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Three-patch models for the evolution of dispersal in advective1
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6

We study the evolution of dispersal in advective three-patch models with distinct network topologies.7

Organisms can move between connected patches freely and they are also subject to the passive, directed8

drift. The carrying capacity is assumed to be the same in all patches, while the drift rates could vary. We9

first show that if all drift rates are the same, the faster dispersal rate is selected for all three models. For10

general drift rates, we show that the infinite diffusion rate is a local Convergence Stable Strategy (CvSS)11

for all three models. However, there are notable differences for three models: For Model I, the faster12

dispersal is always favored, irrespective of the drift rates, and thus the infinity dispersal rate is a global13

CvSS. In contrast, for Models II and III a singular strategy will exist for some ranges of drift rates and14

bi-stability phenomenon happens, i.e. both infinity and zero diffusion rates are local CvSSs. Furthermore,15

for both Models II and III, it is possible for two competing populations to coexist by varying drift and16

diffusion rates. Some predictions on the dynamics of n-patch models in advective environments are given17

along with some numerical evidence.18
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1 Introduction21

Since the pioneering work of Speirs and Gurney on the “drift paradox” [47], studying popu-22

lation dynamics in advective environments (such as rivers) has become an active research topic,23

both empirically as well as theoretically [8, 11, 18, 21–24, 27, 35–37, 42, 50]. Most mathematical24

models in spatial ecology assume that individuals adopt random movement, i.e. the transition25

probability in all directions are the same. For the organisms in advective environments, they are26
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also subject to the passive, uni-directional drift. Such passive drift may push the organisms to the27

downstream where the environments could become unfavorable. From the mathematical point of28

view, the addition of drift makes the differential operators under consideration non-symmetric29

and thus brings new challenges to the stability analysis, especially for those models for inter-30

acting species [32, 33, 48, 51–55, 57, 58]. Almost all of these studies assume that the underlying31

habitat is an interval in the real line, in order to simplify the mathematical analysis. In contrast,32

there are rather few studies on the population dynamics in river networks, and they are mostly33

restricted to the case of a single species [25,43–45,49].34

One important topic in spatial ecology is the evolution of dispersal. The seminal work of35

Hastings shows that random dispersal is selected against in spatially heterogeneous but tempo-36

rally constant environments [7,14], while in spatially and temporally varying environments large37

dispersal rate can be selected [17, 39]. See the review article [5] and the references therein. The38

evolution of dispersal in advective and continuous habitats has been recently considered: when39

the carrying capacity is spatially heterogeneous and the drift rates are constants, some inter-40

mediate dispersal rate could be selected; see [10, 26]. However, for a homogeneous environment41

where both carrying capacity and drift rates are spatially uniform, it was shown that when the42

loss at the downstream is not significant, the faster dispersal rate is favored [30, 34]; see [13] for43

more recent progress. Again, these studies assume that the habitat is a finite interval.44

Many of the above work employ the conceptual framework of adaptive dynamics theory [6,9].45

A central idea of adaptive dynamics theory is the evolutionarily stable strategy (ESS) [38]. A46

strategy is called a global ESS if the resident species adopting such a strategy can not be invaded47

by any rare mutant species using different strategy. Another important concept is the convergence48

stable strategy (CvSS). A strategy is said to be a global CvSS if the mutant species is always49

able to invade a resident species when the mutant strategy is closer to the CvSS than the resident50

strategy. Local ESS and CVSS can be similarly defined and interpreted.51

Our aim is to study the evolution of dispersal in discrete, advective environments using52

the conceptual framework of adaptive dynamics theory. Recently, the authors proposed in [20]53

to study the dynamics of two competing species in three-patch models with different network54

topology, and to investigate how the topology of directed river network modules may affect the55

evolution of dispersal. To be specific, we considered the following three types of river network56

modules in [20]:57

(a) Model I (b) Model II (c) Model III

Fig. 1: Three river network modules with different topology: The two-way blue arrows represent
the dispersal of species between connected patches, the one-way red arrows represent the uni-
directional drift. The parameters d,D are dispersal rates for the two competing species, and the
parameters q1, q2 are drift rates from an upstream patch to a downstream patch.
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In Fig. 1(a)-(c) we assume that patch 1 is upstream, patch 3 is downstream, and patch 2 is58

either upstream, or middle stream, or downstream. In [20] the carrying capacity of three patches59

are assumed to be different and the drift rates are assumed to be equal. The main findings60

in [20] are summarized as follows: when the drift rate is small, for all three models the mutant61

species can invade when rare if and only if it is the slower disperser. However, when the drift62

rate is large, Models I and II predict that the faster disperser wins, while Model III predicts that63

fast and slow dispersers may coexist, and that there exists one intermediate strategy which is64

evolutionarily singular. For the intermediate range of drift, Models I and II predict the existence65

of one singular strategy, which may or may not be evolutionarily stable, depending upon the66

topology of modules, while Model III predicts singular strategy may not exist and the faster67

disperser wins the competition.68

The rest of this paper is organized as follows: In Sec. 2 we state the main results for three-69

patch models. In Sec. 3 we draw the main conclusions and also provide a single framework to70

unify our main results. In Sec. 4 we present the numerical simulations of some 4-patch models71

and discuss some predictions on n-patch models. The proofs of the main results for Model I to72

III are postponed to the Appendices.73

2 Main results for three-patch models74

In this paper we assume that the drift rates could be different but the carrying capacity are75

the same in all three patches. As in [20], in all models the two competing species are assumed to76

be identical except for their dispersal rates.77

Our main goal in this paper is to illustrate the effects of varying drift rates and network78

topology on the evolution of dispersal. The main findings can briefly be summarized as follows:79

– If all drift rates are identical, then the faster dispersal rate is selected across all three-patch80

models in which the drift network do not form a closed cycle.81

– For general drift rates, infinite diffusion rate is a local CvSS for all three models.82

– For Models II and III, when a singular strategy (that is neither zero nor infinity) exists, it is83

not a local CvSS (Numerical simulation suggests that it is not an ESS either).84

– For Models II and III, when bi-stability occurs, it is possible for two competing populations85

with different dispersal rates to coexist, by varying the drift rates between patches.86

2.1 Main results of Model I87

In Model I, the species in patches 1 and 2 are washed down to patch 3 by drift with rates88

q1, q2, respectively. Two competing populations can disperse freely between the upstream patches89

and the downstream patch, with respective rates d,D. The two upstream patches, however, are90

not directly connected. The diagram of Model I is shown in Figure 1(a). The dynamics of two91

competing populations in this river module is described by the following system of ODEs:92 

du1

dt = d(u3 − u1)− q1u1 + u1(1− u1+v1
k )

du2

dt = d(u3 − u2)− q2u2 + u2(1− u2+v2
k )

du3

dt = d(u1 + u2 − 2u3) + q1u1 + q2u2 + u3(1− u3+v3
k )

dv1
dt = D(v3 − v1)− q1v1 + v1(1− u1+v1

k )
dv2
dt = D(v3 − v2)− q2v2 + v2(1− u2+v2

k )
dv3
dt = D(v1 + v2 − 2v3) + q1v1 + q2v2 + v3(1− u3+v3

k )
ui(0) = ui0, vi(0) = vi0, i = 1, 2, 3.

(1)
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Here ui(t), vi(t) (i = 1, 2, 3) denote the numbers of individuals of the respective species at time93

t in patch i. The parameter k is the carrying capacity for all patches. For the sake of simplicity,94

the intrinsic growth rates are assumed to be equal to 1. The initial data of ui and vi are assumed95

to be positive for the rest of the paper so that ui(t), vi(t) are positive functions of time t > 0.96

It can be shown that system (1) has a unique semi-trivial steady state of the form (U∗, 0) =97

(U∗1 , U
∗
2 , U

∗
3 , 0, 0, 0), where U∗i > 0 for i = 1, 2, 3.98

Theorem 1 For any q1 ≥ 0, q2 ≥ 0 and q1 + q2 > 0, if d > D, then (U∗, 0) is globally99

asymptotically stable among all solutions of (1) with positive initial data.100

This result implies that the faster dispersal is always selected for Model I, provided that101

the carrying capacity is uniform in the habitat, and the conclusion is independent of the drift102

rates. The underlying biological intuition is that a single population at equilibrium (i.e. resident)103

is undermatching the resources in at least one of the two upstream patches and it is always104

overmatching the resource in the downstream patch; i.e. the downstream patch is always a sink105

and at least one of the upstream patches is a source. If a mutant with small diffusion rate is106

introduced, its individuals in the upstream patches will be washed to the downstream patch,107

where the mutant can not invade when rare as the downstream patch is a sink. Hence, small108

diffusion rate is selected against. In contrast, faster diffusion can counterbalance the drift by109

keeping more mutant individuals in upstream patches, one of which is a source patch, and thus110

help the mutant populations establish in this upstream source patch.111

2.2 Main results of Model II112

Model II assumes that individuals in patch 1 are transported to patch 2 by drift with rate113

q1, and individuals in patch 2 are transported to patch 3 by drift with rate q2. Individuals can114

also move between patches i and i+ 1 for i = 1, 2; see Fig. 1(b). The dynamics of two competing115

species in this network module is governed by the following ODE system:116 

du1

dt = d(u2 − u1)− q1u1 + u1(1− u1+v1
k )

du2

dt = d(u1 + u3 − 2u2) + q1u1 − q2u2 + u2(1− u2+v2
k )

du3

dt = d(u2 − u3) + q2u2 + u3(1− u3+v3
k )

dv1
dt = D(v2 − v1)− q1v1 + v1(1− u1+v1

k )
dv2
dt = D(v1 + v3 − 2v2) + q1v1 − q2v2 + v2(1− u2+v2

k )
dv3
dt = D(v2 − v3) + q2v2 + v3(1− u3+v3

k )
ui(0) = ui0, vi(0) = vi0, i = 1, 2, 3.

(2)

For Model II, it can also be shown that system (2) has a unique semi-trivial steady state of117

the form (U∗, 0) = (U∗1 , U
∗
2 , U

∗
3 , 0, 0, 0), where U∗i > 0, i = 1, 2, 3.118

Theorem 2 If q1 ≥ 1 or q2
2 < q1 < 1, then (U∗, 0) is globally asymptotically stable for d > D;119

i.e. the faster diffuser wins.120

If q1 ≥ 1 and the diffusion rate of a species is small, then almost all of its individuals in patch121

1 are washed out. Thus, small diffusion is not favored in this scenario. However, large diffusion122

will be selected as it can counterbalance the uni-dimensional drift by helping more individuals123

stay in patch 1. Similar intuition applies to the case q2/2 < q1 < 1, but the detail is more subtle:124

when diffusion rate is small, our analysis reveals that there will be more individuals in patch 2125

than patch 1 when q2/2 < q1 < 1; i.e. the population in patch 1 is undermatching the resource126

more than in patch 2 (as carrying capacity in patches 1 and 2 are the same), so small diffusion127

is still not favored in this scenario.128
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Theorem 3 If 0 < q1 < 1 and q2 > 2q1, there exists some d∗ = d∗(q1, q2) > 0 which is an129

evolutionarily singular strategy. Moreover, this strategy is not a CvSS, and both zero and infinity130

dispersal rates are local CvSSs.131

It is interesting that zero diffusion rate emerges as a local CvSS under the assumptions of132

Theorem 3. Suppose the diffusion is zero or very small. On one hand, when q1 < 1, the drift out133

of patch 1 is small enough to allow the population to persist in patch 1, which is a source. On134

the other hand, q2 > 2q1 drive the population in patch 2 down and that in patch 3 up. Hence,135

patch 2 becomes a source and patch 3 becomes a sink. Moreover, diffusion takes individuals out136

of patch 1, but due to the uneven drift rates those individuals are more likely to end up in patch137

3 (the sink) than in patch 2 (the source). Hence, increasing diffusion will move individuals from138

source patch to sink patch. Thus, small diffusion can be favored in this case as the drift forces139

more individuals to move from patch 1 to 2 to reduce the mismatch in patch 2.140

When both zero and infinity dispersal rates are local CvSSs, a natural question is whether two141

competing populations can coexist. Our next result answers this question partially but positively:142

Theorem 4 Fix any k,D, q2 ≥ 1. Then there exists some δ > 0 such that for any d ∈ (0, δ), q1 ∈143

(−d, δ), Model II has a globally asymptotically stable positive steady state, denoted by (U δ, V δ),144

which satisfies (U δ, V δ)→ (Û , V̂ ) as d→ 0 and q1 → 0, where145

Û := (k − V̂2, 0, 0), and V̂ := (V̂2, V̂2, V̂3) (3)

such that (V̂2, V̂3) is the unique positive solution of the two-patch system146 {
D(V̂3 − V̂2)− q2V̂2 + V̂2(1− V̂2

k ) = 0

D(V̂2 − V̂3) + q2V̂2 + V̂3(1− V̂3

k ) = 0.
(4)

This result suggests that when the drift from patch 1 to patch 2 is very small, slow and147

fast diffusers can coexist in some interesting way: the slow diffuser will only occupy patch 1 and148

the fast diffuser is dominant in patch 2 and 3, but not in patch 1. Intuitively, the underlying149

mechanism for the coexistence is as follows: Consider the case d = 0 and q1 = 0 for the sake150

of clarity, so that patch 1 is disconnected from patches 2 and 3 for the species u. It turns out151

that, due to d = 0 and q1 = 0, the flux between patches 1 and 2 for the species v is also equal152

to zero. As a consequence, system (2) for patches 2 and 3 is reduced to a two-patch system153

for two competing species. It follows from previous work [12, 41] for two-patch models that the154

faster diffuser always out-competes the slower diffuser in patches 2 and 3, provided that q2 > 0.155

As patch 2 is at the upstream for the reduced two-patch model, the equilibrium distribution of156

species v, denoted by V̂2, satisfies V̂2 < k; i.e. it undermatches the resource in patch 2. As there is157

no flux for species v between patches 1 and 2 and q1 = 0, the equilibrium distribution of species158

v at patch 1 is also equal to V̂2, so that the equilibrium distribution of species u at patch 1 is159

given by k − V̂2 > 0. The case of small d, q1 follows from a perturbation argument.160

Note that q1 = 0 and small negative q1 are also covered by Theorem 4; the case of negative161

q1 applies to Model III.162

2.3 Main results of Model III163

Model III assumes patch 1 is upstream, whereas patches 2 and 3 are downstream. Both species164

in patch 1 are transported to patches 2 and 3 by drift with rates q1 and q2, respectively. In this165
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case we have the following ODE system for two competing species:166 

du1

dt = d(u2 + u3 − 2u1)− (q1 + q2)u1 + u1(1− u1+v1
k )

du2

dt = d(u1 − u2) + q1u1 + u2(1− u2+v2
k )

du3

dt = d(u1 − u3) + q2u1 + u3(1− u3+v3
k )

dv1
dt = D(v2 + v3 − 2v1)− (q1 + q2)v1 + v1(1− u1+v1

k )
dv2
dt = D(v1 − v2) + q1v1 + v2(1− u2+v2

k )
dv3
dt = D(v1 − v3) + q2v1 + v3(1− u3+v3

k )
ui(0) = ui0, vi(0) = vi0, i = 1, 2, 3.

(5)

The dynamics of (5) is more subtle than those for Models I and II. We first consider the167

global dynamics of Model III.168

Theorem 5 If q1 = q2 > 0, then the semi-trivial steady state (U∗, 0) is globally asymptotically169

stable for d > D.170

Theorem 5 seems to agree with previous results for two-patch models that the faster diffuser171

always out-competes the slower diffuser [12,41]. The biological intuition is that both downstream172

patches are sinks under the assumption of Theorem 5; see also Corollary 6 (in Appendix C).173

Hence, any mutant in the upstream patch with smaller diffusion rate will more likely be pushed174

to two downstream sinks and thus can not invade when rare.175

Next we consider the local dynamics of Model III.176

Theorem 6 If q1, q2 > 0, |q2 − q1| ≤ 1
2 and 1√

2
≤ q2

q1
≤
√

2, then the semi-trivial steady state177

(U∗, 0) is locally stable for d > D and unstable for d < D.178

Theorem 6 implies that infinite diffusion rate is a global CvSS when two drift rates are179

comparable. This is in the same spirit as Theorem 5 since both downstream patches are still180

sinks under the assumption of Theorem 6; see also Corollary 8 (in Appendix C). In contrast, our181

next result shows that if two drift rates are not comparable, both zero and infinite diffusion rates182

are local CvSS.183

Theorem 7 If 1 < q1 + q2 < (q1 − q2)2, then there exists some d∗ = d∗(q1, q2) > 0 which is an184

evolutionarily singular strategy. Moreover, d∗ is not a CvSS, and both zero and infinity dispersal185

rates are local CvSSs.186

To see why zero diffusion can be a local CvSS under the assumptions of Theorem 7, first fix187

q1 and choose q2 large. This will drain almost all individuals in patch 1 to drift to patch 3, so188

that patch 3 becomes a sink patch due to overcrowding. Subsequently, diffusion induces a net189

flux of individuals from patch 2 to patch 1, so that the population in patch 2 undermatches the190

resource. Hence, any mutant with smaller diffusion rate can invade when rare by exploiting patch191

2, which is a source patch. The same intuitive reasoning applies to the general situation: for the192

range of qi in Theorem 7, our numerical results suggest that one of the two downstream patches193

is a sink while the other becomes a source patch, and a mutant with smaller diffusion rate can194

invade when rare in the downstream source patch.195

3 Conclusions196

In this section we first summarize the main analytical results, and then we provide a single197

framework to unify the main results for three models. The main findings are as follows, along198

with some predictions (see Sect. 4 for further discussions):199
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– If all drift rates are identical, then the faster dispersal rate is selected across all three-patch200

models in which the drift network do not form a closed cycle. A conjecture is that this result201

holds for n-patch river networks with uniform carrying capacity and identical drift rates,202

provided that the drift network is not divergence-free (a drift network with identical drift203

rates is called divergence-free if each individual patch has the same number of upstream and204

downstream patches);205

– For general drift rates, infinite diffusion rate is a local CvSS for all three models. Biologically206

this makes good sense as with sufficiently fast dispersal, the spatial distribution of the species207

approaches the ideal free distribution. However, there are some notable differences for three208

models: For Model I, the faster dispersal is always favored and thus infinity is a global CvSS.209

For Models II and III, the answers depend upon the drifts rates: for some ranges of drift210

rates, infinity is a global CvSS (same as Model I), while for other ranges of drift rates, there211

exists some intermediate diffusion rate which is a singular strategy so that infinity is a local212

CvSS but not a global one. A conjecture is that the infinite diffusion rate is a local CvSS for213

n-patch river networks with uniform carrying capacity and general drift rates;214

– For Models II and III, when a singular strategy (that is neither zero nor infinity) exists, it215

is not a local CvSS (Numerical simulation suggests that it is not an ESS either). In fact,216

bi-stability phenomenon happens, i.e. both infinity and zero diffusion rates are local CvSSs;217

– For Models II and III, when bi-stability occurs, it is possible for two competing popula-218

tions with different dispersal rates to coexist, by varying the drift rates between patches. A219

conjecture is that any coexistence steady state for Models II-III, if exists, is globally stable.220

Next, we provide a single framework to unify the main results for Models I-III. Our idea is221

to use a single system of ODEs to describe all three models. Without loss of generality, consider222

system (2) in the q1 − q2 plane, allowing the drift rates in system (2) to take both positive and223

negative values. That is, we divide the q1 − q2 plane into 4 quadrants. Then the first quadrant224

of Fig. 2 corresponds to Model II with non-negative drift rates.225

– First quadrant: Theorem 2 implies that the faster diffuser always wins for q1, q2 in the red226

region; for the blue region, Theorem 3 ensures the existence of an evolutionarily singular227

strategy, where both zero and infinity dispersal rates are local CvSSs.228

– Second quadrant: With q1 < 0 and q2 > 0 in system (2), the directed flows are from patch229

2 to patches 1 and 3. Hence, this corresponds to Model III with patches 1 and 2 switched.230

Theorem 6 implies that the faster diffuser wins for q1, q2 in the red region; for the blue region,231

Theorem 7 ensures the existence of an evolutionarily singular strategy, in which both zero232

and infinity dispersal rates are local CvSSs.233

– Third quadrant: With q1 < 0 and q2 < 0 in system (2), the directed flows are from patch 3 to234

2, and from patch 2 to 1. Hence, this corresponds to Model II with patches 1 and 3 switched.235

Hence the red and blue regions are symmetric to those in the 1st quadrant with respect to236

the line q1 + q2 = 0.237

– 4th quadrant: With q1 > 0 and q2 < 0 in system (2), the directed flows are from patches 1238

and 3 to patch 2. Hence, this corresponds to Model I with patches 2 and 3 switched. Theorem239

1 implies that the faster diffuser always wins for q1, q2 in 4th quadrant.240

These discussions suggest that the q1−q2 plane can also be divided into three colored regions241

as in Fig. 2: For the red region, the infinite diffusion rate is a global CvSS; In the blue region,242

both zero and infinite diffusion rates are local CvSSs; For the white region, numerical simulations243
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suggest that the infinite diffusion rate is a local CvSS but might not be a global one, and the244

zero diffusion rate might not even be a local CvSS.245

Fig. 2: The dynamics for Models I-III. The red colored regions correspond to the ranges of q1, q2
for which the infinite diffusion rate is a global CvSS; In the blue colored regions, there is at least
one evolutionarily singular strategy and both infinity and zero diffusion rates are local CvSSs;
The dynamics of Model III in the white colored regions is not fully determined theoretically.

4 Discussion and numerical results for four-patch model246

In this section, we will discuss possible extensions to n-patch river network models and raise247

some conjectures on the evolution of faster dispersal. We will also address the issue of the invasion248

of slowly diffusing populations and propose to study the coexistence of slow and fast diffusing249

competing populations.250

4.1 Evolution of fast dispersal in n-patch model251

Theorems 1, 2 and 5 show that if q1 = q2, the faster diffusing population always wins the252

competition for Models I-III. In particular, infinity as a diffusion rate is a global CvSS for Model253

I and also for wider ranges of parameters in both Models II and III; see Theorems 2 and 6.254

Consider the general n-patch river model, i.e.{
dui

dt = d
∑n
j=1mijuj +

∑n
j=1 qjiuj + ui(1− ui+vi

ki
), 1 ≤ i ≤ n,

dvi
dt = D

∑n
j=1mijvj +

∑n
j=1 qjivj + vi(1− ui+vi

ki
), 1 ≤ i ≤ n.

Here the connectivity matrix M := (mij) is assumed to be symmetric, mij = mji = 1 when two
patches i and j are directly connected, mij = mji = 0 when they are not directly connected, and
mii = −

∑
j 6=imij . The drift matrix Q := (qij) satisfies qii = −

∑
j 6=i qji, qij > 0 when patches i

and j are connected and the directed flow is from patch i to j, and qij = 0 otherwise. The case
mij = 1 but qij = 0 refers to the scenario when patches i, j are directly connected but there is
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no directed passive flow in between. Note that under our assumption, the dominant eigenvalue
of Q is zero, with left eigenvector being (1, · · · , 1), i.e.

(1, · · · , 1)Q = 0.

The positive constant ki is the carrying capacity of patch i.255

Definition 1 We say that the drift matrix Q = (qij) is divergence-free if its right eigenvector,
corresponding to the zero eigenvalue, is given by (1, · · · , 1)T , i.e.∑

j:j 6=i

qij =
∑
j:j 6=i

qji holds for each i.

Conjecture 1 If all positive drift rates are equal, the carrying capacity is the same for all patches,256

and the drift network (qij) is not divergence-free, then the faster disperser always wins.257

For general drift rates, Theorem 1 shows that infinite dispersal rate is a global CvSS for258

Model I, while for Models II and III, Lemmas 15 (in Appendix B) and 36 (in Appendix C) find259

that infinity is always a local CvSS.260

Conjecture 2 For n-patch model with general drift rates, when the drift matrix is not divergence-261

free and that the carrying capacity is the same for all patches, the infinite diffusion rate is always262

a local CvSS.263

From the biological point of view, when ki = k for all i, for a single species with sufficiently264

fast diffusion, its equilibrium will be close to (k, · · · , k), which is an ideal free distribution.265

Heuristically, if a strategy can help organisms reach the ideal free distribution at equilibrium,266

then the strategy is likely to be a local ESS and/or CvSS; see [1,3,4,31]. Again, we may need to267

exclude the exceptional case (1, · · · , 1)T being a right eigenvector of matrix Q.268

To support the above predictions for n-patch models, we performed some numerical simu-269

lations for the following four-patch models with the network topology as shown in Fig. 3:270

(a) (b) (c)

Fig. 3: The two-way blue arrows represent the dispersal of species between connected patches,
the one-way red arrows represent the uni-directional drift. The parameter d,D are dispersal rates
for two competing species, and the parameters q, q̃ are drift rates. Patches 1-3 form a loop. Patch
4 is at the upstream in Fig. 3(a) and it is the downstream patch in Fig. 3(c). There is no drift
between patches 3 and 4 in Fig. 3(b).
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For 4-patch model with topology Fig. 3(a), our simulation results suggest that for any q̃ > 0,271

the faster diffusing species always wins the competition, and the conclusion is independent of272

drift rates. In particular, the faster dispersal rate is selected when q̃ = q, which is consistent with273

Conjectures 1 and 2.274

Fig. 3(b) can also be viewed as Fig. 3(a) and 3(c) with q̃ = 0. For this special case, (k, · · · , k)275

is the unique positive equilibrium for the corresponding single species model. This gives an276

example of the exceptional case discussed earlier for n-patch models. As predicted earlier, our277

numerical simulations show that two populations with different dispersal rates coexist, i.e., the278

faster diffusing species does not win the competition in this exceptional case.279

The PIP for 4-patch model with topology Fig. 3(c) is shown in Fig. 4. We take d ∈ [0, 2]280

and D ∈ [0, 2], and then we discretize the interval [0, 2] with the uniform step ∆ = 0.02. The281

parameter values (k1, k2, k3, k4) are set to be (7, 7, 7, 7) and q = 1, q̃ ranges from 0.01 to 2000. Our282

simulations (see Fig. 4) suggest more complicated dynamics: when q̃ ∈ (0, q], the faster diffusing283

populations still wins. In particular, the fast dispersal rate is selected when q̃ = q, which is284

consistent with Conjectures 1 and 2. However, for q̃ larger than q, there are two evolutionarily285

singular strategies, one is a local ESS and CvSS, and the other is neither an ESS not CvSS.286

Furthermore, the infinite diffusion rate remains as a local CvSS as predicted, while the zero287

diffusion rate is not a local CvSS.288

4.2 Evolution of slow dispersal and coexistence289

Theorems 3 and 7 illustrate the existence of evolutionarily singular strategy for Models II290

and III, respectively. These singular strategies are not local CvSSs, and numerical simulations291

suggest they are not local ESSs either. In fact, Lemmas 16 (in Appendix B) and 37 (in Appendix292

C) show that zero diffusion rate can be a local CvSS for some parameter ranges in both Models293

II and III.294

A natural question for general n-patch model is when zero diffusion rate can be a local CvSS.295

The analysis of Model III reveals that if there are more than one downstream patches, then it296

is possible for one of them to be a source patch, so that a mutant with slow diffusion rate can297

invade when rare in this source patch. For n-patch models it will be of interest to find sufficient298

conditions on the existence of some downstream source patch, by taking into account of the river299

network topology, so that slow diffusing populations can invade such source patch when rare.300

For general n-patch models, when both zero and infinite diffusion rate are local CvSSs, it is301

natural to inquire whether slow and fast diffusers can coexist. It will be of interest to generalize302

Theorem 4 to n-patch models and to reveal the impact of network topology on the coexistence303

of competing species.304

Appendix A The global dynamics of Model I305

In this section, we mainly study the global dynamics of Model I. By the monotone dynamical306

system theory [16, Theorem 1.5] (see also [19,28,46]), in order to show the global stability of the307

semi-trivial steady state (U∗, 0), we need to show the linear instability of the other semi-trivial308

steady state (0, V ∗) and the non-existence of positive steady state of (1).309

By replacing ui and vi by kui and kvi, for all i, we may assume without loss of generality310

that k = 1. Henceforth, we will prove our theorems concerning Models I, II and III311

only for the case k = 1.312
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(a) q̃ = 0.01 (b) q̃ = 3 (c) q̃ = 7

(d) q̃ = 7.5 (e) q̃ = 8 (f) q̃ = 10

(g) q̃ = 20 (h) q̃ = 200 (i) q̃ = 2000

Fig. 4: Pairwise invasion plots (PIPs) for the four-patch model with network topology Fig. 3(c).
k1 = k2 = k3 = k4 = 7, q = 1 and q̃ ranges from 0.01 to 2000. The horizontal axis is d and
the vertical axis is D. The black regions represent the range of (d,D) for which (U∗, 0) is locally
stable.

A.1 Preliminary estimates on non-negative, non-trivial steady states313

In this subsection, we consider non-negative and non-trivial solutions of Model I. After314

setting k = 1, they satisfy the following system:315 

d(U3 − U1)− q1U1 + U1(1− U1 − V1) = 0
d(U3 − U2)− q2U2 + U2(1− U2 − V2) = 0
d(U1 + U2 − 2U3) + q1U1 + q2U2 + U3(1− U3 − V3) = 0
D(V3 − V1)− q1V1 + V1(1− U1 − V1) = 0
D(V3 − V2)− q2V2 + V2(1− U2 − V2) = 0
D(V1 + V2 − 2V3) + q1V1 + q2V2 + V3(1− U3 − V3) = 0

(6)

When d,D > 0, it follows from irreducibility of system (6) that there are at most three316

types of non-negative and non-trivial solutions, namely: semi-trivial equilibria (U∗, 0), (0, V ∗)317

and positive solutions for which Ui > 0, Vi > 0, i = 1, 2, 3. Hence, for the simplicity of notation,318

in this subsection we may denote all of these different types of solutions as (U, V ), with the319
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understanding that there are only three possibilities for all i = 1, 2, 3: Ui > 0 and Vi = 0, or320

Ui = 0 and Vi > 0, or Ui > 0 and Vi > 0. We shall establish some a prior estimates of (U, V ).321

Lemma 1 Assume q1, q2 ≥ 0, (q1, q2) 6= (0, 0) and d,D > 0.322

(i) If q1 ≥ q2, then U1 ≤ U2 and V1 ≤ V2.323

(ii) If q1 ≤ q2, then U1 ≥ U2 and V1 ≥ V2.324

In particular, if q1 = q2, then U1 = U2 and V1 = V2.325

Proof For part (i) we shall prove U1 ≤ U2 only, as V1 ≤ V2 follows from a similar argument.326

We argue by contradiction: if not, assume that there exist some q1 ≥ q2 and a non-negative,327

non-trivial solution of (6) such that U1 > U2. By the first and second equations of (6), we get328

(−d− q1 + 1− U1 − V1)U1 = (−d− q2 + 1− U2 − V2)U2 = −dU3 < 0, (7)

so that −d− qi + 1− Ui − Vi < 0, i = 1, 2. Due to U1 > U2, (7) implies329

(−d− q1 + 1− U1 − V1)U1 > (−d− q2 + 1− U2 − V2)U1, (8)

and thus330

q2 − q1 > (U1 + V1)− (U2 + V2), (9)

which together with q1 ≥ q2 implies that U1 + V1 < U2 + V2. This implies (V1, V2) 6= (0, 0) and
V2 > V1 > 0. Therefore, similar to (8), the equations of V1 and V2 from (6) imply

(−D − q1 + 1− U1 − V1)V1 < (−D − q2 + 1− U2 − V2)V1,

which implies q2− q1 < (U1 +V1)− (U2 +V2). This, however, contradicts (9). Therefore, U1 ≤ U2331

holds. This proves (i). The conclusion in (ii) follows by exchanging patches 1 and 2.332

Lemma 2 Assume q1, q2 ≥ 0 and (q1, q2) 6= (0, 0). For any d,D > 0,333

(i) if q1 ≥ q2, then U1 + V1 < 1 < U3 + V3;334

(ii) if q1 ≤ q2, then U2 + V2 < 1 < U3 + V3.335

In particular, when q1 = q2, U1 + V1 = U2 + V2 < 1 < U3 + V3.336

Proof As the proofs of (i) and (ii) are similar, we only prove (i). Firstly, we show337

U1 + V1 < 1. (10)

We argue by contradiction: If not, there exist some q1 ≥ q2 and a non-negative non-trivial solution338

such that U1 + V1 ≥ 1; i.e. 1− U1 − V1 ≤ 0. We claim that339

U3 + V3 > U1 + V1 ≥ 1. (11)

Without loss of generality, we may assume (Ui) is non-trivial, so that the first equation of (6)
implies that U3 ≥ d+q1

d U1 > U1. If (Vi) is trivial then (11) holds. If not, then applying similar

reasoning to the fourth equation of (6), we also get V3 ≥ D+q1
D V1 > V1. This proves (11) for any

non-negative solutions. Due to q1 ≥ q2, we get U2 + V2 ≥ U1 + V1 ≥ 1 by Lemma 1, thus

U1(1− U1 − V1) + U2(1− U2 − V2) + U3(1− U3 − V3) < 0.

However, adding the equations of U1, U2, U3 in (6), we get340

U1(1− U1 − V1) + U2(1− U2 − V2) + U3(1− U3 − V3) = 0. (12)
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This is a contradiction. This proves (10).341

Next, we claim342

U3 + V3 > 1. (13)

We again argue by contradiction and assume that there exist some q1 ≥ q2 and a non-negative343

non-trivial solution such that (Ui) is non-trivial and U3 + V3 ≤ 1. From the third equation of344

(6), we obtain345

d(U1 + U2 − 2U3) + q1U1 + q2U2 ≤ 0,346

which together with U1 ≤ U2 (Lemma 1) implies347

2d(U1 − U3) + q1U1 + q2U2 ≤ 0.348

Hence U1 < U3. If (Vi) is non-trivial, then we can get V1 < V3 by the same method. Therefore,
U1 + V1 < U3 + V3 ≤ 1. In view of (12), we have also

U2 + V2 > 1 ≥ U3 + V3.

Using the second equation of (6), we get U3 > U2, which implies V3 < V2. Hence, by the equation349

of V2 in (6), we get 1 − U2 − V2 > 0, i.e., U2 + V2 < 1, which is again impossible. Hence, we350

proved (13). The proof of (i) is completed.351

Lemma 3 Assume q1, q2 ≥ 0, (q1, q2) 6= (0, 0), and d,D > 0.352

(i) If q1 ≥ q2, and (U1, U2, U3) 6= (0, 0, 0), then U1 ≤ U2 < U3.353

(ii) If q1 ≥ q2, and (V1, V2, V3) 6= (0, 0, 0), then V1 ≤ V2 < V3.354

(iii) If q1 ≤ q2, and (U1, U2, U3) 6= (0, 0, 0), then U2 ≤ U1 < U3.355

(iv) If q1 ≤ q2, and (V1, V2, V3) 6= (0, 0, 0), then V2 ≤ V1 < V3.356

In particular, if q1 = q2 then every positive equilibrium satisfies U1 = U2 < U3, V1 = V2 < V3.357

Proof We only prove (i) as (ii)-(iv) follow from a similar argument. To this end, we assume
(U1, U2, U3) 6= (0, 0, 0) and prove U1 ≤ U2 < U3. From Lemma 1, it suffices to prove U3 > U2.
Suppose to the contrary that q1 ≥ q2 and there is a nonnegative solution such that (U1, U2, U3) 6=
(0, 0, 0) and U3 ≤ U2. We claim that U3 + V3 ≤ U2 + V2. This is immediate if (Vi) is trivial. If
(Vi) is non-trivial, then the second equation of (6) implies

−q2 + 1− U2 − V2 ≥ 0.

By way of the fifth equation of (6), we obtain V3 ≤ V2, which again implies U3 + V3 ≤ U2 + V2.358

By Lemma 2, we have 1 − U2 − V2 ≤ 1 − U3 − V3 < 0. Again using the second equation of359

(6), we get U3 > U2, a contradiction. The assertions (ii)-(iv) are analogous, by exchanging the360

role of U and V or the patches one and two.361

Lemma 4 Assume q1, q2 ≥ 0, (q1, q2) 6= (0, 0), and d,D > 0. Then we have362

3−
3∑
i=1

(Ui + Vi) > 0. (14)

Proof By exchanging the two species if necessary, we may assume without loss of generality that363

(Ui) is non-trivial. Adding the equations of Ui, i = 1, 2, 3, in (6), we get364

U1(1− U1 − V1) + U2(1− U2 − V2) + U3(1− U3 − V3) = 0. (15)

If q1 ≥ q2, applying (15), U1 + V1 < 1 < U3 + V3 (Lemma 2) and U1 ≤ U2 < U3 (Lemma 3).365

Hence366
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U2(1− U1 − V1) + U2(1− U2 − V2) + U2(1− U3 − V3) > 0,367

that is, (14) holds. The proof of the case q1 < q2 is similar and thus omitted.368

Lemma 5 Assume q1, q2 ≥ 0, (q1, q2) 6= (0, 0) and d,D > 0.369

(i) If (Ui) is non-trivial, then −q1 + 1− U1 − V1 < 0.370

(ii) If (Vi) is non-trivial, then −q2 + 1− U2 − V2 < 0.371

Proof By Lemma 3 and the first and second equation of (6), we get372

(−qi + 1− Ui − Vi)Ui = d(Ui − U3) < 0, i = 1, 2.373

This proves (i). The proof of (ii) is omitted.374

From the above results, we can establish the non-existence of positive solution of (6).375

Lemma 6 Assume q1, q2 ≥ 0, (q1, q2) 6= (0, 0), and d,D > 0 satisfy d 6= D. Then (6) has no376

positive solution.377

Proof If there exists a positive solution (U, V ) with Ui > 0 and Vi > 0, then we can rewrite (6)378

as E0(U1, U2, U3)T = (0, 0, 0)T and F0(V1, V2, V3)T = (0, 0, 0)T , where the matrices E0 and F0379

are defined as380

E0 =

−d− q1 + 1− U1 − V1 0 d
0 −d− q2 + 1− U2 − V2 d

d+ q1 d+ q2 −2d+ 1− U3 − V3


F0 =

−D − q1 + 1− U1 − V1 0 D
0 −D − q2 + 1− U2 − V2 D

D + q1 D + q2 −2D + 1− U3 − V3

 .

(16)

Direct calculation gives

0 = det(E0) =d2

(
3−

3∑
i=1

(Ui + Vi)

)
+ dP

+ (−q1 + 1− U1 − V1)(−q2 + 1− U2 − V2)(1− U3 − V3),

and

0 = det(F0) =D2

(
3−

3∑
i=1

(Ui + Vi)

)
+DP

+ (−q1 + 1− U1 − V1)(−q2 + 1− U2 − V2)(1− U3 − V3),

for some constant P depending only on Ui, Vi (i = 1, 2, 3) and qj (j = 1, 2). Multiplying the381

above two equations by D, d, respectively and subtracting the resulting equations, in view of382

D 6= d, we obtain383

Dd

(
3−

3∑
i=1

(Ui + Vi)

)
= (−q1 + 1− U1 − V1)(−q2 + 1− U2 − V2)(1− U3 − V3).

(17)

From Lemmas 2 and 5, it follows that the right hand side of (17) is negative. However, the left384

hand side of (17) is positive, as implied by Lemma 4. This contradiction finishes the proof.385
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A.2 The global stability of semi-trivial steady state386

In this subsection, we mainly establish Theorem 1. We first study the linear instability of387

the semi-trivial steady state (0, V ∗) := (0, 0, 0, V ∗1 , V
∗
2 , V

∗
3 ) for Model I, where V ∗ satisfies388

F1(V ∗1 , V
∗
2 , V

∗
3 )T = (0, 0, 0)T , (18)

with matrix F1 given by389

F1 =

−D − q1 + 1− V ∗1 0 D
0 −D − q2 + 1− V ∗2 D

D + q1 D + q2 −2D + 1− V ∗3

 .

The linear instability of (0, V ∗) is determined by the sign of the principal eigenvalue, denoted390

as Λ1, of the eigenvalue problem391

E1

ϕ1

ϕ2

ϕ3

+ Λ

ϕ1

ϕ2

ϕ3

 =

0
0
0

 , (19)

where matrix E1 is given by392

E1 =

−d− q1 + 1− V ∗1 0 d
0 −d− q2 + 1− V ∗2 d

d+ q1 d+ q2 −2d+ 1− V ∗3

 .

Note that Λ1 = Λ1(d,D) depends on D by way of V ∗i . We first study the sign of Λ1 for the393

case q1 = q2 = q. From [20], we recall the following two results concerning Λ1:394

Proposition 1 ( [20, Proposition 1]) Suppose q1 = q2 = q > 0. Then the derivative of Λ1395

with respect to d, at d=D, is given by396

∂Λ1

∂d

∣∣∣
d=D

= −
(V ∗1 − D

D+qV
∗
3 )(V ∗3 − V ∗1 ) + (V ∗2 − D

D+qV
∗
3 )(V ∗3 − V ∗2 )

(V ∗1 )2 + (V ∗2 )2 + D
D+q (V ∗3 )2

. (20)

Proposition 2 ( [20, Proposition 2]) Assume q1 = q2 = q > 0 and V ∗1 + V ∗2 + V ∗3 6= 3. Then397

det(E1) = 0 if and only if either d = D, or d = F (D), where function F is given by398

F (D) :=
(−q + 1− V ∗1 )(−q + 1− V ∗2 )(1− V ∗3 )

D(3− V ∗1 − V ∗2 − V ∗3 )
, D > 0. (21)

Corollary 1 Assume q1 = q2 = q > 0. For any d,D > 0, we have ∂Λ1

∂d

∣∣
d=D

< 0.399

Proof By Lemma 3, we have V ∗3 − V ∗1 > 0 and V ∗3 − V ∗2 > 0. Using (i) of Lemma 1 and Lemma
2, we get V ∗2 = V ∗1 < 1, which together with the equations of V ∗1 and V ∗2 in (18) yields

V ∗1 −
D

D + q
V ∗3 > 0 and V ∗2 −

D

D + q
V ∗3 > 0.

Therefore, the right hand side of (20) is negative.400

Corollary 2 Assume q1 = q2 = q > 0. Then for any d,D > 0, the right hand side of (21) is401

strictly negative.402
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Proof This lemma is a direct consequence of Lemmas 2, 4 and 5.403

Theorem 8 Assume q1 = q2 = q > 0. Then for any d,D > 0, we have404

Λ1(d,D) =

{
+ D > d;

− D < d.
405

Proof Since the right hand side of (21) is strictly negative (by Corollary 2), Proposition 2 says406

that Λ1(d,D) = 0 if and only if d = D. Therefore, by Corollary 1 and the continuity of Λ1,407

Λ1(d,D) > 0 holds for D > d > 0 and Λ1(d,D) < 0 holds for 0 < D < d.408

Next, we consider the sign of Λ1 for any q1, q2 ≥ 0 and (q1, q2) 6= (0, 0).409

Lemma 7 For any q1, q2 ≥ 0 and (q1, q2) 6= (0, 0), we have Λ1(d,D) < 0 for d > D > 0.410

Proof Fix d > D > 0. By Theorem 8, if q1 = q2 = q, then Λ1(d,D) < 0. Then by the continuity
of Λ1 in q1, q2, it is sufficient to show Λ1 6= 0 for any q1 6= q2. If not, we assume there exist some
q1 6= q2 such that Λ1 = 0. By direct calculation, we get

0 = det(E1) =d2 (3− V ∗1 − V ∗2 − V ∗3 ) +MD + (−q1 + 1− V ∗1 )(−q2 + 1− V ∗2 )(1− V ∗3 ).

By (18), we also get

0 = det(F1) =D2 (3− V ∗1 − V ∗2 − V ∗3 ) +Md+ (−q1 + 1− V ∗1 )(−q2 + 1− V ∗2 )(1− V ∗3 ).

Here M depends on V ∗i (i = 1, 2, 3), q1 and q2. Multiplying the above two equations by d,D
respectively and subtracting them, we obtain

(D − d)[(3− V ∗1 − V ∗2 − V ∗3 )Dd− (−q1 + 1− V ∗1 )(−q2 + 1− V ∗2 )(1− V ∗3 )] = 0.

Due to d > D, we have411

(3− V ∗1 − V ∗2 − V ∗3 )Dd = (−q1 + 1− V ∗1 )(−q2 + 1− V ∗2 )(1− V ∗3 ). (22)

Lemmas 2 and 5 imply that the right hand side of (22) is negative. However, the left hand side412

of (22) is positive, as implied by Lemma 4. This contradiction finishes the proof.413

Proof of Theorem 1. Fix d > D. By Lemmas 6 and 7, (0, V ∗) is linearly unstable, and Model414

I has no positive equilibria. By the theory of monotone dynamical systems [16, Theorem 1.5],415

(U∗, 0) is globally asymptotically stable among all non-negative, non-trivial solutions of (1).416

Appendix B The dynamics of Model II417

In this section, we mainly study the dynamics of Model II and establish Theorems 2 to 4.418
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B.1 Preliminary estimates on non-negative, non-trivial steady states419

In this subsection, we study the non-negative and non-trivial solutions of the system420 

d(U2 − U1)− q1U1 + U1(1− U1 − V1) = 0
d(U1 + U3 − 2U2) + q1U1 − q2U2 + U2(1− U2 − V2) = 0
d(U2 − U3) + q2U2 + U3(1− U3 − V3) = 0
D(V2 − V1)− q1V1 + V1(1− U1 − V1) = 0
D(V1 + V3 − 2V2) + q1V1 − q2V2 + V2(1− U2 − V2) = 0
D(V2 − V3) + q2V2 + V3(1− U3 − V3) = 0.

(23)

Once again, we set k = 1 and observe that system (23) has at most three types of non-421

negative and non-trivial solutions, that is, semi-trivial solution (U∗, 0), (0, V ∗) and positive solu-422

tions for which Ui > 0, Vi > 0 (i = 1, 2, 3). In the following, we denote by (U, V ) a non-negative423

non-trivial solution of (23), in which Ui > 0 and Vi = 0, or Ui = 0 and Vi > 0, or Ui > 0 and424

Vi > 0 for all i = 1, 2, 3. We shall establish a priori estimates of the non-negative and non-trivial425

solutions (U, V ).426

Lemma 8 For any d,D > 0 and q1, q2 > 0, we have U1 + V1 < 1 < U3 + V3.427

Proof We will prove this conclusion for the case Ui > 0. The case Ui ≡ 0 and Vi > 0 can be428

proved by a similar argument.429

Step 1: We prove U1 +V1 < 1. We argue by contradiction and assume that there exist some q1, q2430

such that U1 + V1 ≥ 1. Then by the first equation of (23), we have d(U2 − U1)− q1U1 ≥ 0, i.e.,431

U2 ≥ d+q1
d U1 > U1. Following from the similar argument, we also get Vi = 0 for all i, or V2 > V1.432

Hence U2 + V2 > U1 + V1 ≥ 1.433

Clearly, we have U3 + V3 ≥ 1. If not, assume that U3 + V3 < 1 for some q1, q2. By the434

equations of U3 and V3, we have U3 >
d+q2
d U2 > U2 and V3 ≥ D+q2

D V2 ≥ V2 (where equality435

holds in case Vi = 0 for all i), which imply U3 + V3 > U2 + V2 > 1, a contradiction.436

Therefore, we get437

U1(1− U1 − V1) + U2(1− U2 − V2) + U3(1− U3 − V3) < 0.438

However, adding the equations of Ui, i = 1, 2, 3, in (23), we find that the left hand side of the439

above inequality is equal to zero. This is a contradiction. Hence, U1 + V1 < 1 holds.440

Step 2: We show U3 + V3 > 1. If not, we assume U3 + V3 ≤ 1 for some q1, q2. By the equations441

of U3 and V3 in (23), we deduce that U2 < U3 and V2 ≤ V3 (with equality holds if Vi = 0). Thus442

U2 + V2 < U3 + V3 ≤ 1, which together with U1 + V1 < 1 implies443

U1(1− U1 − V1) + U2(1− U2 − V2) + U3(1− U3 − V3) > 0.444

Similarly, adding the equations of Ui, i = 1, 2, 3, in (23), we find that the left hand side of the445

above inequality is equal to zero. This is a contradiction.446

Lemma 9 For any d,D > 0, q1, q2 > 0, it holds that447

−q2 + 1− U2 − V2 < 0. (24)

Proof We consider two cases:448

Case I. Either U3 > U2 or V3 > V2. Without loss of generality, assume U3 > U2, so that Ui > 0449

for all i. Adding equations of U1 and U2 in (23), we have450

d(U3 − U2) + U1(1− U1 − V1) + U2(−q2 + 1− U2 − V2) = 0. (25)
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It is easy to see that (24) follows from (25), U3 ≥ U2 and U1 + V1 < 1 (Lemma 8).451

Case II. U3 ≤ U2 and V3 ≤ V2. For this case,

−q2 + 1− U2 − V2 ≤ −q2 + 1− U3 − V3 < 0.

The last inequality follows from Lemma 8. This completes the proof.452

Lemma 10 Let d,D > 0, and either q1 ≥ 1 or q2
2 < q1 < 1.453

(i) Either Ui ≡ 0 or U1 < U2.454

(ii) Either Vi ≡ 0 or V1 < V2.455

Proof We only prove (i), as (ii) follows in a completely analogous manner. Assume Ui > 0 for all456

i, we need to show U1 < U2. Obviously, for q1 ≥ 1, this conclusion is true from the first equation457

of (23). Next, assume to the contrary that there exist some q2
2 < q1 < 1 such that U1 ≥ U2. By458

the first equation of (23), −q1 + 1−U1 − V1 ≥ 0, i.e., U1 + V1 ≤ 1− q1. Hence U1 + V1 < 1− q2
2 .459

Using the 4th equation of (23), we get V2 ≤ V1. So we have460

U2 + V2 ≤ U1 + V1 < 1− q2
2
. (26)

From the second equation of (23), we get461

d(U1 + U3 − 2U2) + q1U1 − q2U2 + q2
2 U2 < 0,462

which together with U1 ≥ U2 indicates d(U3 − U2) + (q1 − q2
2 )U2 < 0. Since q1 >

q2
2 , we have463

U3 < U2.464

We claim that U2 + V2 > U3 + V3. If Vi ≡ 0, then it follows from U3 < U2 and we are done.465

If Vi > 0 for all i, then we can repeat the above argument to show that V3 < V2. Using Lemma466

8, we have U2 + V2 > U3 + V3 > 1. This is in contradiction with (26).467

Lemma 11 For any d,D > 0, if q1 ≥ 1 or q2
2 < q1 < 1, then468

3−
3∑
i=1

(Ui + Vi) > 0. (27)

Proof Adding all six equations of (23), we have469

(U1 + V1)(1− U1 − V1) + (U2 + V2)(1− U2 − V2) + (U3 + V3)(1− U3 − V3) = 0. (28)

We consider two cases:470

Case I. U2 + V2 ≤ U3 + V3. For this case, by U3 + V3 > 1 we have471

(U3 + V3)(1− U3 − V3) ≤ (U2 + V2)(1− U3 − V3). (29)

By Lemma 10, we have U1 + V1 < U2 + V2. This together with U1 + V1 < 1 implies472

(U1 + V1)(1− U1 − V1) < (U2 + V2)(1− U1 − V1). (30)

It is easy to see that (27) follows directly from (28), (29) and (30).473

Case II. U2 + V2 ≥ U3 + V3. For this case, by U3 + V3 > 1 > U1 + V1 (by Lemma 8) we have474

(U3 + V3)(1− U3 − V3) < (U1 + V1)(1− U3 − V3). (31)

Since U2 + V2 ≥ U3 + V3 > 1 > U1 + V1, we can similarly derive475

(U2 + V2)(1− U2 − V2) < (U1 + V1)(1− U2 − V2). (32)

It is easy to see that (27) follows directly from (28), (31) and (32). Note that the above reasoning476

is valid also when U1 = U2 = U3 = 0 or V1 = V2 = V3 = 0.477
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Note that the above results are valid when q1 = q2 > 0. The following result implies that478

(23) has no positive solution when q1 ≥ 1 or q2
2 < q1 < 1.479

Corollary 3 If q1 ≥ 1 or q2
2 < q1 < 1, then system (23) has no positive solutions for d 6= D.480

Proof We argue by contradiction. If there exists some positive solution, denoted by (U, V ), for481

(23). Direct calculation, as in the proof of Lemma 6, gives482

Dd(3−
3∑
i=1

(Ui + Vi))

= (−q1 + 1− U1 − V1)(−q2 + 1− U2 − V2)(1− U3 − V3).

(33)

Due to U1 < U2, the equation of U1 implies −q1+1−(U1+V1) < 0. By Lemma 8, 1−(U3+V3) < 0.483

By Lemma 9, we see −q2 + 1 − (U2 + V2) < 0. Hence, the right hand side of (33) is negative.484

However, the left hand side of (33) is positive from Lemma 11, which is a contradiction.485

B.2 The global dynamics of Model II when q1 ≥ 1 or q2
2 < q1 < 1486

In this subsection, we shall show that the faster diffuser always wins when q1 ≥ 1 or q2
2 <487

q1 < 1. We first study the local instability of (0, V ∗) := (0, 0, 0, V ∗1 , V
∗
2 , V

∗
3 ), as determined by488

the sign of the principal eigenvalue Λ2 of the eigenvalue problem489

E2

ϕ1

ϕ2

ϕ3

+ Λ

ϕ1

ϕ2

ϕ3

 =

0
0
0

 , (34)

where matrix E2 is given by490

E2 =

−d− q1 + 1− V ∗1 d 0
d+ q1 −2d− q2 + 1− V ∗2 d

0 d+ q2 −d+ 1− V ∗3

 .

Proposition 3 When d = D, the derivative of Λ2 with respect to d satisfies491

∂Λ2

∂d

∣∣∣
d=D

= −
(D + q1)V ∗1 (V ∗2 − V ∗1 ) +DV ∗2 (V ∗1 + V ∗3 − 2V ∗2 ) + D2

D+q2
V ∗3 (V ∗2 − V ∗3 )

(D + q1)(V ∗1 )2 +D(V ∗2 )2 + D2

D+q2
(V ∗3 )2

. (35)

Proof Differentiate (34) with respect to d, we get492  ϕ2 − ϕ1

ϕ1 + ϕ3 − 2ϕ2

ϕ2 − ϕ3

+ E2

ϕ′1ϕ′2
ϕ′3

+
∂Λ2

∂d

ϕ1

ϕ2

ϕ3

+ Λ2

ϕ′1ϕ′2
ϕ′3

 =

0
0
0

 , (36)

where ϕ′i = ∂ϕi

∂d , i = 1, 2, 3. Note that when d = D,

E2|d=D

V ∗1V ∗2
V ∗3

 =

0
0
0

 ,
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493

(E2|d=D)
T

(D + q1)V ∗1
DV ∗2
D2

D+q2
V ∗3

 =

0
0
0

 , (37)

and when d = D, we may choose494 ϕ1

ϕ2

ϕ3

 =

V ∗1V ∗2
V ∗3

 . (38)

Set d = D in (36) and multiplying it by
(

(D + q1)V ∗1 , DV
∗
2 ,

D2

D+q2
V ∗3

)
, using (37), (38) and495

Λ2(D,D) = 0, we obtain (35). This completes the proof.496

B.2.1 The sign of Λ2 when q1 = q2497

Our goal in this subsection is to determine the sign of Λ2 when q1 = q2. We first recall the498

following result:499

Proposition 4 ( [20, Proposition 4]) Assume q1 = q2 = q and V ∗1 + V ∗2 + V ∗3 6= 3. Then500

det(E2) = 0 if and only if either d = D, or d = F (D), where F (D) is given by (21).501

Lemma 12 Suppose d,D > 0 and q1 = q2 = q > 0, then V ∗2 < V ∗3 .502

Proof We argue by contradiction. If not, we assume there exist some d,D, q > 0 such that Vi > 0
for all i and V2 ≥ V3. By the sixth equation of (23), we get

qV ∗3 + V ∗3 (1− V ∗3 ) ≤ qV ∗2 + V ∗3 (1− V ∗3 ) ≤ 0,

which implies that V ∗3 ≥ 1 + q > 1. Therefore, V ∗2 ≥ V ∗3 > 1. Hence,

d(V ∗1 + V ∗3 − 2V ∗2 ) + qV ∗1 − qV ∗2 + V ∗2 (1− V ∗2 )

= (d+ q)(V ∗1 − V ∗2 ) + d(V ∗3 − V ∗2 ) + V ∗2 (1− V ∗2 ) < 0,

where we also used the assumption V ∗2 ≥ V ∗3 and V ∗1 < V ∗2 (Lemma 10). This is in contradiction503

with the fifth equation of (23).504

Corollary 4 Suppose q1 = q2 = q > 0, then for any d,D > 0, the quantity F (D) given in (21)505

is strictly negative.506

Proof By Lemmas 8 and 9, we have

V ∗3 > 1 and − q + 1− V ∗2 < 0.

By Lemma 10 and the first equation of (23), we get −q+ 1− V ∗1 < 0. Using also Lemma 11, the507

quantity F (D), given in (21), is strictly negative.508

Lemma 13 Suppose q1 = q2 = q > 0, then for any d,D > 0, we have D+q
D V ∗1 > V ∗2 > D

D+qV
∗
3 .509

Proof By the fourth equation of (23) and Lemma 8, we get d(V ∗2 −V ∗1 )− qV ∗1 < 0, which implies510

V ∗2 < D+q
D V ∗1 . Similarly, by the sixth equation of (23) and Lemma 8, we have d(V ∗2 −V ∗3 )+qV ∗2 >511

0, i.e. V ∗2 > D
D+qV

∗
3 .512

Corollary 5 Suppose q1 = q2 = q > 0, then for any d,D > 0, we have ∂Λ2

∂d

∣∣∣
d=D

< 0.513
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Proof If q1 = q2 = q, (35) can be rewritten as

∂Λ2

∂d

∣∣∣
d=D

= −
D+q
D V ∗1 (V ∗2 − V ∗1 ) + V ∗2 (V ∗1 + V ∗3 − 2V ∗2 ) + D

D+qV
∗
3 (V ∗2 − V ∗3 )

D+q
D (V ∗1 )2 + (V ∗2 )2 + D

D+q (V ∗3 )2
.

Note that
D + q

D
V ∗1 (V ∗2 − V ∗1 ) + V ∗2 (V ∗1 + V ∗3 − 2V ∗2 ) +

D

D + q
V ∗3 (V ∗2 − V ∗3 )

= (V ∗2 − V ∗1 )(
D + q

D
V ∗1 − V ∗2 ) + (V ∗3 − V ∗2 )(V ∗2 −

D

D + q
V ∗3 ),

which together with Lemmas 10, 12 and 13 yields the conclusion.514

Theorem 9 Assume q1 = q2 = q > 0. Then for any d,D > 0, we have515

Λ2(d,D) =

{
+ D > d;

− D < d.
516

Proof Since the quantity F (D), which is given in (21), is strictly negative (by Corollary 4),517

Proposition 4 says that Λ2(d,D) = 0 if and only if d = D. Therefore, by Corollary 5 and the518

continuity of Λ2, Λ2(d,D) > 0 holds for D > d > 0 and Λ2(d,D) < 0 holds for 0 < D < d.519

B.2.2 The proof of Theorem 2520

In this subection we will study the global dynamics of Model II for q1 ≥ 1 or q2
2 < q1 < 1.521

Lemma 14 If q1 ≥ 1 or q2
2 < q1 < 1, Λ2(d,D) < 0 for d > D.522

Proof The proof is similar as that of Lemma 7. It follows from Theorem 9 that, if q1 = q2, then523

Λ2(d,D) < 0 for d > D. Since Λ2 is continuous with respect to parameters q1, q2, it suffices to524

show that Λ2 6= 0 for any q1 6= q2 and q1 ≥ 1 or q2
2 < q1 < 1. We argue by contradiction and525

assume that there exists some q satisfying the assumptions such that Λ2 = 0. By proceeding526

similarly as in Lemma 7, we derive (22) again. Note that 3 − V ∗1 − V ∗2 − V ∗3 > 0 holds, which527

implies the left hand side of (22) is positive. Using V ∗1 < V ∗2 and the first equation of (23), we528

deduce −q1 + 1 − V ∗1 < 0. By Lemma 9, −q2 + 1 − V ∗2 < 0. These together with V ∗3 > 1 imply529

the right hand side of (22) is negative, which is a contradiction.530

Proof of Theorem 2. By Corollary 3 and Lemma 14, the equilibrium (0, V ∗) is linearly unstable531

and Model II has no positive equilibria. By the theory of monotone dynamical systems [16,532

Theorem 1.5], the equilibrium (U∗, 0) is globally asymptotically stable.533

B.3 Existence of evolutionarily singular strategy534

In this subsection, we consider the existence of evolutionarily singular strategy and establish535

Theorem 3. The linear stability of the semi-trivial steady state, (U∗, 0) := (U∗1 , U
∗
2 , U

∗
3 , 0, 0, 0), is536

determined by the sign of the principal eigenvalue Λ̃2 of the eigenvalue problem537

F2

ϕ1

ϕ2

ϕ3

+ Λ

ϕ1

ϕ2

ϕ3

 =

0
0
0

 , (39)

where matrix F2 is given by538
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F2 =

−D − q1 + 1− U∗1 D 0
D + q1 −2D − q2 + 1− U∗2 D

0 D + q2 −D + 1− U∗3

 .

Note that U∗i , i = 1, 2, 3, satisfy539

F2|D=d

U∗1U∗2
U∗3

 =

0
0
0

 . (40)

540

By exchanging the role of the two species, we can rewrite Proposition 3 as follows:541

Proposition 5 When D = d, the derivative of Λ̃2 with respect to D satisfies542

∂Λ̃2

∂D

∣∣∣
D=d

= −
(d+ q1)U∗1 (U∗2 − U∗1 ) + dU∗2 (U∗1 + U∗3 − 2U∗2 ) + d2

d+q2
U∗3 (U∗2 − U∗3 )

(d+ q1)(U∗1 )2 + d(U∗2 )2 + d2

d+q2
(U∗3 )2

. (41)

Lemma 15 For any q1, q2 > 0, we have ∂Λ̃2

∂D (d, d) < 0 for sufficiently large d.543

Proof Set544

M := (d+ q1)U∗1 (U∗2 − U∗1 ) + dU∗2 (U∗1 + U∗3 − 2U∗2 ) +
d2

d+ q2
U∗3 (U∗2 − U∗3 ). (42)

By (23), we can rewrite (42) as

M

d
= (U∗2 − U∗1 )

[
d+ q1
d

U∗1 − U∗2
]

+ (U∗2 − U∗3 )

[
d

d+ q2
U∗3 − U∗2

]
= (U∗2 − U∗1 )

U∗1 (1− U∗1 )

d
+ (U∗2 − U∗3 )

U∗3 (1− U∗3 )

d+ q2
(43)

Note that (U∗1 , U
∗
2 , U

∗
3 ) → (1, 1, 1) as d → ∞. As (U∗1 , U

∗
2 , U

∗
3 ) is the unique stable positive

solution of (40), it can be shown that it is smooth at d =∞ so that we can expand Ui as

U∗i = 1 +
Ũi
d

+O(
1

d2
) for i = 1, 2, 3.

To determine Ũi, we substitute the above expansion of U∗i into the first and third equation in545

(40) to get546

Ũ1 − Ũ2 = −q1 and Ũ2 − Ũ3 = −q2. (44)

By adding the first three equations of (40), we obtain
∑3
i=1 U

∗
i (1 − U∗i ) = 0, from which we547

deduce
∑3
i=1 Ũi = 0. Combining this with (44), we obtain548

Ũ1 = −2q1 + q2
3

, Ũ2 =
q1 − q2

3
, Ũ3 =

q1 + 2q2
3

. (45)

Having determined Ũi, we may substitute U∗i = 1 + Ũi/d+O(1/d2) into (43) to get

d2M = (Ũ2 − Ũ1)(−Ũ1) + (Ũ2 − Ũ3)(−Ũ3) + o(1)

=
2

3
(q21 + q1q2 + q32) + o(1) > 0 for d� 1.

Therefore, by Proposition 5, we have ∂Λ̃2

∂D (d, d) < 0 for d� 1.549
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Lemma 16 If 0 < q1 < 1 and q2 > 2q1, we have ∂Λ̃2

∂D (d, d) > 0 for sufficiently small d.550

Proof When d → 0, we have U∗1 → U1 := 1 − q1 and, passing to a subsequence if necessary,
U∗2 → U2 for some non-negative U2. We claim that if 2q1 < q2, then U2 < U1. If not, we assume
for some 2q1 < q2, U2 ≥ U1. By the equation of U∗2 and let d→ 0,

q1U1 − q2U2 + U2(1− U2) = 0.

Then we have q1U2 − q2U2 + U2(1 − U2) ≥ 0, which implies that U2 ≤ 1 + q1 − q2. Therefore,551

1 + q1 − q2 ≥ 1− q1, i.e. 2q1 ≥ q2. This contradiction shows that U2 < U1.552

Note that M → q1U1(U2 − U1) < 0 as d → 0, where M is given by (42). Note that553

0 < q1 < 1. Hence, for sufficiently small d, we have ∂Λ̃2

∂D (d, d) > 0.554

Proof of Theorem 3. Since d 7→ ∂Λ̃2

∂D (d, d) is analytic, all the roots are discrete. By Lemmas 15555

and 16, ∂Λ̃2

∂D (d, d) < 0 for d� 1 and ∂Λ̃2

∂D (d, d) > 0 for 0 < d� 1. This says that the infinity and556

zero diffusion rates are local CvSSs. Furthermore, there exists at least one d∗ = d∗(q1, q2) such557

that ∂Λ̃2

∂D (d∗, d∗) = 0, and ∂Λ̃2

∂D (d, d) change sign from positive to negative in a neighborhood of558

d∗; i.e. d∗ is an evolutionary singular strategy which is not a CvSS.559

B.4 The proof of Theorem 4560

The proof of Theorem 4 is divided into a series of lemmas. First, we recall that (V̂2, V̂3) is561

the unique positive solution of (4) with k = 1.562

Lemma 17 Let d = q1 = 0 and D, d2 > 0 and let (V̂2, V̂3) be the unique positive solution of (4).563

Then V̂2 < 1 < V̂3 and (1− V̂2, 0, 0, V̂2, V̂2, V̂3) is a non-negative solution of system (23).564

Proof It is clear that (1 − V̂2, 0, 0, V̂2, V̂2, V̂3) is a non-negative solution of system (23) when565

d = q1 = 0. Adding the equations of (4), we have566

V̂2(1− V̂2) + V̂3(1− V̂3) = 0. (46)

In view of (46), it is enough to show V̂3 > 1. Suppose not, then V̂3 ≤ 1 and the 2nd equation of567

(4) implies V̂2 < V̂3 ≤ 1, which contradicts (46).568

Lemma 18 The matrix

Ê1 =

(
−D − q2 + 1− 2V̂2 D

D −D + q2 + 1− 2V̂3

)
is invertible.569

Proof Observe that zero is an eigenvalue of the cooperative matrix

Ê2 := Ê1 +

(
V̂2 0

0 V̂3

)
with a strictly positive eigenvector (V̂2, V̂3). Hence, zero is the principal eigenvalue of Ê2. Since570

the principal eigenvalue is strictly monotone with respect to the diagonal entries, we deduce that571

zero is not an eigenvalue of Ê1.572
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Set U = (U1, U2, U3) and V = (V1, V2, V3). Define map F (d, q1, U, V ) : R8 → R6 by573

F (d, q1, U, V ) =


d(U2 − U1)− q1U1 + U1(1− U1 − V1)

d(U1 + U3 − 2U2) + q1U1 − q2U2 + U2(1− U2 − V2)
d(U2 − U3) + q2U2 + U3(1− U3 − V3)
D(V2 − V1)− q1V1 + V1(1− U1 − V1)

D(V1 + V3 − 2V2) + q1V1 − q2V2 + V2(1− U2 − V2)
D(V2 − V3) + q2V2 + V3(1− U3 − V3)

 (47)

It is clear that (U, V ) = (U1, U2, U3, V1, V2, V3) is a steady state of Model II if and only if
F (d, q1, U, V ) = 0. Now, observe that F (0, 0, Û , V̂ ) = 0. One can further compute

D(U,V )F (0, 0, Û , V̂ )

=



−(1− V̂2) 0 0 −(1− V̂2) 0 0

0 −q2 + 1− V̂2 0 0 0 0

0 q2 1− V̂3 0 0 0

−V̂2 0 0 −D − V̂2 D 0

0 −V̂2 0 D −2D − q2 + 1− 2V̂2 D

0 0 −V̂3 0 D + q2 −D + 1− 2V̂3


.

Lemma 19 Let D > 0 and q2 ≥ 1 and consider the eigenvalue problem574

D(U,V )F (0, 0, Û , V̂ )

(
ϕ
ψ

)
= λ

(
ϕ
ψ

)
for ϕ,ψ ∈ R3. (48)

Then every eigenvalue of (48) lies in {z ∈ C : Re z < 0}. In particular, D(U,V )F (0, 0, Û , V̂ ) is575

invertible.576

Proof First, note that the system (4) implies577

D

D + q2 − 1 + V̂2
=
V̂2

V̂3
=
D − 1 + V̂3
D + q2

. (49)

It suffices to show that the principal eigenvalue of (48), denoted as λ∗1, is strictly negative.578

Suppose to the contrary that (48) holds for some ϕ,ψ ∈ R3 and λ∗1 ∈ R such that579

3∑
i=1

(|ϕi|+ |ψi|) = 1, ϕi ≤ 0, ψi ≥ 0, for i = 1, 2, 3, and λ∗1 ≥ 0. (50)

We will show that D = 0, which gives a contradiction.580

Now, multiply both sides of the equation (48) with λ = λ∗1 on the left by the row vector

~r1 :=

(
− V̂2

1− V̂2

(
D − 1 + V̂3

)
,−M2,−M,D − 1 + V̂3, D − 1 + V̂3, D

)
,

with M > 0 to be chosen later. We obtain581

~RT
(
ϕ
ψ

)
= λ∗1~r1

(
ϕ
ψ

)
and ~r1

(
ϕ
ψ

)
> 0, (51)
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where the strict inequality follows from (50), and ~R can be computed (using (49) for R5) as

~R =


R1

R2

R3

R4

R5

R6

 =



0

M2(q2 − 1 + V̂2)−Mq2−V̂2(D − 1 + V̂3)

M(V̂3 − 1)− V̂3D
0

−V̂2(D − 1 + V̂3)

−V̂3D


Next choose M � 1 so that R2, R3 < 0 and R5, R6 < 0. By inspecting (51) in conjunction with
(50), we deduce that

ϕ1 = −1

2
, ϕ2 = ϕ3 = ψ2 = ψ3 = 0, ψ1 =

1

2
and λ∗1 = 0.

But if we substitute this into the 5th component of (48), we have D/2 = 0. This is a contradiction.582

Lemma 20 Fix any D > 0 and q2 ≥ 1. Then there exists some δ > 0 such that for any d ∈ (0, δ),583

q1 ∈ (−δ, δ) and d + q1 > 0, Model II has a positive steady state, denoted by (Uδ, V δ), which584

satisfies (U δ, V δ)→ (Û , V̂ ) as (d, q1)→ (0, 0), where (Û , V̂ ) is given in (3) and (4) with k = 1.585

Proof It is easy to check that F (0, 0, Û , V̂ ) = 0. Moreover, we have shown in Lemma 19 that
D(U,V )F (0, 0, Û , V̂ ) is invertible. By the implicit function theorem, there exists some δ > 0 such

that for |d|, |q1| ≤ δ, there exists (Uδ, V δ) ∈ R6 such that

F (d, q1, U
δ, V δ) = (0, 0, 0, 0, 0, 0)T ,

and (U δ, V δ) → (Û , V̂ ) as d, q1 → 0. Finally we show that for all d, q1 small such that d > 0
and d + q1 > 0, each component of (U δ, V δ) is also positive. Since Û1, V̂2, V̂3 > 0, it suffices to
show that Uδ2 > 0 and U δ3 > 0. Recall from Lemma 17 that V̂2 < 1 < V̂3. By setting the second
component of (47) to zero we have(

2d+ q2 − 1 + U δ2 + V δ2
)
Uδ2 = (d+ q1)U δ1 + dU3 = (d+ q1)(1− V̂2 + o(1)) + o(d) > 0.

Using q2 ≥ 1, we deduce that Uδ2 > 0. Next, we set the third component of (47) to get(
d− 1 + V̂3 + o(1)

)
U δ3 =

(
d− 1 + Uδ3 + V δ3

)
U δ3 = (d+ q2)Uδ2 > 0.

Since V̂3 > 1, we deduce that Uδ3 > 0. In summary, we have proved that Uδ2 > 0 and U δ3 > 0 for586

d ∈ (0, δ), q1 ∈ (−δ, δ) and d+ q1 > 0.587

Lemma 21 Suppose that q2 ≥ 1. Let (U, V ) denote any positive solution of Model II. Then as588

d→ 0 and q1 → 0, (U, V )→ (Û , V̂ ).589

Proof First it is easy to see that Ui, Vi, i = 1, 2, 3, are uniformly bounded with respect to small590

d, q1. Hence, passing to a sub-sequence if necessary we may assume Ui → Ūi and Vi → V̄i as591

d, q1 → 0, where Ūi, V̄i ≥ 0 satisfy F (0, 0, Ū , V̄ ) = 0, with F defined in (47).592

Step 1: Ū2 = 0.593

This is a consequence of assumption q2 ≥ 1 and

−q2Ū2 + Ū2(1− Ū2 − V̄2) = 0.

Step 2: If Ū3 > 0, then Ū1 > 0.594
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Suppose to the contrary that Ū3 > 0 and Ū1 = 0. The first component of F (0, 0, Ū , V̄ ) = 0
yields Ū3 + V̄3 = 1. Therefore, the 4th to 6th component of F (0, 0, Ū , V̄ ) = 0 can be rewritten as

D(V̄2 − V̄1) + V̄1(1− V̄1) = 0

D(V̄1 + V̄3 − 2V̄2)− q2V̄2 + V̄2(1− V̄2) = 0

D(V̄2 − V̄3) + q2V̄2 = 0.

By Ū3+V̄3 = 1 and Ū3 > 0, we have V̄3 < 1. By the third equation above, V̄2 = D/(D+q2)V̄3 < 1.
Adding three equations we find

V̄1(1− V̄1) + V̄2(1− V̄2) = 0,

which together with V̄2 < 1 implies V̄1 > 1. By the first equation we then obtain V̄2 > V̄1, which595

is a contradiction. This completes Step 2.596

Step 3: If Ū3 = 0, then Ū1 > 0.597

Suppose to the contrary that Ū1 = Ū3 = 0. Then Ū3 and V̄i satisfy
Ū3(1− Ū3 − V̄3) = 0

D(V̄2 − V̄1) + V̄1(1− V̄1) = 0

D(V̄1 + V̄3 − 2V̄2)− q2V̄2 + V̄2(1− V̄2) = 0

D(V̄2 − V̄3) + q2V̄2 + V̄3(1− Ū3 − V̄3) = 0

If Ū3 = 0, then either V̄i = 0 for i = 1, 2, 3, or V̄i = V ∗i > 0 for i = 1, 2, 3, where (0, V ∗) is598

one of the semi-trivial steady states of Model II. We rule out both cases as follows:599

1. For the case (Ū , V̄ ) = (0, 0, 0, 0, 0, 0), we have (U, V ) → (0, 0, 0, 0, 0, 0) as d, q1 → 0, which
implies that 1 − (Ui + Vi) > 0 for small d, q1. Adding the equations of Ui for i = 1, 2, 3, we
have

U1(1− U1 − V1) + U2(1− U2 − V2) + U3(1− U3 − V3) = 0,

which is a contradiction as each term in the left hand side is positive.600

2. For the case (Ū , V̄ ) = (0, V ∗), we normalize Ui by setting Ũi = Ui/(U1 + U2 + U3). Then by
similar argument we have, by passing to a subsequence if necessary, Ũi → Ǔi ≥ 0 as d, q1 → 0,
and Ǔi satisfy Ǔ1 + Ǔ2 + Ǔ3 = 1 and

Ǔ1(1− V ∗1 ) = −q2Ǔ2 + Ǔ2(1− V ∗2 ) = q2Ǔ2 + Ǔ3(1− V ∗3 ) = 0

Since V ∗1 < 1, so Ǔ1 = 0. It follows from q2 ≥ 1 that Ǔ2 = 0. This together with the last601

equation and V ∗3 > 1 imply that Ǔ3 = 0. This contradicts Ǔ1 + Ǔ2 + Ǔ3 = 1.602

Having ruled out both cases above, we proved Step 3.603

Step 4: Ū1 > 0.604

This is a consequence of Steps 2 and 3.605

Step 5: Ū3 = 0.606

If not, then Ū3 > 0, which leads to Ū3 + V̄3 = 1. Therefore,{
D(V̄3 − V̄2)− q2V̄2 + V̄2(1− V̄2) = 0

D(V̄2 − V̄3) + q2V̄2 = 0.

Adding the above two equations we find V̄2(1− V̄2) = 0. Since V̄2 < 1, the only possibility is V̄2 =
0, from which we have V̄i = 0 for i = 1, 2, 3 and Ū1 = Ū3 = 1. That is, (U, V )→ (1, 0, 1, 0, 0, 0) as
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d, q1 → 0. We normalize Vi by setting Ṽi = Vi/(V1 + V2 + V3). Then by passing to a subsequence
if necessary, Ṽi → V̌i ≥ 0 as d, q1 → 0, and V̌i satisfy V̌1 + V̌2 + V̌3 = 1, and

V̌1 = V̌2

D(V̌1 + V̌3 − 2V̌2)− q2V̌2 + V̌2 = 0

D(V̌3 − V̌2) + q2V̌2 = 0,

from which we conclude that V̌i = 0 for all i, which is a contradiction. This completes Step 5.607

Step 6: V̄1 = V̂2 and Ū1 = 1− V̂2.608

As Ū1 > 0 and Ū2 = Ū3 = 0, we have Ū1 + V̄1 = 1, V̄1 = V̄2, and{
D(V̄3 − V̄2)− q2V̄2 + V̄2(1− V̄2) = 0

D(V̄2 − V̄3) + q2V̄2 + V̄3(1− V̄3) = 0.

By similar normalization argument we can show that V̄i > 0 for all i. Hence, V̄i = V̂i for i = 2, 3.609

Thus V̄1 = V̂2 and Ū1 = 1− V̂2. This completes the proof.610

Lemma 22 Fix any D, q2 > 0. Then there exists some δ > 0 such that for any d ∈ (0, δ) and611

q1 ∈ (−d, δ), the positive steady state (Uδ, V δ), which is given by Lemma 20, is locally stable.612

Proof By previous result, there exists some δ > 0 such that for |d|, |q1| ≤ δ, there exist (U δ, V δ) ∈
R6

+ such that F (d, q1, U
δ, V δ) = (0, 0, 0, 0, 0, 0)T . Since the two-species competition models II and

III are strongly monotone, the linearized system at (Uδ, V δ) has a principal eigenvalue (it is real,
simple and has the largest real part among all eigenvalues), which we denote as λδ1; i.e.

D(U,V )F (d, q1, U
δ, V δ)

(
ϕδ

φδ

)
= λδ1

(
ϕδ

φδ

)
,

where ϕδ := (ϕδ1, ϕ
δ
2, ϕ

δ
3)T and φδ := (φδ1, φ

δ
2, φ

δ
3)T . Furthermore, we may choose ϕδi < 0 and

φδi > 0 for i = 1, 2, 3, and normalize by

3∑
i=1

(|ϕδi |+ |φδi |) = 1.

We proceed to show that (U δ, V δ) is stable, that is, λδ1 < 0. To this end, we argue by613

contradiction and assume λδ1 ≥ 0. Let δ → 0 (so that d→ 0, q1 → 0), by passing to a subsequence,614

we may assume that λδ1 → λ∗1 ≥ 0, so that D(U,V )F (0, 0, Û , V̂ ) has at least one non-negative615

eigenvalue, i.e. that (48) holds for some non-trivial eigenvector (ϕ,ψ) and non-negative eigenvalue616

λ∗1. However, Lemma 19 asserts that λ∗1 < 0. This is a contradiction.617

Therefore, λδ1 < 0 for sufficiently small δ > 0, i.e. (U δ, V δ) is stable.618

In the following two results, we consider the linear instability of the semi-trivial steady states619

of (2), denoted by (U∗, 0) := (U∗1 , U
∗
2 , U

∗
3 , 0, 0, 0) and (0, V ∗) := (0, 0, 0, V ∗1 , V

∗
2 , V

∗
3 ).620

Lemma 23 If q2 ≥ 1, then there exists δ > 0 such that (U∗, 0) is linearly unstable for every621

0 ≤ d, q1 ≤ δ.622
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Proof Setting d = 0, q1 = 0, (U∗1 , U
∗
2 , U

∗
3 ) is the unique solution ofU∗1 (1− U∗1 ) = 0

−q2U∗2 + U∗2 (1− U∗2 ) = 0
q2U

∗
2 + U∗3 (1− U∗3 ) = 0.

By direct calculations and using q2 ≥ 1, we get

(U∗1 , U
∗
2 , U

∗
3 ) = (1,max(1− q2, 0),

1 +
√

1 + 4q2U∗2
2

).

For q2 ≥ 1, we have (U∗1 , U
∗
2 , U

∗
3 ) = (1, 0, 1), and its linear stability of (U∗, 0) is determined by

eigenvalue problem
Ẽ2ϕ+ Λϕ = 0,

where ϕ = (ϕ1, ϕ2, ϕ3)T and

Ẽ2 =

−D D 0
D −2D − q2 + 1 D
0 D + q2 −D

 .

We will test Ẽ2 by multiplying on the right with the vector (V̂2 − ε, V̂2, V̂3)T , where V̂2, V̂3
is given in Theorem 4 and ε is a small positive constant.

Ẽ2

V̂2 − εV̂2
V̂3

 =

 εD

(V̂2)2 − εD
V̂3(V̂3 − 1)

 .

Since all of the entries of the right hand side is positive, we can apply the Collatz-Wielandt
Formula [40, P. 667] to get

−Λ = max
{ϕ≥0:ϕ6=0}

min
1≤i≤3,ϕi>0

[Ẽ2ϕ]i
ϕi

≥ min

{
εD

V̂2 − ε
,

(V̂2)2 − εD
V̂2

,
V̂3(V̂3 − 1)

V̂3

}
> 0,

that is, (U∗, 0) is linearly unstable when d = q1 = 0. By continuity, it remains linearly unstable623

for all small d and q1.624

Lemma 24 For each D, q2 > 0, there exists δ > 0 such that (0, V ∗) is linearly unstable for every625

0 ≤ d, q1 ≤ δ.626

Proof Setting d = 0 and q1 = 0, the linear instability of (0, V ∗) is determined by the principal
eigenvalue of the following problem1− V ∗1 0 0

0 −q2 + 1− V ∗2 0
0 q2 1− V ∗3

ϕ1

ϕ2

ϕ3

+ Λ

ϕ1

ϕ2

ϕ3

 =

0
0
0

 .

Clearly, Λ = V ∗3 −1 is an eigenvalue with eigenfunction (0, 0, 1)T . Recalling that V ∗1 < 1 (Lemma627

8), we deduce that there is at least one negative eigenvalue. Thus (0, V ∗) is linearly unstable.628

Proof of Theorem 4. By Lemma 20, there exists some δ > 0 such that for any d ∈ (0, δ),629

q1 ∈ (−d, δ), Model II has a unique positive steady state (Uδ, V δ) in a small neighborhood of630

(Û , V̂ ). Lemma 21 further ensures that this is the only positive steady state for small positive d631

and q1. By Lemma 22, (Uδ, V δ) is locally stable. We can then conclude by the theory of monotone632

dynamical systems [15,16,46] and Lemmas 23 and 24 that (U δ, V δ) is globally stable.633
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Appendix C The dynamics of Model III634

In this section, we mainly consider the dynamics of Model III, i.e., system (5), in homoge-635

neous environments. We consider the non-negative and non-trivial solutions of636 

d(U2 + U3 − 2U1)− (q1 + q2)U1 + U1(1− U1 − V1) = 0
d(U1 − U2) + q1U1 + U2(1− U2 − V2) = 0
d(U1 − U3) + q2U1 + U3(1− U3 − V3) = 0
D(V2 + V3 − 2V1)− (q1 + q2)V1 + V1(1− U1 − V1) = 0
D(V1 − V2) + q1V1 + V2(1− U2 − V2) = 0
D(V1 − V3) + q2V1 + V3(1− U3 − V3) = 0

(52)

There are three types of non-negative and non-trivial solutions of this system. We denote three637

different types of solutions as (U, V ), in which Ui > 0 and Vi = 0, or Ui = 0 and Vi > 0, or638

Ui > 0 and Vi > 0 for all i = 1, 2, 3. The semi-trivial steady state (U∗, 0) := (U∗1 , U
∗
2 , U

∗
3 , 0, 0, 0)639

satisfies640 d(U∗2 + U∗3 − 2U∗1 )− (q1 + q2)U∗1 + U∗1 (1− U∗1 ) = 0
d(U∗1 − U∗2 ) + q1U

∗
1 + U∗2 (1− U∗2 ) = 0

d(U∗1 − U∗3 ) + q2U
∗
1 + U∗3 (1− U∗3 ) = 0

(53)

The linear stability of (U∗1 , U
∗
2 , U

∗
3 , 0, 0, 0) is determined by the sign of the principal eigen-641

value Λ̃3 of the eigenvalue problem642

F3

ϕ1

ϕ2

ϕ3

+ Λ

ϕ1

ϕ2

ϕ3

 =

0
0
0

 , (54)

where matrix F3 is given by643

F3 =

−2D − (q1 + q2) + 1− U∗1 D D
D + q1 −D + 1− U∗2 0
D + q2 0 −D + 1− U∗3

 .

Proposition 6 When D = d, the derivative of Λ̃3 with respect to D satisfies644

∂Λ̃3

∂D

∣∣∣
D=d

= −
U∗1 (U∗2 + U∗3 − 2U∗1 ) + d

d+q1
U∗2 (U∗1 − U∗2 ) + d

d+q2
U∗3 (U∗1 − U∗3 )

(U∗1 )2 + d
d+q1

(U∗2 )2 + d
d+q2

(U∗3 )2
. (55)

Proof Differentiate (54) with respect to D, we get645 ϕ2 + ϕ3 − 2ϕ1

ϕ1 − ϕ2

ϕ1 − ϕ3

+ F3

ϕ′1ϕ′2
ϕ′3

+
∂Λ̃3

∂D

ϕ1

ϕ2

ϕ3

+ Λ̃3

ϕ′1ϕ′2
ϕ′3

 =

0
0
0

 , (56)

where ϕ′i = ∂ϕi

∂D , i = 1, 2, 3. Note that when D = d,

F3|D=d

U∗1U∗2
U∗3

 =

0
0
0

 ,

646

FT3
∣∣
D=d

 U∗1
d

d+q1
U∗2

d
d+q2

U∗3

 =

0
0
0

 , (57)
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and when D = d, we may choose647 ϕ1

ϕ2

ϕ3

 =

U∗1U∗2
U∗3

 . (58)

Set D = d in (56) and multiplying it by
(
U∗1 ,

d
d+q1

U∗2 ,
d

d+q2
U∗3

)
, using (57), (58) and Λ̃3(d, d) = 0,648

we obtain (55). This completes the proof.649

Next, we establish some a prior estimates of U∗i , i = 1, 2, 3.650

651

Lemma 25 For any d,D > 0 and q1, q2 > 0, the following results hold:652

(i) If q1 ≥ q2, then U∗2 ≥ U∗3 ;653

(ii) If q1 ≤ q2, then U∗2 ≤ U∗3 .654

In particular, if q1 = q2, U∗2 = U∗3 holds.655

Proof We prove (i) only and (ii) can be shown similarly. We will assume U∗2 < U∗3 and deduce
q1 < q2. By the second and third equation of (53),{

(−d+ 1− U∗2 )U∗2 = −(d+ q1)U∗1 < 0,

(−d+ 1− U∗3 )U∗3 = −(d+ q2)U∗1 < 0.

This implies
0 < U∗2 < U∗3 and 0 > −d+ 1− U∗2 > −d+ 1− U∗3 .

Combining the above, we have

−(d+ q2)U∗1 = (−d+ 1− U∗2 )U∗2 > (−d+ 1− U∗3 )U∗3 = −(d+ q2)U∗1 .

This implies q2 > q1. This proves (i).656

Lemma 26 For any d,D > 0 and q1, q2 > 0, U∗1 < 1 always holds.657

Proof By exchanging patches 2 and 3 if necessary (the river network is symmetric), we may658

assume without loss of generality that q1 ≥ q2.659

We argue by contradiction and assume that U∗1 ≥ 1 for some q1 ≥ q2 > 0. By the first
equation of (53), we get

d(U∗2 + U∗3 − 2U∗1 )− (q1 + q2)U∗1 ≥ 0.

Using U∗2 ≥ U∗3 (from Lemma 25), we have

2d(U∗2 − U∗1 ) ≥ (q1 + q2)U∗1 > 0,

so U∗2 > U∗1 ≥ 1. In view of
∑3
i=1 U

∗
i (1− U∗i ) = 0 (upon summing (53)), we must have U∗3 < 1.660

By the third equation of (53), we get U∗3 > d+q2
d U∗1 > U∗1 ≥ 1. This is a contradiction. This661

finishes the proof for the case q1 ≥ q2, and the case q1 ≤ q2 can be treated similarly.662

C.1 The global dynamics of Model III when q1 = q2663

In this part, we shall show Theorem 5. We first establish some a priori estimates of non-664

negative and non-trivial steady state of (52) as q1 = q2.665
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C.1.1 Preliminary results on non-negative, non-trivial steady states666

Lemma 27 Suppose q1 = q2 > 0, then for any d,D > 0, we have U2 = U3 and V2 = V3.667

Proof By the similar argument in the proof of Lemma 1, we can obtain this lemma.668

Lemma 28 Suppose q1 = q2 := q > 0, then for any d,D > 0, we have U3 + V3 > 1.669

Proof Assume that (Ui) is non-trivial and is thus positive for all i. The same argument applies to
the case U1 = U2 = U3 = 0. Assume to the contrary that U3 + V3 ≤ 1 for some d,D, q > 0, then
by the third equation of (52), we get d(U1 − U3) + qU1 ≤ 0. Thus U3 ≥ d+q

d U1 > U1. Similarly,
we can show V3 > V1, if Vi > 0 for all i. Hence 1 ≥ U3 +V3 > U1 +V1 holds. By the first equation
of (52) and Lemma 27, we obtain

2d(U3 − U1)− 2qU1 = d(U2 + U3 − 2U1)− 2qU1 < 0,

i.e., d(U3−U1)−qU1 < 0. This together with the third equation of (52) implies that U3 +V3 > 1,670

which is a contradiction with our assumption.671

Lemma 29 Suppose q1 = q2 = q > 0, then for any d,D > 0, we have U1 + V1 < 1.672

Proof We argue by contradiction. If U1 + V1 ≥ 1 for some d,D, q > 0, then by the first equation673

of (52) and Lemma 27, we have674

2d(U2 − U1)− 2qU1 = d(U2 + U3 − 2U1)− 2qU1 ≥ 0,675

so that d(U2−U1)−qU1 ≥ 0, which together with the second equation of (52) implies U2+V2 ≤ 1.676

Using Lemma 27, we have U3 + V3 = U2 + V2 ≤ 1. But this contradicts Lemma 28.677

Lemma 30 Suppose q1 = q2 := q > 0 and d,D > 0.678

(i) If Ui > 0 for all i, then U1 < U3.679

(i) If Vi > 0 for all i, then V1 < V3.680

Proof In case of (U∗, 0) and (0, V ∗), the lemma follows from Lemmas 28 and 29. It therefore
suffices to consider positive equilibria (U, V ). We will prove (i), as (ii) follows from a similar
argument. If U1 ≥ U3 for some d,D, q > 0, by Lemmas 28 and 29, we have V3 > V1, which
together with the 6th equation of (52) implies

(q + 1− U3 − V3)V3 > qV1 + V3(1− U3 − V3) = D(V3 − V1) > 0;

i.e. q + 1− U3 − V3 > 0. However, by the third equation of (52) and U1 ≥ U3, we get

(q + 1− U3 − V3)U3 ≤ qU1 + U3(1− U3 − V3) = d(U3 − U1) ≤ 0;

i.e. q + 1− U3 − V3 ≤ 0. This is a contradiction.681

The following result is a direct consequence of Lemmas 27 and 30, and it provides some682

insight for the biological interpretation of Theorem 5.683

Corollary 6 Assume q1 = q2 > 0 and d,D > 0. Then we have

U1 < 1 < U2 = U3 and V1 < 1 < V2 = V3.
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Lemma 31 Suppose q1 = q2 > 0, then for any d,D > 0, we have684

3−
3∑
i=1

(Ui + Vi) > 0. (59)

Proof By possibly exchanging the role of U and V , we may assume Ui > 0 for all i. Adding
the equations of Ui (i = 1, 2, 3) in (52) and using U2 + V2 = U3 + V3 > 1 (Lemmas 27 and 28),
U1 + V1 < 1 (Lemma 29) and U1 < U3 = U2 (Corollary 6), we obtain

U3(1− U1 − V1) + U3(1− U2 − V2) + U3(1− U3 − V3)

> U1(1− U1 − V1) + U2(1− U2 − V2) + U3(1− U3 − V3) = 0,

which establishes (59).685

Lemma 32 Suppose q1 = q2 := q > 0 and d,D > 0. Then we have −2q + 1− U1 − V1 < 0.686

Proof Corollary 6 and the first equation of (52) indicate that −2q + 1− U1 − V1 < 0.687

Theorem 10 If q1 = q2 > 0 and d,D > 0, then system (52) has no positive solution.688

Proof We argue by contradiction. If there exists a positive solution (U, V ) for (52), by direct689

calculation, we obtain690

Dd(3−
3∑
i=1

(Ui + Vi)) = (−2q + 1− U1 − V1)(1− U2 − V2)(1− U3 − V3). (60)

Lemma 31 shows that the left hand side of (60) is positive, but the right hand side of (60) is691

negative, due to Lemmas 27, 28 and 32. This completes the proof.692

C.1.2 Global stability of (U∗, 0) when q1 = q2693

We assume q1 = q2 := q throughout this subsection. The local instability of (0, V ∗) is
determined by the sign of the principal eigenvalue, denoted as Λ3, of the system

E3

ϕ1

ϕ2

ϕ3

+ Λ

ϕ1

ϕ2

ϕ3

 =

0
0
0

 ,

where E3 is rewritten as694

E3 =

−2d− 2q + 1− V ∗1 d d
d+ q −d+ 1− V ∗2 0
d+ q 0 −d+ 1− V ∗3

 .

Setting q1 = q2 := q and exchanging the role of the two species, (55) can be rewritten as695

∂Λ3

∂d

∣∣∣
d=D

= −
(V ∗2 −

D+q
D V ∗1 )(V ∗1 − V ∗2 ) + (V ∗3 −

D+q
d V ∗1 )(V ∗1 − V ∗3 )

D+q
D (V ∗1 )2 + (V ∗2 )2 + (V ∗3 )2

. (61)

We can obtain the following result by direct calculations:696
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Proposition 7 ( [20, Propositon 6]) Assume q1 = q2 := q > 0 and V ∗1 + V ∗2 + V ∗3 6= 3. Then697

det(E3) = 0 if and only if either d = D, or698

d =
(−2q + 1− V ∗1 )(1− V ∗2 )(1− V ∗3 )

D(3− V ∗1 − V ∗2 − V ∗3 )
. (62)

Corollary 7 Suppose q1 = q2 := q > 0, then for any d,D > 0, ∂Λ3

∂d

∣∣
d=D

< 0.699

Proof By Corollary 6, we have V ∗1 − V ∗2 < 0, V ∗1 − V ∗3 < 0. Using V ∗2 > 1 and the fifth equation
of (52), we get

D + q

D
V ∗1 − V ∗2 > 0.

Similarly, by V ∗3 > 1 and the sixth equation of (52), we get

D + q

D
V ∗1 − V ∗3 > 0.

Therefore, the right hand side of (61) is strictly negative.700

Lemma 33 Suppose q1 = q2 > 0, then for any d,D > 0, the right hand side of (62) is negative.701

Proof Using Lemmas 27 and 28, we get V ∗2 = V ∗3 > 1, hence (1−V ∗2 )(1−V ∗3 ) > 0, which together702

with Lemmas 31 and 32 shows that the right hand side of (62) is strictly negative.703

Theorem 11 Suppose q1 = q2 > 0, then for any d,D > 0, we have

Λ3(d,D) =

{
+ D > d;

− D < d;
and Λ̃3(d,D) =

{
− D > d;

+ D < d.

Proof The equation (62) cannot hold since the right hand side is strictly negative, by Lemma 33.704

Hence, Proposition 7 says that Λ3(d,D) = 0 if and only if d = D. Therefore, by Corollary 7 and705

the continuity of Λ3, Λ3(d,D) > 0 holds for D > d > 0 and Λ3(d,D) < 0 holds for 0 < D < d.706

The result for Λ̃3 follows from the identity Λ̃3(d,D) = Λ3(D, d) for all d,D.707

Proof of Theorem 5. For d > D, Theorems 11 and 10 says that (0, V ∗) is linearly unstable,708

and that Model III has no positive equilibria. It follows from the theory of monotone dynamical709

systems [16, Theorem 1.5] that the equilibrium (U∗, 0) is globally asymptotically stable.710

C.2 The local stability of (U∗, 0)711

In this subsection, we determine the local stability of the semi-trivial steady sate (U∗, 0) for712

more general q1, q2.713

Lemma 34 Suppose 0 < q2 ≤ q1 + 1
2 , 0 < q2

q1
≤
√

2. Then U∗2 > 1 holds for all d > 0.714

Proof Since we have shown U∗2 > 1 for q1 = q2, it is sufficient to show U∗2 6= 1 for any q1, q2715

satisfying the assumptions. We argue by contradiction: Suppose that U∗2 = 1 for some q1, q2. By716

the second equation of (53), we have717

U∗1 =
d

d+ q1
. (63)
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Adding the equations of U∗1 , U
∗
2 , U

∗
3 in (53) and using U∗2 = 1, we get718

U∗1 (1− U∗1 ) + U∗3 (1− U∗3 ) = 0. (64)

Substituting (63) and (64) into the third equation of (53), we get719

U∗3 =
1

d+ q1
(d+ q2 −

q1
d+ q1

). (65)

By U∗1 < 1 (from (63)) and (64), we see that U∗3 > 1. This, together with (65), implies that720

q1
d+ q1

< q2 − q1. (66)

Hence, q2 − q1 > 0. Therefore, we can rewrite (66) to get721

d >
q1(1− q2 + q1)

q2 − q1
> 0, (67)

which the last inequality follows from 0 < q2−q1 ≤ 1
2 . By (63), (64) and (65), after simplifications,722

we have723

dq1 = (q2 − q1 −
q1

d+ q1
)(d+ q2 −

q1
d+ q1

). (68)

It follows from (68) that dq1 < (q2 − q1)(d+ q2), which can be rewritten as724

d(2q1 − q2) < q2(q2 − q1). (69)

By (67) and (69), note that 2q1 − q2 > 0 by assumption, we have725

0 <

(
q1

q2 − q1
− q1

)
(2q1 − q2) < q2(q2 − q1). (70)

By assumption 0 < q2 − q1 ≤ 1
2 , we have q1

q2−q1 ≥ 2q1. Hence, by (70)

q1(2q1 − q2) < q2(q2 − q1),

which is equivalent to q2 >
√

2q1, a contradiction to assumption q2 ≤
√

2q1.726

Lemma 35 Suppose that 0 < q1 ≤ q2 + 1
2 and q2

q1
≥ 1√

2
, then U∗3 > 1 holds for all d > 0.727

Proof This proof is similar to Lemma 34, by exchanging the role of patches 2 and 3. We omit728

the proof.729

Directly by Lemmas 34, and 35, we obtain the following result, which also provides some730

insight for the biological interpretation of Theorem 6.731

Corollary 8 Let q1, q2, d,D be positive. If |q2 − q1| ≤ 1
2 and 1√

2
≤ q2

q1
≤
√

2, then U∗2 > 1 and732

U∗3 > 1 hold.733
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Proof of Theorem 6. Fix d > D. We have shown that if q1 = q2, Λ̃3(d,D) > 0 in Theorem734

11. By the continuity of Λ̃3 in q1, q2, we just need to prove Λ̃3 6= 0. By contradiction, we assume735

that there exist some q1, q2 such that Λ̃3 = 0. Then by direct calculation, we get736

Dd(3− U∗1 − U∗2 − U∗3 ) = [−(q1 + q2) + (1− U∗1 )](1− U∗2 )(1− U∗3 ). (71)

Adding the equations of (53), we get737

U∗1 (1− U∗1 ) + U∗2 (1− U∗2 ) + U∗3 (1− U∗3 ) = 0. (72)

Due to U∗2 > 1 and U∗3 > 1, we have U∗1 < 1, so

U∗i (1− U∗i ) < (1− U∗i ), for i = 1, 2, 3.

Substituting this into (72), we obtain 3 − U∗1 − U∗2 − U∗3 > 0. Again using U∗1 < U∗2 , U
∗
1 < U∗3738

and the first equation of (53), −(q1 + q2) + (1−U∗1 ) < 0. This together with U∗2 > 1 and U∗3 > 1739

(Corollary 8) yields the right hand side of (71) is negative. This contradiction finishes the proof.740

C.3 Existence of evolutionarily singular strategy741

The goal of this subsection is to establish Theorem 7.742

Lemma 36 For any q1, q2 > 0, we have ∂Λ̃3

∂D (d, d) < 0 for sufficiently large d.743

Proof By Proposition 6, the sign of ∂Λ̃3

∂D (d, d) is the opposite of that of N , where744

N := U∗1 (U∗2 + U∗3 − 2U∗1 ) +
d

d+ q1
U∗2 (U∗1 − U∗2 ) +

d

d+ q2
U∗3 (U∗1 − U∗3 ). (73)

By (53), we can rewrite (73) as

N = (U∗2 − U∗1 )(U∗1 −
d

d+ q1
U∗2 ) + (U∗3 − U∗1 )(U∗1 −

d

d+ q2
U∗3 )

=
1

d+ q1
(U∗2 − U∗1 )U∗2 (U∗2 − 1) +

1

d+ q2
(U∗3 − U∗1 )U∗3 (U∗3 − 1) (74)

Note that (U∗1 , U
∗
2 , U

∗
3 ) → (1, 1, 1) as d → ∞. As (U∗1 , U

∗
2 , U

∗
3 ) is the unique stable positive745

solution of (53), it can be shown that it is smooth at d = ∞ so that we can expand Ui as746

U∗i = 1 + Ũi/d+O(1/d2), i = 1, 2, 3, for sufficiently large d. From the second and third equation747

of (53) we have748

Ũ2 = Ũ1 + q1, Ũ3 = Ũ1 + q2. (75)

Recall (72) (resulting from adding three equations in (53)), it follows that749

Ũ1 + Ũ2 + Ũ3 = 0. (76)

By solving (75) and (76), Ũ1 = −(q1 + q2)/3, Ũ2 = (2q1 − q2)/3, Ũ3 = (2q2 − q1)/3. Hence, for
large d it holds that 

U∗1 = 1− q1 + q2
3d

+O(1/d2),

U∗2 = 1 +
2q1 − q2

3d
+O(1/d2),

U∗3 = 1 +
2q2 − q1

3d
+O(1/d2).
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Substituting into (74), we obtain750

d3N → 2

3
(q21 + q22 − q1q2) > 0 as d→∞, (77)

provided that (q1, q2) 6= (0, 0). Therefore, we conclude by Proposition 6 that ∂Λ̃3

∂D (d, d) < 0 for751

sufficiently large d.752

Lemma 37 Let q1, q2 > 0. For sufficiently small d, we have753

∂Λ̃3

∂D
(d, d) =

{
− if q1 + q2 ≤ 1 or q1 + q2 > (q1 − q2)2;

+ if 1 < q1 + q2 < (q1 − q2)2.
(78)

Proof We consider three cases:754

Case I. q1 + q2 < 1. By the first equation of (53), we see that U∗1 → U1 := 1 − (q1 + q2) > 0755

as d → 0. By the second and third equation of (53), U∗2 → U2 ≥ 1, U∗3 → U3 ≥ 1. Thus756

N → U1(U2 + U3 − 2U1) > 0 as d → 0, where N is given by (73). Here we used q1 > 0 and757

q2 > 0. By Proposition 6, we have ∂Λ̃3

∂D (d, d) < 0 for sufficiently small d when q1 + q2 < 1.758

Case II. q1 + q2 = 1. For this case, we have U∗1 → 0 and U∗i → 1 (i = 2, 3) as d→ 0. By the first759

equation of (53), we get760

U∗1√
d
→
√

2 as d→ 0. (79)

Thus N = 2
√

2d1/2 + o(1) is positive for sufficiently small d. Therefore, ∂Λ̃3

∂D (d, d) < 0 when761

q1 + q2 = 1.762

Case III. q1 + q2 > 1. For this case, we have U∗1 → 0 and U∗i → 1 (i = 2, 3) as d→ 0. By the first763

equation of (53), we get764

U∗1
d
→ 2

q1 + q2 − 1
, as d→ 0. (80)

Substituting into (73), we get

N

d
=

2

q1 + q2 − 1
(1 + 1− o(1)) +

1

d+ q1
· 1 · (o(1)− 1) +

1

d+ q2
· 1 · (o(1)− 1) + o(1).

Hence,

lim
d→0+

N

d
=

(q1 + q2)− (q1 − q2)2

(q1q2)(q1 + q2 − 1)
.

Having determined the sign of N for d sufficiently small, (78) follows from Proposition 6.765

Proof of Theorem 7. Since d 7→ ∂Λ̃3

∂D (d, d) is analytic, all the roots are discrete. By Lemmas766

36 and 37, ∂Λ̃3

∂D (d, d) > 0 for d small and ∂Λ̃3

∂D (d, d) < 0 for d� 1. This says that the infinity and767

zero diffusion rates are local CvSSs. Furthermore, there exists at least one d∗ = d∗(q1, q2) such768

that ∂Λ̃3

∂D (d∗, d∗) = 0, and ∂Λ̃3

∂D (d, d) change sign from positive to negative in a neighborhood of769

d∗; i.e. d∗ is an evolutionary singular strategy which is not a CvSS.770
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