∂2

∂x2
i

is the Laplace operator; U and V representing the densi-

ties of two competing species with the dispersal rates d1 and d2, respectively, are
therefore nonnegative; the habitat Ω is a bounded smooth domain in Rn with the
unit outward normal ν on the boundary ∂Ω, and m(x) represents the local intrinsic
growth rate at x ∈ Ω which may change sign in Ω, and will always be assumed to
be nonconstant.

It is well known that if
∫

Ωm > 0, the single equation
{

θt = d∆θ + θ(m(x) − θ) in Ω × (0, T ),
∂θ
∂ν = 0 on ∂Ω × (0, T ),

(2)

has a unique positive steady state θd, for every d > 0. In [4], it was established that
if d1 < d2, then the solution (U, V ) of (1) always converges to (θd1 , 0) as t → ∞,
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regardless of initial values; in other words, (θd1 , 0) is globally asymptotically stable,
and the slower diffuser U always wipes out its faster-moving competitor V .

However, individuals do not always move around just randomly. Incorporating
“directed movements” into (1) seems to be a reasonable step further in under-
standing population dynamics. In a series of very interesting papers [1],[2],[3], the
following 2 × 2 system is considered







Ut = ∇ · (d1∇U − αU∇m) + U(m(x) − U − V ) in Ω × (0, T ),
Vt = d2∆V + V (m(x) − U − V ) in Ω × (0, T ),
d1

∂U
∂ν − αU ∂m

∂ν = ∂V
∂ν = 0 on ∂Ω × (0, T ),

(3)

where the parameter α is assumed to be positive; i.e. it is further assumed that the
species U is “smarter”, as it also moves up the gradient direction of the resources
m(x). (The species V is still assumed to disperse just randomly for the comparison
purposes.) Then it is proved in [2] and [3] that for α large, U and V could co-exist!
Furthermore, system (3) seems to exhibit interesting concentration phenomena for
sufficiently large α. More precisely, it is proved that if

∫

Ω
m > 0 and m has exactly

one critical point x0 ∈ Ω which is a nondegenerate positive global maximum of m(x)
and ∂m

∂ν ≤ 0 on ∂Ω, then, for any positive steady state (Uα, Vα) of (3), we have
Vα → θd2 uniformly in Ω and

Uα(x) →
{

0, if x 6= x0,

2n/2[m(x0) − θd2(x0)], at x = x0,

as α → ∞. (Here, x0 being nondegenerate means that det(D2m(x0)) 6= 0.) Note
that by maximum principle, we have

max
Ω̄

m > max
Ω̄

θd2

for all d2 > 0. (See [2].)
This result has led the authors of [2] and [3] to conjecture that for general m(x)

(which may have multiple local maximum points in Ω), any positive steady states
(Uα, Vα) of (3) must concentrate at all local maximum points of m in Ω̄. (See e.g.
P.631 of [3].)

The purpose of this paper is to establish the above conjecture in the case n = 1,
under additional mild hypotheses on m. It turns out that the above conjecture has
to be modified slightly. To describe our result, we first set n = 1, Ω = (−1, 1) and
let M be the set of all positive local maximum points of m in Ω̄ = [−1, 1]. The
steady state equations for (3) now reduce to







(d1U
′ − αUm′)′ + U(m− U − V ) = 0 in (−1, 1),

d2V
′′ + V (m− U − V ) = 0 in (−1, 1),

d1U
′ − αUm′ = 0 = V ′ at x = ±1.

(4)

Our main result for (4) now reads as follows.

Theorem 1.1. Suppose that
∫

Ωm > 0, M ⊆ (−1, 1) with xm′(x) ≤ 0 at x =
±1, and that all critical points of m are nondegenerate. Let (Uα, Vα) be a positive
solution of (4). Then, as α→ ∞, it holds that

(i) Vα → θd2 in C1,β;
(ii) for any x0 ∈ M and any r > 0 small,

‖Uα(x) − max{
√

2 [m(x0) − θd2(x0)] , 0}eα[m(x)−m(x0)]‖L∞(x0−r,x0+r) → 0;
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(iii) for any neighborhood N of M, Uα → 0 in (−1, 1)\N uniformly and exponen-
tially.

From Theorem 1.1 we see that not only the peaks of U are located, the profiles
of U for large α near its concentrations are also determined. In particular, we have
proved that ‖Uα‖L∞ remains uniformly bounded in α. Theorem 1.1 also seems
interesting from a biological point of view. It says that although the species U has
the ability of moving upward the gradient of m(x), it will “survive” only at those
local maximum points of m where m is strictly larger than θd2 ; in other words, a
local maximum point of m could be a “trap” for the species U if m is less than or
equal to θd2 there!

By way of proving Theorem 1.1, we first consider the following closely related
single equation which was proposed in [1] to model the population dynamics of a
single species

{

ut = ∇ · (d∇u− αu∇m) + u(m(x) − u) in Ω × (0, T ),
d∂u

∂ν − αu∂m
∂ν = 0 on ∂Ω × (0, T ).

(5)

Similarly, it was established in [1] that if m is positive somewhere in Ω, then for
any d > 0 and α sufficiently large, (5) has a unique positive steady state uα which
is globally asymptotically stable (among all nonnegative nonzero solutions.) Again,
similarly, from the fact that ‖uα‖L∞ ≥ ‖m‖L∞ for α large (proved in [2]), it was
conjectured that the concentration set of uα, as α → ∞, is precisely the set of all
local maximum points of m. In a recent paper [5], this conjecture was verified under
additional mild hypotheses on m. Here we are able to further determine the limiting
profile of the positive steady state uα for α large in the 1-dimensional case n = 1.

For the positive steady state uα of (5) for n = 1
{

(u′ − αum′)′ + u(m− u) = 0 in (−1, 1),
u′ − αum′ = 0 at x = ±1,

(6)

(here we have set d = 1, for simplicity) we have the following limiting profile of uα.
Again, as a consequence ‖uα‖L∞ remains uniformly bounded in α.

Theorem 1.2. Suppose that M ⊆ (−1, 1) with xm′(x) ≤ 0 at x = ±1 and that all
critical points of m are non-degenerate. Then, for any r > 0 small and any x0 ∈ M,
we have

(i) uα → 0 uniformly and exponentially in (−1, 1)\ ∪x0∈M (x0 − r, x0 + r),

(ii) ‖uα −
√

2m(x0)e
α[m(x)−m(x0)]‖L∞(x0−r,x0+r) → 0,

as α→ ∞.

Comparing Theorems 1.1 and 1.2, we remark that the extra condition
∫

Ω
m > 0

in Theorem 1.1 is needed only to guarantee the existence of θd2 . Our proofs, lengthy
but elementary, are presented in Sections 2 and 3, respectively. Further remarks on
extending Theorems 1.1 and 1.2 are included in Section 4.

2. Proof of Theorem 1.2. In this section, we will prove Theorem 1.2. For conve-
nience, we will sometimes suppress the sub-index α in uα when there is no confusion.
We will assume throughout the rest of this paper that Ω = (−1, 1) and that m(x)
satisfies the following conditions:

(M1): m(x) ∈ C3([−1, 1]) and xm′(x) ≤ 0 at x = ±1.
(M2): M ⊆ (−1, 1) and all critical points of m are nondegenerate.
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(M3): maxΩ̄m > 0.

Note that (M2) implies m(x) has only a finite number of local maximum points.
First, we recall the following facts about (6).

Theorem 2.1. Suppose that m satisfies (M1),(M2) and (M3). Then the follow-
ing statements hold.

(i) For every α large, (6) has a unique positive solution uα, which is globally
stable among all nonnegative nontrivial solutions of (5).

(ii) uα → 0 in L2(−1, 1) as α→ ∞.
(iii) ‖uα‖L∞ ≤ ‖m‖L∞ + α‖∆m‖L∞ .
(iv) For each x0 ∈ M and any r > 0,

lim inf
α→∞

(

max
Br(x0)

uα

)

≥ m(x0).

(v) For each neighborhood N of M, there exists b > 0 such that 0 ≤ uα ≤ e−bα in
(−1, 1)\N.

Proof. Part (i) follows from Propositions 2.1,2.3 of [1], since
∫ 1

−1
eαmm > 0 for large

α (by (M3)). Parts (ii) and (iii) are proved in Theorem 3.5 and Lemma 3.3 of
[2]. (Note that although the extra condition

∫

Ωm > 0 is assumed in [2], it is not
required in the proofs of Theorem 3.5 and Lemma 3.3 there.) Parts (iv) and (v)
are established in Theorems 1.4 and 1.5 of [5].

To analyze (6), we first integrate (6) from −1 to x,

u′(x) − αu(x)m′(x) +

∫ x

−1

u(m− u) = 0,

i.e.

(lnu)′ =
u′

u
= αm′ − 1

u

∫ x

−1

u(m− u). (7)

Hence, for any x, xα ∈ (−1, 1) we have

lnu(x) − ln u(xα) = α(m(x) −m(xα)) −
∫ x

xα

1

u(z)

(
∫ z

−1

u(m− u)

)

dz,

and we have derived the following basic formula which we will use repeatedly in
this section:

u(x)

u(xα)
= exp

[

α (m(x) −m(xα)) −
∫ x

xα

1

u(z)

(
∫ z

−1

u(m− u)

)

dz

]

. (8)

We first estimate the integral in (8).

Lemma 2.2. There exists a constant C > 0 independent of α, such that
∣

∣

∣

∣

∫ z

−1

uα(m− uα)

∣

∣

∣

∣

≤ C‖uα‖L2(−1,1)

for all z ∈ (−1, 1) whenever u exists.

Proof. Fix α large so that the positive solution u for (6) exists. By integrating (6),

we have
∫ 1

−1
u(m− u)dx = 0 and hence ‖u‖L2 ≤ ‖m‖L2. Now,
∣

∣

∣

∣

∫ z

−1

u(m− u)

∣

∣

∣

∣

≤ ‖m‖L2‖u‖L2 + ‖u‖2
L2 ≤ (2‖m‖L2)‖u‖L2.
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As m has only a finite number of nondegenerate interior local maximum points,
there exist a small positive constant ǫ0 and a positive constant C0 such that m′′ <
−C0 and m > 0 on

N ≡ ∪x0∈M(x0 − ǫ0, x0 + ǫ0).

From Part (v) of Theorem 2.1, we have u ≤ e−bα on Ω\N for some constant b > 0.

Hence, if we set δ1 = α− 17
32 and δ2 = α− 1

4 , we have, for i = 1, 2,

Iδi ≡ {x ∈ Ω | uα(x) > δi} ⊆ N

for all large α. Note that Iδ1 ⊇ Iδ2 .

Proposition 2.3. For each x0 ∈ M, and i = 1, 2, Iδi ∩ (x0 − ǫ0, x0 + ǫ0) is
nonempty and connected, for α large. In other words, Iδi consists of exactly #M

disjoint intervals for α large.

Proof. To prove the connectedness by contradiction, suppose that there are at least
two connected components of Iδi ∩ (x0 − ǫ0, x0 + ǫ0). Then, there exists a local
minimum point x̄ ∈ (x0 − ǫ0, x0 + ǫ0) such that u(x̄) ≤ δi, u

′(x̄) = 0 and u′′(x̄) ≥ 0.
Writing (6) as

u′′ − αm′u′ + u(m− u− αm′′) = 0,

we see that,

u(x̄) ≥ m(x̄) − αm′′(x̄) ≥ inf
Ω
m+ αC0 ≥ 1 > δi,

for α sufficiently large, a contradiction. Iδi ∩ (x0 − ǫ0, x0 + ǫ0) being nonempty is a
consequence of Theorem 2.1 (iv).

Now, let xα ∈ Iδi ∩ (x0 − ǫ0, x0 + ǫ0) be a maximum point of uα in Iδi (x0) ≡
Iδi ∩ (x0 − ǫ0, x0 + ǫ0); i.e.

uα(xα) = max{uα(x) | x ∈ Iδi ∩ (x0 − ǫ0, x0 + ǫ0)} (9)

Observe that xα does not depend on i = 1, 2, by Part (iv) of Theorem 2.1. From
(7) we deduce that for α large,

|m′(xα)| =
1

αuα(xα)

∣

∣

∣

∣

∫ xα

−1

uα(m− uα)

∣

∣

∣

∣

≤ C

α
‖u‖L2

by Lemma 2.2 and Theorem 2.1 (iv). Since

xα ∈ (x0 − ǫ0, x0 + ǫ0), m
′′(x0) 6= 0, m′(x0) = 0,

Mean Value Theorem implies that

|xα − x0| ≤
C

α
‖uα‖L2 = o(

1

α
) (10)

by Theorem 2.1 (ii).
Next, we turn to estimating |Iδi |, i = 1, 2.

Lemma 2.4. For any M > 0 and any x0 ∈ M, both (x0 − M√
α
, x0 + M√

α
) and

(xα − M√
α
, xα + M√

α
) are contained in Iδ2 for α large.
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Proof. To prove this by contradiction, suppose that there exist M0 > 0 and a
sequence αj → ∞ with zαj ∈ ∂Iδ2 , such that

|zαj − xαj | ≤
M0√
αj

(10) then implies that

|zαj − x0| ≤
(1 +M0)√

αj

From (8) and (10) it follows that

u(zαj )

u(xαj )
= exp

[

αj(m(zαj ) −m(xαj )) −
∫ zαj

xαj

1

u(z)

(
∫ z

−1

u(m− u)

)

dz

]

≥ exp
[

αj

(

m(zαj ) −m(x0) +m(x0) −m(xαj )
)

−
∫ zαj

xαj

C

u(z)
‖u‖L2

]

≥ exp
[

αj{m(zαj ) −m(x0) +O(|xαj − x0|2)} −C

δ2
|zαj − xαj |‖u‖L2

]

= exp

[

αj{
1

2
m′′(x0)|zαj − x0|2 + o(

1

α2
j

)} − Cα
1
4
j

M0√
αj

‖u‖L2

]

≥ exp

[

αj

{

1

2
m′′(x0)

(M0 + 1)

αj

}

− o(α
− 1

4

j )

]

→ exp[
1

2
m′′(x0)(M0 + 1)2] > 0

as αj → ∞.

On the other hand,
u(zαj

)

u(xαj
) → 0 as αj → ∞ since u(xαj ) ≥ m(x0)

2 > 0 for α large

and u(zαj ) = δ2 → 0, a contradiction. Thus (xα − M√
α
, xα + M√

α
) ⊆ Iδ2 . The fact

that (x0 − M√
α
, x0 + M√

α
) ⊆ Iδ2 for α large now follows from (10).

Now we come to the upper estimate of |Iδ2 |.

Proposition 2.5. For α large |Iδ2 | = o( 1
αc ) for any 0 < c < 1

2 . In particular,

|Iδ2 | = o( 1
α1/3 ).

Proof. Fix 1
4 < c < 1

2 . Suppose the assertion is false. Then for some x0 ∈ M

there is a sequence αj → ∞ such that for each j, there exists zαj ∈ Iδ2 (x0) with

|zαj − x0| = k1

αc
j
, for some constant k1 > 0. From (8) and (10) it follows that (for

simplicity we suppress the subindex j).

u(zα)

u(xα)
≤ exp[α(m(zα) −m(x0) +m(x0) −m(xα))

+
C

δ2
|zα − xα|‖u‖L2]

≤ exp[−αk2|zα − x0|2 + o(1) + Ck1α
1
4−c‖u‖L2]

≤ exp(−k3α
1−2c)

for α large, where k2, k3 are two positive constants.
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On the other hand, from Theorem 2.1 (iii) we have

u(zα)

u(xα)
≥ δ2

‖u‖L∞
≥ δ2

‖m‖L∞ + α‖∆m‖L∞
≥ k4

α5/4

for some constant k4 > 0, a contradiction.

Theorem 2.6.

uα(x)

uα(xα)
exp

[

−α
2
m′′(x0)(x− x0)

2
]

→ 1

uniformly in Iδ2(x0) for each x0 ∈ M as α→ ∞. In particular,

1

2
uα(xα)e

α
2 m′′(x0)(x−x0)

2 ≤ uα(x) ≤ 2uα(xα)e
α
2 m′′(x0)(x−x0)

2

in Iδ2 (x0) for all α large.

Proof. By (8) again we have, for x ∈ Iδ2(x0),
∣

∣

∣

∣

u(x)

u(xα)
exp

[

−α
2
m′′(x0)(x − x0)

2
]

− 1

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

exp

[

α(m(x) −m(xα)) −
∫ x

xα

∫ z

1
u(m− u)

u(z)
dz − α

2
m′′(x0)(x− x0)

2

]

− 1

∣

∣

∣

∣

∣

= |g1(x) − g2(x)| exp ξ(x)

where

g1(x) = α(m(x) −m(xα)) − α

2
m′′(x0)(x − x0)

2 (11)

g2(x) =

∫ x

xα

1

u(z)

(
∫ z

−1

u(m− u)

)

dz (12)

and ξ(x) lies in between 0 and g1(x) − g2(x). Now, our assertion follows from the
following observations:

|g1(x)| ≤ α

∣

∣

∣

∣

m(x) −m(x0) −
1

2
m′′(x0)(x− x0)

2

∣

∣

∣

∣

+ α |m(x0) −m(xα)|

≤ α ·O(|x − x0|3) + α ·O(|x0 − xα|2) → 0.

by (10) and Proposition 2.5, and

|g2(x)| ≤
C

δ2
|x− xα|‖u‖L2

≤ Cα
1
4 |Iδ2 | · ‖u‖L2 → 0.

by Proposition 2.5 and Theorem 2.1 (ii).

Eventually we will show that ‖uα‖L∞ is uniformly bounded for all α large. The
following is the first step.

Lemma 2.7. ‖uα‖2
L∞ ≤ C

√
α
∫

Ω
u2

α for α large. In particular, ‖uα‖L∞ = o(α
1
4 )

for α large.
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Proof.
∫

Ω

u2 ≥
∫

Iδ2
(x0)

u2

≥ 1

4
u2(xα)

∫

Iδ2
(x0)

exp[αm′′(x0)(x − x0)
2]dx

≥ 1

4
u2(xα)

∫ M

−M

exp(m′′(x0)y
2)dy · 1√

α

≥ C√
α
u2(xα).

for any M > 0, by Theorem 2.6 and Lemma 2.4, where y =
√
α(x − x0). Our

assertion now follows from Theorem 2.1 (ii).

Lemma 2.8.
∫

Ω u
2
α = O(α− 1

4 ) for α large.

Proof. From (6) and Theorem 2.6 we have
∫

Ω

u2 =

∫

Ω

mu ≤ C

∫

Ω

u

= C

(

∫

[u≤δ2]

u+

∫

[u>δ2]

u

)

= C

(

∫

[u≤δ2]

u+
∑

x0∈M

∫

Iδ2(x0)

u

)

≤ C|Ω|δ2 +
∑

x0∈M

2u(xα)

∫

Iδ2
(x0)

exp
[α

2
m′′(x0)(x− x0)

2
]

≤ Cα− 1
4 + o(α

1
4 )
∑

x0∈M

1√
α

∫

R

exp

[

1

2
m′′(x0)y

2

]

dy

= O(α− 1
4 ).

To estimate Iδ1 , we begin with the following counterpart of Proposition 2.5.

Proposition 2.9. For α large, |Iδ1 | = o( 1
αc ) for any 0 < c < 1

2 . In particular,

|Iδ1 | = o( 1
α13/32 ).

Proof. Fix 7
16 < c < 1

2 . Suppose that the assertion is false. Then for some x0 ∈ M

there is a sequence αj → ∞ such that for each j, there exists zαj ∈ Iδ1(x0), with

|zαj −x0| = k1

αc , for some constant k1 > 0. From (8), (10) and Lemma 2.8, it follows
that (again we suppress the subindex j, for simplicity)

u(zα)

u(xα)
≤ exp

[

α(m(zα) −m(x0)) + α(m(x0) −m(xα)) +
1

δ1
C|zα − xα|‖u‖L2

]

≤ exp
[

−αk2|zα − x0|2 + o(1) + Cα
17
32−c‖u‖L2

]

≤ exp
[

−k3α
1−2c + o(1) + Cα

17
32−c− 1

8

]

≤ exp
[

−k4α
1−2c

]
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for α large, where k2, k3, k4 are positive constants. On the other hand, from Theo-
rem 2.1 (iii) we have

u(zα)

u(xα)
≥ δ1

‖u‖L∞ + α‖∆m‖L∞
≥ k5

α
49
32

,

a contradiction.

Now we have the counterpart of Theorem 2.6 for Iδ1 .

Theorem 2.10.
uα(x)

uα(xα)
exp

[

−α
2
m′′(x0)(x− x0)

2
]

→ 1 (13)

uniformly in Iδ1(x0) for each x0 ∈ M as α → ∞. In particular, we have, for each
ǫ > 0,

(1 − ǫ)uα(xα)e
α
2 m′′(x0)(x−x0)

2 ≤ uα(x) ≤ (1 + ǫ)uα(xα)e
α
2 m′′(x0)(x−x0)

2

, (14)

and

(1 − ǫ)uα(xα)eα(m(x)−m(x0)) ≤ uα(x) ≤ (1 + ǫ)uα(xα)eα(m(x)−m(x0)) (15)

uniformly in Iδ1 , for α large.

Proof. As in the proof of Theorem 2.6, we have, for x ∈ Iδ1(x0),
∣

∣

∣

∣

u(x)

u(xα)
exp

[

−α
2
m′′(x0)(x− x0)

2
]

− 1

∣

∣

∣

∣

= |g1(x) − g2(x)| exp ξ(x)

where g1 and g2 are given in (11) and (12) respectively, and ξ(x) lies in between 0
and g1(x) − g2(x). g1(x) and g2(x) can be estimated in a similar fashion as in the
proof of Theorem 2.6:

|g1(x)| ≤
∣

∣

∣

∣

α[m(x) −m(x0) −
1

2
m′′(x0)(x− x0)

2]

∣

∣

∣

∣

+ α|m(x0) −m(xα)|

≤ α
[

O(|x − x0|3) +O(|x0 − xα|2)
]

→ 0

in view of Proposition 2.9 and (10). Similarly,

|g2(x)| ≤ C
1

δ1
|x− xα|‖u‖L2

≤ o
(

α
17
32− 13

32− 1
8

)

→ 0

by Lemma 2.8 and Proposition 2.9. Thus (13) and (14) hold. (15) follows from the
fact that

exp
[

−α
2
m′′(x0)(x− x0)

2
]

exp [α(m(x) −m(x0))]

= exp
[

αO(|x − x0|3)
]

→ 1

for x ∈ Iδ1 , by Proposition 2.9.

Next we show that ‖uα‖L∞ is uniformly bounded in α large.

Theorem 2.11. ‖uα‖L∞ is uniformly bounded for all α large.
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Proof. Let u(xα) = ‖u‖L∞, Lemma 2.7 and (14) imply that

u2(xα) ≤ C
√
α

∫

Ω

u2 = C
√
α

∫

Ω

mu ≤ C
√
α

∫

Ω

u

= C
√
α

(

∫

[u≤δ1]

u+

∫

[u>δ1]

u

)

≤ C
√
α

(

|Ω|δ1 +
∑

x0∈M

Cu(xα)

∫

Iδ1(x0)

exp
[α

2
m′′(x0)(x − x0)

2
]

dx

)

≤ C|Ω|α− 17
32+ 1

2 +
∑

x0∈M

Cu(xα)
√
α

∫

R

exp

[

1

2
m′′(x0)y

2

]

dy√
α

Therefore,

‖u‖2
L∞ ≤ C(1 + ‖u‖L∞).

Since C is independent of α, ‖u‖L∞ must be uniformly bounded for all α large.

Theorem 2.12. For each x0 ∈ M, we have

lim
α→∞

uα(xα) =
√

2m(x0)

where xα is given by (9).

Proof. Integrating the equation (6) from x0 − ǫ0 to x0 + ǫ0 gives

(u′ − αum′)

∣

∣

∣

∣

x0+ǫ0

x0−ǫ0

+

∫ x0+ǫ0

x0−ǫ0

mu =

∫ x0+ǫ0

x0−ǫ0

u2 (16)

First, we claim that for some b̃ > 0,

(u′ − αum′)

∣

∣

∣

∣

x0+ǫ0

x0−ǫ0

≤ e−b̃α, (17)

for all α large. By Theorem 2.1 (v), at x = x0 ± ǫ0, |αum′| ≤ Cαe−bα ≤ Ce−b̃α for

some b̃ > 0. Thus, to show (17) it suffices to prove

u′(x0 ± ǫ0) ≤ Ce−b̃α. (18)

We will prove (18) only for the case x0 − ǫ0, as the other case can be handled in a
similar fashion.

Case 1. x0 = min M.

Then, integrating the equation (6) from −1 to x0 − ǫ0, we obtain

u′(x0 − ǫ0) = α(um′)(x0 − ǫ0) −
∫ x0−ǫ0

−1

u(m− u) (19)

by the no-flux boundary condition at −1. Now every term on the right-hand side
of (19) is bounded by Cαe−bα or Ce−bα, therefore our assertion follows.

Case 2. x0 > min M.
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Without loss of generality we may assume that there exists x1 ∈ M such that M

has no other points in the interval (x1, x0). Then, by Theorem 2.1 (iv),(v), there
exists x̃ ∈ (x1, x0) such that u′(x̃) = 0 and u < e−bα in between x̃ and x0 − ǫ0.

Now, we integrate (6) from x̃ to x0 − ǫ0,

(u′ − αum′)

∣

∣

∣

∣

x0−ǫ0

x̃

= −
∫ x0−ǫ0

x̃

u(m− u)

u′(x0 − ǫ0) = αum′
∣

∣

∣

∣

x0−ǫ0

x̃

−
∫ x0−ǫ0

x̃

u(m− u)

< Cαe−bα ≤ e−b̃α

for α large, where b̃ is a positive constant and (18) is established.
From (16) and (17) we obtain

√
α

∫ x0+ǫ0

x0−ǫ0

mu =
√
α

∫ x0+ǫ0

x0−ǫ0

u2 +O(
√
αe−b̃α). (20)

Next, we need the following technical lemma.

Lemma 2.13.

lim sup
α→∞

√
α

∫ x0+ǫ0

x0−ǫ0

muα = m(x0)

(
∫

R

e
1
2 m′′(x0)y

2

dy

)

lim sup
α→∞

uα(xα),

lim inf
α→∞

√
α

∫ x0+ǫ0

x0−ǫ0

muα = m(x0)

(
∫

R

e
1
2 m′′(x0)y

2

dy

)

lim inf
α→∞

uα(xα),

lim sup
α→∞

√
α

∫ x0+ǫ0

x0−ǫ0

u2
α =

(
∫

R

em′′(x0)y
2

dy

)

lim sup
α→∞

u2
α(xα),

lim inf
α→∞

√
α

∫ x0+ǫ0

x0−ǫ0

u2
α =

(
∫

R

em′′(x0)y
2

dy

)

lim inf
α→∞

u2
α(xα).

We postpone the proof of Lemma 2.13 and continue to prove Theorem 2.12.
Taking limsup and liminf respectively as α→ ∞ on both sides of (20) we have
(

lim sup
α→∞

u(xα)

)

m(x0)

∫

R

e
1
2m′′(x0)y

2

dy =

(

lim sup
α→∞

u(xα)

)2 ∫

R

em′′(x0)y
2

dy,

and
(

lim inf
α→∞

u(xα)
)

m(x0)

∫

R

e
1
2m′′(x0)y

2

dy =
(

lim inf
α→∞

u(xα)
)2
∫

R

em′′(x0)y
2

dy.

Since 0 < m(x0) ≤ lim infα→∞ u(xα) ≤ lim supα→∞ u(xα) <∞, we obtain

lim sup
α→∞

u(xα) = lim inf
α→∞

u(xα) =
√

2m(x0)

and our conclusion follows.

It remains to prove Lemma 2.13. We will only show the first equality as the rest
are similar.

Proof of Lemma 2.13. First, observe that
∣

∣

∣

∣

∣

√
α

∫

(x0−ǫ0,x0+ǫ0)\Iδ1

m(x)u(x) dx

∣

∣

∣

∣

∣

≤
√
αδ1‖m‖L∞ · 2ǫ0 → 0 (21)
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as α→ ∞. Now for any ǫ > 0, (14) implies that

√
α(1 − ǫ)u(xα)

∫

Iδ1
(x0)

m(x)e
α
2 m′′(x0)(x−x0)

2

dx ≤ √
α
∫

Iδ1
(x0)

mu dx

≤ √
α(1 + ǫ)u(xα)

∫

Iδ1
(x0)

m(x)e
α
2 m′′(x0)(x−x0)

2

dx.

(22)
We compute, for any constant M > 0, by Lemma 2.4,
∫M

−M mα(y)e
1
2
m′′(x0)y

2

dy ≤ √
α
∫

Iδ1
(x0)

m(x)e
α
2

m′′(x0)(x−x0)
2

dx

≤
∫

R
mα(y)e

1
2m′′(x0)y

2

dy.

(23)
where y =

√
α(x− x0) and mα(y) = m(x). For −M ≤ y ≤M , we have

x0 −
M√
α

≤ x ≤ x0 +
M√
α

and thus for α large, |mα(y) −m(x0)| → 0 as α→ ∞. This implies that
∣

∣

∣

∣

∣

∫ M

−M

mα(y)e
1
2m′′(x0)y

2

dy −m(x0)

∫ M

−M

e
1
2 m′′(x0)y

2

dy

∣

∣

∣

∣

∣

→ 0

as α→ ∞. On the other hand,
∫

R\(−M,M)

(|mα(y)| +m(x0))e
1
2m′′(x0)y

2

dy → 0

as M → ∞, since m′′(x0) < 0. Hence,
∣

∣

∣

∣

∫

R

mα(y)e
1
2m′′(x0)y

2

dy −
∫

R

m(x0)e
1
2m′′(x0)y

2

dy

∣

∣

∣

∣

→ 0

as α→ ∞, and (23) becomes, for any M > 0,

m(x0)
∫M

−M
e

1
2 m′′(x0)y

2

dy + o(1)

≤ √
α
∫

Iδ1
(x0)

m(x)e
α
2 m′′(x0)(x−x0)

2

dx ≤ m(x0)
∫

R
e

1
2m′′(x0)y

2

dy

holds for α large. Thus

lim
α→∞

√
α

∫

Iδ1
(x0)

m(x)e
α
2 m′′(x0)(x−x0)

2

dx = m(x0)

∫

R

e
1
2m′′(x0)y

2

dy

since M can be arbitrarily large. Now from (22) we conclude that

(1 − ǫ)

[

lim sup
α→∞

u(xα)

]

m(x0)

∫

R

e
1
2m′′(x0)y

2

dy

≤ lim sup
α→∞

√
α

∫

Iδ1
(x0)

mu ≤ (1 + ǫ)

[

lim sup
α→∞

u(xα)

]

m(x0)

∫

R

e
1
2m′′(x0)y

2

dy

Combining (21) and the inequality above we have

lim sup
α→∞

√
α

∫ x0+ǫ0

x0−ǫ0

mu = m(x0)

(
∫

R

e
1
2m′′(x0)y

2

dy

)

lim sup
α→∞

u(xα)

This finishes the proof.

Theorem 1.2 now follows from Proposition 2.3, Theorems 2.10 and 2.12.



SEMILINEAR EQUATIONS WITH LARGE ADVECTION 1063

3. Proof of Theorem 1.1. As before, in this section we assume Ω = (−1, 1)
and m(x) ∈ C3([−1, 1]) satisfies (M1),(M2),(M3). In addition, here we assume
∫ 1

−1
m > 0. Let (Uα, Vα) be a coexistence steady-state of (4). The existence of

(Uα, Vα) for large α is established in [2] and generalized in [3]. Again, in this
section, the sub-indices d2 and α will be suppressed when there is no confusion.

Lemma 3.1. 0 ≤ Uα ≤ uα and 0 ≤ Vα ≤ θd2 in (−1, 1) where uα is the unique
positive solution of (6) and θd2 is the unique positive solution to

{

d2θ
′′ + θ(m− θ) = 0 in (−1, 1)

θ′ = 0 at x = −1, 1.
(24)

Proof. The existence and uniqueness of θd2 is standard. (See, e.g. Lemma 7.1 in
[3]). By (4), Uα satisfies,

{

(U ′ − αUm′)′ + U(m− U) = UV ≥ 0 in (−1, 1)
U ′ − αUm′ = 0 at x = −1, 1.

(25)

and Vα satisfies
{

d2V
′′ + V (m− V ) = UV ≥ 0 in (−1, 1)

V ′ = 0 at x = −1, 1.
(26)

(Here we have set d1 = 1 for simplicity.) It follows that Uα and Vα are lower
solutions of (6) and (24) respectively. Since uα, θd2 are the unique positive steady-
states of (6) and (24) respectively which are globally asymptotically stable, the
inequalities follow from standard upper and lower solutions arguments.

Lemma 3.2. Vα → θd2 in C1,β([−1, 1]) for any 0 < β < 1.

Proof. By Lemma 3.1, Theorem 2.11, {Uα, Vα}α is bounded in L∞(−1, 1) uniformly.
Hence by (26), {Vα} is bounded in C2([−1, 1]) uniformly and is therefore relatively
compact in C1,β([−1, 1]) for any 0 < β < 1.

Next, take an arbitrary subsequence {Vαi}i such that Vαi → V in C1,β([−1, 1])
for some V ∈ C1,β([−1, 1]). Then V satisfies d2V

′′ + V (m− V ) = 0 weakly, i.e. for
any ψ ∈ H1(−1, 1),

−d2

∫ 1

−1

V ′ψ′ +

∫ 1

−1

ψV (m− V ) = 0.

Take, for x0 ∈ [−1, 1)

ψǫ,x0 =







1 x < x0
x0+ǫ−x

ǫ x0 ≤ x < x0 + ǫ

0 x ≥ x0 + ǫ

ψǫ,1 =

{

1 x < 1 − ǫ
1−x

ǫ 1 − ǫ ≤ x ≤ 1.

Now, letting ǫ→ 0+, we have

d2V
′(x0) +

∫ x0

−1

V (m− V ) = 0, ∀x0 ∈ [−1, 1].

We then have V ′ ∈ C1([−1, 1]), i.e. V ∈ C2([−1, 1]) and so V satisfies (24) in the
classical sense. Hence V ≡ θd2 by uniqueness. Thus, Vα → θd2 in C1,β([−1, 1]) for
any 0 < β < 1.

The following result is contained in Theorem 1.8 of [5].



1064 KING-YEUNG LAM AND WEI-MING NI

Lemma 3.3. For any r > 0 and x0 ∈ M,

lim inf
α→∞

max
Br(x0)

Uα ≥ m(x0) − θ(x0).

Lemma 3.4. Suppose that lim infα sup[x0−ǫ0,x0+ǫ0] Uα > 0, then

Uα(x)

Uα(xα)
exp{α[m(x0) −m(x)]} → 1 (27)

uniformly in [x0 − M√
α
, x0 + M√

α
], for all M > 0 as α → ∞, where Uα(xα) =

sup[x0−ǫ0,x0+ǫ0]Uα and xα ∈ (x0 − M√
α
, x0 + M√

α
) for α large.

Proof. The existence of xα follows from Lemma 3.1, Theorems 2.10 and 2.12. Also,
by (10) and its proof, α′m(xα) = o(1) and α[m(x0) −m(xα)] = o(1). Now, let

w(x) = Uα(x) exp{α[m(x0) −m(x)]}.
By Lemma 3.1, Theorems 2.10 and 2.12, w is bounded in L∞[x0 − M√

α
, x0 + M√

α
]

uniformly in α. Moreover, it satisfies






(exp{α[m(x) −m(x0)]}w′)′ + Fα = 0 in [x0 − M√
α
, x0 + M√

α
]

w(xα) = Uα(xα) exp{α[m(x0) −m(xα)]}
w′(xα) = −w(xα)αm′(xα)

(28)

where Fα = Uα(m−Uα −Vα) is bounded in L∞[x0 − M√
α
, x0 + M√

α
] uniformly in α.

Thus,

exp{α[m(x) −m(x0)]}w′(x) = −w(xα)αm′(xα) exp{α[m(xα) −m(x0)]} −
∫ x

xα

Fα,

and

w(x) − w(xα) =

∫ x

xα

[

exp{α[m(x0) −m(y)]}×

(−w(xα)αm′(xα) exp{α[m(xα) −m(x0)]} −
∫ y

xα

Fα)

]

dy.

It is not hard to see that the integrand on the right-hand side is bounded in L∞[x0−
M√

α
, x) + M√

α
] for each M . Therefore, since |x − xα| ≤ 2M√

α
→ 0, we see that

|w(x)−w(xα)| → 0 uniformly in [x0 − M√
α
, x0 + M√

α
]. Now Uα(xα) is bounded away

from 0 as α→ ∞, and α[m(x0) −m(xα)] = o(1). The Lemma is proved.

Lemma 3.5. If m(x0) − θ(x0) > 0, then (27) holds and

lim
α
Uα(xα) =

√
2(m(x0) − θ(x0)).

Proof. By Lemma 3.3, the assumption of Lemma 3.4 is satisfied. Therefore (27)
holds. Now we proceed to evaluate limα→∞ Uα(xα). We first claim that for some

small constant ǫ0 > 0, and some b̃ > 0,
∫ x0+ǫ0

x0−ǫ0

Uα(m− Uα − Vα)dx = O(e−b̃α). (29)

By integrating (25) from x0 − ǫ0 to x0 + ǫ0, we obtain
∫ x0+ǫ0

x0−ǫ0

Uα(m− Uα − Vα)dx = −(U ′
α − αUαm

′)

∣

∣

∣

∣

x0+ǫ0

x0−ǫ0

.
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By Lemma 3.1 and Theorem 2.1 (v), it suffices to show that U ′
α(x0±ǫ0) = O(e−b̃α).

We shall only estimate U ′
α(x0 +ǫ0), as the other can be handled in a similar fashion.

Case 1. x0 = maxM.

Integrating the equation (25) from x0 + ǫ0 to 1, we obtain

U ′
α(x0 + ǫ0) = α(Uαm

′)(x0 + ǫ0) +

∫ 1

x0+ǫ0

Uα(m− Uα − Vα)dx

by the no-flux boundary condition at 1. Now every term on the right hand side is
bounded by Cαe−bα, therefore our assertion follows.

Case 2. x0 < maxM.

At least one of the following holds:

(i) Uα(x) ≤ O(e−bα) in [x0 + ǫ0, 1);
(ii) there exists x̃ ∈ (x0, 1) such that U ′

α(x̃) = 0 and Uα(x) ≤ O(e−bα) in the
closed interval between x0 + ǫ0 and x̃.

The assertion follows as in Case 1 if (i) holds. If (ii) holds, integrate (25) from
x̃ to x0 + ǫ0. Then

|U ′
α(x0 + ǫ0)| ≤

∣

∣

∣
α(Uαm

′)
∣

∣

x0+ǫ0

x̃

∣

∣

∣
+

∣

∣

∣

∣

∫ x0+ǫ0

x̃

Uα(m− Uα − Vα)dx

∣

∣

∣

∣

and the assertion holds. Hence (29) is proved.
By changing coordinates y =

√
α(x− x0) in (29),

∣

∣

∣

∣

∣

∫ M

−M

Uα(m− Uα − Vα)dy

∣

∣

∣

∣

∣

≤ α
1
2

∣

∣

∣

∣

∣

∫

(x0−ǫ0,x0+ǫ0)\[x0− M√
α

,x0+
M√

α
]

Uα(m− Uα − Vα)

∣

∣

∣

∣

∣

+O(α
1
2 e−b̃α)

≤ C

∫

R\[−M,M ]

e
1
2m′′(x0)y

2

dy +O(α
−1
32 ) +O(α

1
2 e−b̃α)

by Lemma 3.1, Theorem 2.10 and Theorem 2.12.
By taking αi → ∞ such that Uαi(xαi) → lim supα Uα(xα), making use of Lemmas

3.2 and 3.4, we have
∣

∣

∣

∣

∣

(lim supUα(xα))(m(x0) − θ(x0))

∫ M

−M

e
1
2 m′′(x0)y

2

dy

−(lim supUα(xα))2
∫ M

−M

em′′(x0)y
2

dy

∣

∣

∣

∣

∣

≤ C

∫

R\[−M,M ]

e
1
2 m′′(x0)y

2

dy.

Take M → +∞, we have

P (lim supUα(xα)) = 0 where P (s) =
√

2(m(x0) − θ(x0))s− s2. (30)

Similarly, we have

P (lim inf Uα(xα)) = 0. (31)
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Now if m(x0) − θ(x0) > 0, then by Lemmas 3.1 and 3.3,

+∞ > lim sup
α

Uα(xα) ≥ lim inf
α

Uα(xα) ≥ m(x0) − θ(x0) > 0.

By (30) and (31), lim supα Uα(xα) = lim infα Uα(xα) =
√

2(m(x0) − θ(x0)).

Lemma 3.6. If m(x0) − θ(x0) ≤ 0, then for each small r > 0, Uα → 0 uniformly
in (x0 − r, x0 + r).

Proof. Suppose to the contrary that there exists a sequence αi → ∞, such that

limαi

[

sup(x0−ǫ0,x0+ǫ0) Uαi

]

> 0 . Then by the same arguments in the proof of (30),

P (lim
i
Uαi(xαi)) = 0 where P (s) =

√
2(m(x0) − θ(x0))s− s2,

a contradiction, because P does not have any positive roots.

We now prove Theorem 1.1.

Proof of Theorem 1.1. Part (i) follows from Lemma 3.2. Part (ii) is a consequence
of Lemmas 3.4, 3.5 and 3.6. Finally, part (iii) follows from Lemma 3.1 and Theorem
2.1(v).

4. Concluding remarks. Although we have set for simplicity d = d1 = 1 in Sec-
tions 2 and 3, the results in this paper hold true for any d1, d > 0 with essentially the
same proofs. Moreover, as stated in the concluding remarks in [5], the assumptions
on critical points of m(x) in {x ∈ Ω : m(x) < 0} can be substantially weakened. In
fact, (M2) can be replaced by

(M2′): M ⊆ (−1, 1) and all critical points of m(x) in {x ∈ Ω : m(x) > −δ} are
nondegenerate for some δ > 0.

Only (M1),(M2′) and (M3) were needed to construct the upper solution in [5],
which implies that uα → 0 uniformly in {x ∈ Ω : m(x) < 0}. As a consequence, we
only need {x ∈ Ω : |∇m(x)| = 0 and m(x) ≥ 0} to be of measure zero (which is a
consequence of (M2′)) to obtain ‖uα‖L2 → 0, as α→ ∞.

Finally, we remark that the multi-dimensional cases of (3) and (5) will be treated
in a forthcoming paper.
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