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Abstract. For N � 2, consider the system of N competing species which
are ecologically identical and having distinct di↵usion rates {Di}Ni=1, in an
environment with the carrying capacity m(x, t). For a generic class of m(x, t)
that varies with space and time, we show that there is a positive number D⇤
independent of N so that if Di � D⇤ for all 1  i  N , then the slowest
di↵using species is able to competitively exclude the rest of the species. In
the case when the environment is temporally constant or temporally periodic,
our result provides some further evidence in the a�rmative direction regarding
the conjecture by Dockery et al. in 1998. The main tool is the theory of the
principal Floquet bundle for linear parabolic equations.

1. Introduction

We consider the following Lotka-Volterra model for N competing species, all of
which are subject to unbiased dispersal:

8
>>>><

>>>>:

@tui(x, t) = Di�ui(x, t) + ui(x, t)
h
m(x, t)�

P
N

j=1 uj(x, t)
i

for x 2 ⌦, t > 0, 1  i  N,

@⌫ui(x, t) = 0 for x 2 @⌦, t > 0, 1  i  N,

ui(x, 0) = ui,0(x) for x 2 ⌦.

(1.1)

These N species are assumed to be identical except for their dispersal rates,
denoted by Di, 1  i  N . Without loss of generality, we may assume 0 < D1 <

... < DN . Here ⌦ is a bounded domain in Rn with smooth boundary @⌦ and outer
unit normal vector ⌫, � =

P
n

j=1 @xjxj is the Laplacian operator in Rn, @⌫ := ⌫ ·r
is the outer-normal derivative on @⌦. The initial data {ui,0}Ni=1 are assumed to
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be continuous and componentwise non-negative. The assumptions on m(x, t) will
be specified later.

How are the dispersal strategies of organisms shaped by their ambient envi-
ronment? In the seminal paper [17], Hastings formulated this question in terms
of a system of two reaction-di↵usion equations modeling the competition of two
phenotypes of the same species which are identical except for their dispersal rates.
Assuming the environment to be spatially heterogenous but temporally constant,
and that the two phenotypes disperse unconditionally, Hastings showed that the
slower di↵user can invade the faster di↵user when rare but not vice versa. Subse-
quently, Dockery et al. [12] introduced the system (1.1) of N competing species.
When N = 2, they proved that the slower di↵user always competitively exclude
the faster di↵user, regardless of the initial data; see also [27] for similar results in
patch models.

Theorem 1.1 ([12]). Suppose N = 2 and m = m(x) is nonnegative, nonconstant
and independent of t. If D1 < D2, then every positive solution of (1.1) satisfies

lim
t!1

(u1(·, t), u2(·, t)) = (⇥D1(·), 0) uniformly in x 2 ⌦,

where for D > 0, ⇥D is the unique positive solution of

D�⇥+⇥(m(x)�⇥) = 0 in ⌦, and @⌫⇥
��
@⌦

= 0. (1.2)

Moreover, it is conjectured that for nonconstant m = m(x) and N � 3, the
slower di↵user equilibrium E1 = (⇥D1 , 0, . . . , 0) likewise attracts all positive solu-
tions of (1.1). See Subsection 1.2 for further discussion on the recent progress on
this conjecture.

While the above results suggest that spatial heterogeneity selects against dis-
persal, the interaction between phenotypes becomes more subtle when there is a
mixture of spatial and temporal heterogeneity [24, 47]. For instance, the con-
jecture that slower di↵user wins does not hold for time-periodic environment
m = m(x, t). In fact, it is proved by Hutson et al. [24] that when m(x, t) is
time-peridoic, either the slower or faster di↵user may be selected, or there may
be coexistence of phenotypes. See [3] for further progress in this regard.

The work of Hastings and Dockery et al. has stimulated substantial mathe-
matical analysis of competition models involving two species. While early models
on the evolution of dispersal focused on the evolution of fixed, unconditional dis-
persal [20, 24, 32, 34], more recent studies have investigated conditional dispersal
[2, 6, 9, 10, 26, 28, 29]. An interesting application concerns the evolution of dis-
persal in stream populations, which are subject to an uni-directional drift [40]. It
has been shown that in some circumstances, faster dispersal is sometimes selected
for [35, 38]. See also [16, 30, 37].

Most of the existing results are restricted to the case when the number of
species is equal to two. In this case, the theory of monotone dynamical systems
[25, 31, 48] can be applied to determine the global dynamics of the competition
system. Results for three or more competing species are mostly restricted to the
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discussion of permanence or the existence of time-independent solutions [5, 8, 13,
14, 36, 41]. As such, the determination of long time dynamics remains an open
and challenging problem.

1.1. Main Result. In this paper, we consider the dynamics of (1.1) for general
environments m(x, t) 2 C

�,�/2(⌦⇥ [0,1)) satisfying a generic condition

lim inf
T!1

1

T

ˆ
T

0

ˆ
⌦
|m(x, t)� m̄(t)|2 dxdt > 0, (1.3)

where m̄(t) =
�
⌦m(x, t) dx. We fix the exponent 0 < � < 1 throughout this

paper. Condition (1.3) says that the environment is spatially heterogeneous, on
an average sense in time.

On the one hand, condition (1.3) is obviously satisfied for any non-constant
function m(x) in C

�(⌦). On the other hand, such a condition is necessary, as it
is demonstrated by McPeek and Holt [42] (and is rigorously proven in [24]) that
di↵usion rates are a selectively neutral trait in spatially homogeneous environ-
ments. Here C

�(⌦) and C
�,�/2(⌦⇥ [0,1) are respectively the usual Hölder and

parabolic Hölder spaces with exponent � (see, e.g. [33, Chap. IV.1]).
Our main result states that, among phenotypes performing unbiased dispersal,

excessive dispersal is always selected against.

Theorem 1.2. Given m(x, t) 2 C
�,�/2(⌦ ⇥ [0,1)) satisfying (1.3), there exists

B0 > 0 such that for any N � 1 and di↵usion rates

DN > DN�1 > ... > D1 � B0, (1.4)

every positive solution (ui)i=1 of (1.1) satisfies

lim
t!1

sup
x2⌦

|ui(·, t)| = 0 for 2  i  N. (1.5)

If, in addition, lim inf
t!1

1
T

´
T

0

´
⌦m(x, t) dxdt > 0 holds, then

lim inf
t!1

1

T

ˆ
T

0

ˆ
⌦
u1(x, t) dxdt > 0. (1.6)

Remark 1.3. It is well known that excessive dispersal is selected against when
dispersal is costly [15]. Here we demonstrate that spatial heterogeneity alone leads
to selection against excessive dispersal for a wide range of environments.

If m is asymptotically periodic in time, or asymptotically autonomous, we
obtain stronger convergence results.
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Corollary 1.4. Given m(x, t) 2 C
�,�/2(⌦ ⇥ [0,1)). Suppose there is a T

⇤
-

periodic function m
⇤ 2 C

�,�/2(⌦⇥ R) such that

lim
t!1

sup
x2⌦

|m(x, t)�m
⇤(x, t)| = 0

where m
⇤
satisfiesˆ

T
⇤

0

ˆ
⌦
m

⇤(x, t) dxdt > 0, and

ˆ
T

⇤

0

ˆ
⌦

��m⇤(x, t)�m⇤(t)
��2 dxdt > 0.

Then there exists B0 > 0 such that for any N � 1 and di↵usion rates (Di)Ni=1
satisfying (1.4), every positive solution u = (u1, ..., uN ) of (1.1) satisfies

lim
t!1

sup
x2⌦

|u1(x, t)� ✓D1(x, t)| = 0 (1.7)

and

lim
t!1

sup
x2⌦

|ui(x, t)| = 0 for 2  i  N, (1.8)

where ✓D1(x, t) is the unique T
⇤
-periodic, positive solution of

@t✓ = D1�✓ + ✓(m⇤(x, t)� ✓) in ⌦⇥ R, and @⌫✓
��
@⌦⇥R = 0. (1.9)

Remark 1.5. Note that B0 can be chosen independent of N � 2. When N = 2
and m is periodic in time, the above result is contained in [3] by the method of
monotone dynamical systems.

Corollary 1.6. Given m(x, t) 2 C
�,�/2(⌦⇥ [0,1)). Suppose there is a noncon-

stant function m̃ 2 C
�(⌦) such that

lim
t!1

sup
x2⌦

|m(x, t)� m̃(x)| = 0 and

ˆ
⌦
m̃ dx > 0, (1.10)

then there exists B0 > 0 such that for any N � 1 and di↵usion rates (Di)Ni=1
satisfying (1.4), every positive solution u = (u1, ..., uN ) of (1.1) satisfies

lim
t!1

sup
x2⌦

|u1(x, t)�⇥D1(x)| = 0 (1.11)

and

lim
t!1

sup
x2⌦

|ui(x, t)| = 0 for 2  i  N, (1.12)

where ⇥D1(x) is the unique positive solution of (1.2) with D = D1.

1.2. Temporally constant environments. In this subsection, we discuss our
result in connection with a conjecture of Dockery et al. [12]. Suppose

m 2 C
�(⌦) is non-constant, and

ˆ
⌦
m(x) � 0. (1.13)

If 0 < D1 < D2 < · · · < DN , then it follows from [12, Theorem 3.2] that the
system (1.1) has exactly N + 1 equilibria, which are given by

Ei = (0, ..., 0,⇥Di , 0, ..., 0) for 1  i  N, and E0 = (0, ..., 0),
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where for D > 0 the function ⇥D(x) denotes the unique positive solution of (1.2).
In case N = 2, Dockery et al. obtained a complete description of the dynamics of
(1.1) by applying the abtract tools of monotone dynamical systems.

Theorem 1.7 ([12, Lemmas 3.9 and 4.1]). Suppose N = 2, and let 0 < D1 < D2

be given. Let (u1, u2) be a nonnegative and nontrivial solution of (1.1), then

lim
t!1

(u1, u2) = Ei0 uniformly in ⌦,

where i0 = 1 or 2 is the least number i such that ui(x, 0) 6⌘ 0.

When N � 3, it is conjectured in [12] that the slowest di↵user continues to win
the competition.

Conjecture 1. Let N � 2, D1 < ... < DN be given. Let u = (u1, . . . , uN ) be

a nonnegative and nontrivial solution of (1.1), then u ! Ei0 uniformly in ⌦ as

t ! 1, where i0 2 {1, . . . , N} is the minimal number i such that ui(x, 0) 6⌘ 0.

Define D to be the collection of all finite subsets of R+ sets of positive real
numbers such that Conjecture 1 holds; i.e.

D = [1
N=1{(Di)

N

i=1 : 0 < D1 < · · · < DN and Conjecture 1 holds}.

By the result of Dockery et al., the family D contains all singleton and doubleton
sets of positive numbers. Can we say more about D?

The following stability result is contained in [7], which provides a step towards
an a�rmative answer to Conjecture 1.

Theorem 1.8 ([7, Theorem 1.4]). The collection D is open in the space of finite

sets relative to the Hausdor↵ metric.

We recall that the Hausdor↵ metric is given by

distH(A,B) = max

(
sup
x2A

inf
y2B

|x� y|, sup
y2B

inf
x2A

|x� y|
)

for any two non-empty subsets A,B of R. In particular, the collection of finite
subsets of R+ forms a metric space under the Hausdor↵ metric.

Corollary 1.6 implies that Conjecture 1 holds for all finite sets of di↵usion rates
that is bounded from below by a su�ciently large constant.

Theorem 1.9. Given m 2 C
�(⌦) which is non-constant and

´
⌦mdx > 0, there

exists B0 such that for any N 2 N and di↵usion rate (Di)Ni=1 such that (1.4)
holds, the equilibrium E1 attracts all positive solutions of (1.1). Furthermore, the

collection D contains all finite subsets of R+ which is bounded from below by B0,

i.e.

D ◆
1[

N=2

�
(Di)

N

i=1 : B0  D1 < ... < DN

 
.
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Proof. In this case, m = m(x) satisfies the hypotheses of Corollary 1.6. Given
N � 3, 0 < D1 < · · · < DN and a nonnegative, nontrivial solution u of (1.1),
we can assume without loss that ui(x, 0) 6⌘ 0 for all i. Furthermore, by strong
maximum principle, we may perform a translation in time and further assume
that ui(x, 0) > 0 in ⌦ for all i. We can then conclude that u ! E1 as t ! 1, by
Corollary 1.6. ⇤
Remark 1.10. A closely related theorem was obtained in [41], where it is proved
that if all species are fast di↵using, and if the carrying capacity of the i-th species
is equal tomi(x) such that

´
⌦mi dx is strictly decreasing in i, then the first species

(the one with the highest total carrying capacity) excludes the other species. To
study the evolution of dispersal, we are interested in the case when carrying
capacity m(x) is the same for all species, and our analysis requires a higher order
expansion of the principal Floquet bundle, which we introduce in Section 2.

1.3. Organization of the paper. In Section 2, we will recall the existence and
uniqueness of principal Floquet bundle, and its adjoint bundle. Using the princi-
pal Floquet bundle and its smooth dependence on coe�cients, which is established
recently in [7], we will derive some quantitative estimates of the asymptotic be-
havior of the principal Floquet bundle for large di↵usion rate. A key conclusion
says that the growth of the principal bundle is strictly increasing in di↵usion rate,
on an average sense. In Section 3, we establish some a priori estimates of solution
(ui)Ni=1 of (1.1), which is independent of the largeness of N . In Section 4, we prove
the main result, namely, Theorem 1.2. In Section 5, we prove Corollaries 1.4 and
1.6.
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2. The principal Floquet bundle

Let ⌦ be a bounded domain in Rn with smooth boundary @⌦ and outward
unit normal vector ⌫(x). Consider the linear elliptic operator of divergence form
(repeated indices are summed from 1 to n):

L' := �@xi(aij(x)@xj') for x 2 ⌦, (2.1)

endowed with the no-flux boundary operator:

B' := ⌫i(x)aij(x)@xj' for x 2 @⌦, (2.2)

where a(x) = (aij(x))ni,j=1 2 C
1+�(⌦;Rn

2
) for some 0 < � < 1 is symmetric and

satisfies, for some ⇤ > 1

1

⇤
|⇠|2  aij(x)⇠i⇠j  ⇤|⇠|2 for x 2 ⌦, ⇠ 2 Rn

. (2.3)

Definition 2.1. For D > 0, aij 2 C
1+�(⌦) satisfying (2.3), and c(x, t) 2

C
�,�/2(⌦⇥R), we say that (', H(t)) is the principal Floquet bundle corresponding

to (D, aij , c) if they satisfy
8
>>><

>>>:

@t'+DL' = c(x, t)'+H(t)' in ⌦⇥ R,
B' = 0 on @⌦⇥ R,
' > 0 in ⌦⇥ R,´
⌦ '(x, t) dx = 1 for all t 2 R.

(2.4)

We say that  (x, t) is the adjoint bundle if it satisfies
8
>>><

>>>:

�@t +DL = c(x, t) +H(t)' in ⌦⇥ R,
B = 0 on @⌦⇥ R,
 > 0 in ⌦⇥ R,´
⌦ '(x, 0) (x, 0) dx = 1.

(2.5)

For linear parabolic equations in one space dimension, the existence and unique-
ness of Floquet bundles, as characterized by the nodal properties of solutions as
in the classical Sturm–Liouville theory, was obtained by Chow et al. [11]. Subse-
quently, Mierczyński [43] generalized the existence and uniqueness of the principal
Floquet bundle when the spatial dimension is greater than one, by invoking the
general exponential separation results due to Poláčik and Tereščák [46]. Later
on, Huska and collaborators [21, 22, 23] significantly weakened the smoothness
assumptions on coe�cients, and proved continuous dependence of the principal
Floquet bundle on coe�cients of the linear problem. More recently, the smooth
dependence on coe�cients was obtained in [7]. The notion of principal Floquet
bundle generalizes the principal eigenvalue and eigenfunctions of uniformly ellip-
tic, or periodic-parabolic operators.

By a rescaling, we will assume without loss of generality that |⌦| = 1 through-
out this paper. Since the choices of ⌦, aij are fixed throughout this paper, we
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sometimes suppress the dependence of various constants on ⌦ and aij . For any
function c(x, t), set c̄(t) :=

�
⌦ c(x, t) dx, i.e. the spatial average of c at time t.

Theorem 2.2. Given (D, aij , c) 2 R+⇥C
1+�(⌦)⇥C

�,�/2(⌦⇥R), there is a unique

triplet ('(x, t), (x, t), H(t)) satisfying (2.4)-(2.5). Moreover, the mapping

R+ ⇥ [C1+�(⌦)]n⇥n ⇥ C
�,�/2(⌦⇥ R) ! [C2+�,1+�/2(⌦⇥ R)]2 ⇥ C

�/2(R)
(D, aij , c) 7! (', , H)

is smooth. Furthermore,

(a) sup
⌦⇥R

|H(t)|  sup
⌦⇥R

|c(x, t)|.

(b) Let (aij) be fixed. For each M > 0, there exists Ch = Ch(M) such that

for any D � 1 and c(x, t) satisfying sup
⌦⇥R

|c(x, t)� c̄(t)|  M , we have

1

Ch

 '(x, t)  Ch and
1

Ch

 '(x, t)  Ch in ⌦⇥ R. (2.6)

Proof. By replacing c(x, t) by c(x, t) � c̄(t) and H(t) by H(t) + c̄(t), we may
assume, without loss of generality, that c̄(t) ⌘ 0. We first prove the statements
concerning the principal bundle (', H), and then move on to prove properties of
the adjoint bundle  . Let '̃ be the unique positive solution to

8
><

>:

@t'̃�DL'̃ = c(x, t)'̃ in ⌦⇥ R,
B'̃ = 0 on @⌦⇥ R,´
⌦ '̃(x, 0) dx = 1.

(2.7)

The existence and uniqueness of '̃(x, t) are proved in [43, Theorem 2.1(iii)
and Corollary 2.4] using a general framework in [46]. By the standard parabolic

regularity theory, we observe that '̃ 2 C
2+�,1+�/2
loc

(⌦⇥ R). Now, letting

H(t) = � d

dt

⇥
log k'̃kL1(⌦)

⇤
= �

´
⌦ @t'̃ dx´
⌦ '̃ dx

and '(x, t) = '̃(x, t) exp
⇣´

t

0 H(s) ds
⌘
, it follows that ('(x, t), H(t)) satisfies (2.4),

including the normalization
´
⌦ '(x, t) dx ⌘ 1 for all t 2 R. By verifying that H(t)

is (globally) bounded in C
�/2(R), we can use standard Schauder’s estimates to

show that ' is also globally bounded in C
2+�,1+�/2(⌦⇥ R). We omit the details

and refer the readers to [7, Proof of Theorem A.1]. The smooth dependence of
('(x, t), H(t)) on coe�cients is established in [7, Proposition A.3] in a slightly
more general setting.

Next, integrate the first equation of (2.4) over x 2 ⌦ and use the no-flux
boundary condition we get

d

dt

ˆ
⌦
' dx =

ˆ
⌦
c' dx+H(t)

ˆ
⌦
' dx.
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Using the fact that
´
⌦ ' dx ⌘ 1 for all t 2 R, we deduce H(t) = �

´
⌦ c' dx, from

which (a) follows:

|H(t)| 
ˆ

|c(x, t)|'(x, t) dx 

sup
⌦

|c(·, t)|
� ˆ

'(x, t) dx = sup
⌦

|c(·, t)|.

To prove (b), we define '̂(x, ⌧) = '(x, ⌧/D), then '̂ satisfies the no-flux bound-
ary condition B'̂ = 0 on @⌦ and

@⌧ '̂� L' = ĉ(x, ⌧)' in ⌦⇥ R,
where ĉ(x, ⌧) = [c(x, ⌧/D) +H(⌧/D)]/D satisfies

kĉkL1(⌦⇥R)  2kckL1(⌦⇥R)/D  2M,

where we used (a) and D � 1. Then '̂ satisfies the uniform Harnack inequality
[22, Theorem 2.5], i.e. there exists CM > 1 (hereafter CM represents a generic
constant that depends only on M) such that sup⌦ '̂(·, ⌧)  CM inf⌦ '̂(·, ⌧) for all
⌧ 2 R, which is the same as

'(x, t)  CM'(y, t) for all x, y 2 ⌦, t 2 R. (2.8)

Using |⌦| = 1 and
´
⌦ ' dx ⌘ 1 for t 2 R, we can integrate the above inequality in

x or in y to deduce

1

CM

 '(x, t)  CM for all (x, t) 2 ⌦⇥ R. (2.9)

Having defined '(x, t) and H(t), we observe that  ̃(x, t) =  (x,�t)e
´ 0
�t H(⌧) d⌧

is the positive solution corresponding to (2.7) with c(x, t) replaced by c̃(x, t) :=

c(x,�t). So that by previous arguments  ̃ (and hence  ) exists in C
2+�,1+�/2
loc

(⌦⇥
R) and is uniquely determined by

´
⌦ '(x, 0) ̃(x, 0) dx = 1.

To show that  is (globally) bounded in C
2+�,1+�/2(⌦ ⇥ R), we observe that´

⌦ ' dx ⌘ 1 for all t. Indeed, by direct calculation,

d

dt

ˆ
⌦
' dx =

ˆ
⌦
('@t +  @t') dx

= �
ˆ
⌦
'(DL + (h+H) ) dx+

ˆ
⌦
 (DL'+ (h+H)') dx.

Using the no-flux boundary conditions B' = 0 = B , we can integrate by parts
and deduce that the last expression is zero. By (2.9) and

´
⌦ ' dx ⌘ 1, we have

1

CM


ˆ
⌦
 (x, t) dx  CM for all (x, t) 2 ⌦⇥ R.

Now, note that  also satisfies the Harnack inequality (2.8) with the same constant
CM , we deduce the uniform upper and lower bounds for  (x, t). This and (2.9)
completes the proof of (b).

Having proved that  is (globally) bounded in C
0(⌦ ⇥ R), we can apply the

standard parabolic estimate to deduce that  is (globally in time) bounded in
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C
2+�,1+�/2(⌦ ⇥ R). Finally, the smooth dependence of  on coe�cients can be

established similar as ' and we omit the details. ⇤
Next, we fix our choice of aij , c and consider the dependence on di↵usion rate D

of the corresponding principal bundle and its adjoint ('D, D, HD). We will ana-
lyze asymptotic behavior of ('D, D, HD) as D ! 1. Recall also that ('D, HD)
is di↵erentiable in D. Denote by ('0

D
, H

0
D
) 2 C

2+�,1+�/2(⌦⇥ R)⇥ C
�/2(R) their

Fréchet derivatives with respect to D.

Definition 2.3. Given L = �@xi(aij@xj ) as in (2.1).

(1) We define the inner-product in H
1(⌦) induced by (aij) as follows:

⌦
p, q

↵
a
:=

ˆ
⌦
aij@xip @xjq dx.

(2) We regard L as a sectorial operator in X = L
2(⌦) with domain

Dom(L) = {u0 2 W
2,2(⌦) : Bu0

��
@⌦

= 0}.

(3) Let e�tL : X ! X be the analytic semigroup generated by L, i.e. e�tL[�0] =
�(·, t), where �(x, t) is the unique solution to

8
><

>:

�t + L� = 0 in ⌦⇥ (0,1),

B� = 0 on @⌦⇥ (0,1),

�(x, 0) = �0(x) in ⌦.

(4) For given h 2 L
1(R;L2(⌦)), we define the quantities �h(x, t),  D[h](x, t)

and  ̂D[h](x, t) as follows:

�h(·, t) =
ˆ 1

0
e
�⌧L[h(·, t)� h̄(t)] d⌧ for t 2 R, (2.10)

 D[h](·, t) = D

ˆ
t

�1
e
�D(t�s)L[h(·, s)� h̄(s)] ds for t 2 R, (2.11)

 ̂D[h](·, t) = D

ˆ 1

t

e
�D(s�t)L[h(·, s)� h̄(s)] ds for t 2 R. (2.12)

Remark 2.4. Let

X2 =

⇢
u0 2 L

2(⌦) :

ˆ
⌦
u0 = 0

�
,

then the quantities �h,  D[h] and  ̂D[h] are well-defined functions in L
1(R;X2\

H
1(⌦)) thanks to the fact that e

�tL : X2 ! X2 is well-defined, and that there
exists positive constants C1, ⌫ such that the following semigroup estimates

ke�tL
u0kL2(⌦)  C1e

�⌫tku0kL2(⌦) and ke�tL
u0kH1(⌦) 

C1p
t
e
�⌫tku0kL2(⌦)

hold for all t > 0 and u0 2 X2. See (A.2) and (A.3). Further properties of  D an
 ̂D are proved in Appendix A.
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Proposition 2.5. There exist positive constants C
⇤
1 = C

⇤
1 (M) and D1 = D1(M)

such that for arbitrary c(x, t) 2 C
�,�/2(⌦) such that kc � c̄k

C0(⌦⇥R)  M , the

corresponding principal Floquet bundle ('D, D, HD) has the following asymptotic

behavior for all D � D1:

sup
t2R

|HD(t) + c(t)|  C
⇤
1

D
, (2.13)

and

lim sup
T!1

����
1

T

ˆ
T

0
H

0
D(t) dt�

1

D2
· 1
T

ˆ
T

0

⌦
 D[c],  ̂D[c]

↵
a
dt

���� 
C

⇤
1

D3
, (2.14)

where the integral operators  D,  ̂D are given in (2.11)-(2.12).

The operators  D,  ̂D are di�cult to compute as they are nonlocal in time.
For the purpose of applications, one needs to impose further regularity on the
potential function c(x, t) to determine the first order asymptotic behavior of the
principal bundle, as the following result illustrates.

Theorem 2.6. Given any M > 0, there exist C
⇤
2 = C

⇤
2 (M) and D2 = D2(M)

such that if c(x, t) 2 C
�,�/2(⌦) can be written as c(x, t) = m(x, t) + U(x, t) for

some m,U satisfying

km� m̄k
C�,�/2(⌦⇥R) + kU � ŪkL1(⌦⇥R)  M, (2.15)

(recall that m̄(t) =
´
⌦m(x, t) dx and Ū(t) =

´
⌦ U(x, t) dx), then the corresponding

principal Floquet bundle ('D, D, HD) has the following asymptotic behavior in

D � 1:

lim sup
T!1

����
1

T

ˆ
T

0
(HD(t)�HD⇤(t))dt+

✓
1

D
� 1

D⇤

◆
1

T

ˆ
T

0

⌦
�m(·, t),�m(·, t)

↵
a
dt

����

 C
⇤
2

����
1

D
� 1

D⇤

����

"
km� m̄k

C�,�/2(⌦⇥R)

D�/4
+ sup

t2R
kU(·, t)� Ū(t)kL2(⌦) +

1

D

#

(2.16)

holds for D
⇤
> D � D2, where �m(x, t) is given by (A.1). Furthermore,

lim sup
T!1

����
1

T

ˆ
T

0
HD(t)dt+

1

T

ˆ
T

0
c(t)dt+

1

D

1

T

ˆ
T

0

⌦
�m(·, t),�m(·, t)

↵
a
dt

����

 C
⇤
2

D

"
km� m̄k

C�,�/2(⌦⇥R)

D�/4
+ sup

t2R
kU(·, t)� Ū(t)kL2(⌦) +

1

D

#
(2.17)

holds for D � D2.

By (2.16), we observe that HD(t) is monotone increasing in large di↵usion
rates D � 1, on an average sense in time; see (2.18) below. This generalizes the
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well known monotonicity property of self-adjoint elliptic operators with respect to
di↵usion rate; see [1]. On the other hand, the monotonicity cannot be improved
to all positive di↵usion rate. In fact, when c(x, t) is T̃ -periodic in time, then
1
T̃

´
t+T̃

t
HD(s) ds is independent of t and is given by the principal eigenvalue µD

of certain periodic-parabolic eigenvalue problem. It is proved in [3, 24] that µD

is not increasing in D for certain time-periodic m(x, t).

Corollary 2.7. Suppose c(x, t) = m(x, t)+U(x, t) for some m,U such that (2.15)
holds for some constant M > 0, and that there is B � D2 and �0 > 0 such that

lim inf
T!1

1

T

ˆ
T

0

⌦
�m(·, t),�m(·, t)

↵
a
dt

� C
⇤
2 (M)


km� m̄k

C�,�/2

B�/4
+ sup

t2R
kU(·, t)� Ū(t)kL2(⌦) +

1

B

�
+ �0

where C
⇤
2 (M) and D2 are given in Theorem 2.6. Then

lim inf
T!1


1

T

ˆ
T

0
HD⇤(t)dt� 1

T

ˆ
T

0
HD(t)dt

�
� �0

✓
1

D
� 1

D⇤

◆
(2.18)

for any D,D
⇤
satisfying D

⇤
> D � B.

Proof of Corollary 2.7. It is a direct consequence of (2.16). ⇤

The proof of Proposition 2.5 is split into several lemmas. Inspired by [3], we
first obtain an asymptotic expansion of 'D (and respectively of  D) for D � 1.
For this purpose, define '2(x, t) and  2(x, t) by writing

'D(x, t) = 1 +
 D[c](x, t)

D
+
'2(x, t)

D2
,

 D(x, t) = 1 +
 ̂D[c](x, t)

D
+
 2(x, t)

D2
,

(2.19)

where the operators  D and  ̂D are defined in (2.11) and (2.12). By Theorem
2.2 and Lemma A.3, 'D, D, [c],  ̂[c] 2 C

�,�/2(⌦ ⇥ R), and therefore '2, 2 2
C

�,�/2(⌦⇥R) for each fixed D. By noting also that 'D � 1, D � 1, D[c],  ̂D[c]
all have zero spatial averages (see Remark 2.4), it is clear thatˆ

⌦
'2(x, t) dx = 0 and

ˆ
⌦
 2(x, t) dx = 0 for t 2 R. (2.20)

Lemma 2.8. There exist constants C
⇤
3 = C

⇤
3 (M) and D3 = D3(M) such that

1

T

ˆ
T

0

ˆ
⌦
|r'2|2 dxdt+

1

T

ˆ
T

0

ˆ
⌦
|r 2|2 dxdt  C

⇤
3

✓
1

DT
+ 1

◆
(2.21)

for D � D3 and T � 1.
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Proof. We only estimate '2, as the adjoint bundle  2 can be estimated in a
similar manner. By replacing c(x, t) and HD(t) by c(x, t)� c̄(t) and HD(t) + c̄(t)
respectively, we may assume without loss of generality that c satisfies

c 2 C
�,�/2(⌦⇥ R), c̄(t) ⌘ 0 and kckL1(⌦⇥R)  M. (2.22)

It follows from Lemma A.3 that  D[c] belongs to C
2+�,1+�/2(⌦ ⇥ R), hence '2

belongs to C
2+�,1+�/2(⌦⇥ R) by construction.

Using (2.19) and direct computation,
(
@t'2 +DL'2 = (c+HD)'2 +D(c+HD) D[c] + ⇣1(t) in ⌦⇥ R,
B'2 = 0 on @⌦⇥ R,

(2.23)

where ⇣1(t) is a function depending on t only. By Lemma B.2, we have

1

T

ˆ
T

0

ˆ
⌦
|r'2|2 dx dt  CM

✓
1

DT
+ 1

◆
sup
t2R

ˆ
⌦
|(c+HD) D[c]|2 dx

 C
0
M

✓
1

DT
+ 1

◆
,

provided D � 4⇤M/cp. Here we used (B.5) for the first inequality; and used
Theorem 2.2(a), kck1  M and Lemma A.2 for the second one. ⇤
Lemma 2.9. There exist C

⇤
4 , D4 depending only on M , and CM,D depending on

M and D, such that for any D � D4, T � 1 and kc� c̄k1  M , we have

����
1

T

ˆ
T

0
H

0
D(t) dt�

1

D2T

ˆ
T

0

⌦
 D[c],  ̂D[c]

↵
a
dt

���� 
C

⇤
4

D3
+

CM,D

T
. (2.24)

Proof. Again, we may assume without loss of generality that (2.22) holds. Di↵er-
entiating (2.4) with respect to D, we have

(
@t'

0
D
+DL'0

D
= c(x, t)'0

D
+HD(t)'0

D
� L'D +H

0
D
(t)'D in ⌦⇥ R,

B'0
D
= 0 on @⌦⇥ R.

(2.25)
Multiplying the first equation in (2.25) by  D and integrating in ⌦, we haveˆ

⌦
 D@t'

0
D dx =

ˆ
⌦
 D(�DL'0

D + (c+HD)'
0
D) dx�

⌦
'D, D

↵
a

+H
0
D(t)

ˆ
⌦
'D D dx.

Integrating by parts and using (2.5) and
´
⌦ 'D D dx ⌘ 1, we have

H
0
D(t) =

⌦
'D, D

↵
a
+

d

dt

ˆ
⌦
 D'

0
D dx.

Integrating over [0, T ] and dividing by T , we have

1

T

ˆ
T

0
H

0
D(t) dt =

1

T

ˆ
T

0

⌦
'D, D

↵
a
dt+

1

T

ˆ
 D'

0
D dx

�
T

t=0

. (2.26)
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Now, using the expansion (2.19), we have

1

T

ˆ
T

0
H

0
D(t) dt�

1

D2T

ˆ
T

0

⌦
 D[c],  ̂D[c]

↵
a
dt

=
⇣2(T )

D3
+

1

T

ˆ
⌦
 D'

0
D dx

�
T

t=0

=
CM

D3
+

CM,D

T
.

Here we apply the observation that sup
t2R

|
´
 D'

0
D
dx| < 1, which uses crucially

the smoothness of D 7! 'D as a mapping from R to C
2+�,1+�/2(⌦⇥ R), so that

sup
t2R

k'0
D(·, t)kL2(⌦) < 1;

and that

⇣2(T ) =
1

T

ˆ
T

0

h⌦
 D[c], 2

↵
a
+
⌦
 ̂D[c],'2

↵
a

i
dt+

1

DT

ˆ
T

0

⌦
'2, 2

↵
a
dt

is bounded by a constant CM depending only on M but is independent of T � 1,
by Lemmas 2.8 and A.2. ⇤

Proof of Proposition 2.5. Given anyM > 0 and fix any (aij) and c 2 C
�,�/2(⌦⇥R)

such that (2.22) holds. For each D � 1, let ('D(x, t), D(x, t), HD(t)) be the
principal Floquet bundle and its adjoint as given by Theorem 2.2. We will study
the asymptotic behavior of ('D, D, HD) for D � 1.

By Theorem 2.2(b), there exists Ch = Ch(M) such that for D � 1,

1

Ch

 'D(x, t)  Ch in ⌦⇥ R. (2.27)

By Theorem 2.2(a), kc+HDkL1(⌦⇥R)  2kckL1(⌦⇥R)  2M , so that we can apply
Lemma B.2 with g(x, t) = c(x, t)+HD(t), F ⌘ 0 and ⇣0 ⌘ 0, such that (B.3) says

sup
t2R

k'D(·, t)� 1kL2(⌦) 
p
2
⇤(2M)

cpD
sup
t2R

k'D(·, t)kL2(⌦)

 2
p
2
⇤M

cpD
· Ch :=

C
0
M

D
, (2.28)

where we used 'D(t) =
´
⌦ 'D dx ⌘ 1, and

´
⌦('D)2 dx  |Ch|2|⌦| = |Ch|2. Hence,

integrating the first equation of (2.4) over ⌦, and using
´
⌦ 'D dx ⌘ 1 for all t and

the no-flux boundary conditions, we have HD(t) = �
´
⌦ c(x, t)'D(x, t) dx, so that

HD(t) + c̄(t) = �
ˆ
⌦
(c(x, t)� c̄(t))'D(x, t) dx

= �
ˆ
⌦
(c(x, t)� c̄(t))('D(x, t)� 1) dx



PRINCIPAL FLOQUET BUNDLE AND THE DYNAMICS OF FAST DIFFUSING COMMUNITIES15

and hence

sup
t2R

|HD(t) + c̄(t)|  sup
t2R

kc� c̄(t)kL2(⌦) · k'D(x, t)� 1kL2(⌦) 
MC

0
M

D
.

This proves (2.13). Finally, (2.14) is proved by letting T ! 1 in (2.24) and
noting that the constant C⇤

4 is independent of T � 1. ⇤
Lemma 2.10. Suppose c 2 C

�,�/2(⌦ ⇥ R) can be written as c(x, t) = m(x, t) +
U(x, t), where m,U satisfy (2.15) for some M > 0, then there exist C

⇤
5 = C

⇤
5 (M)

and D5 = D5(M) such that for D � D5,

sup
t2R

���
⌦
 D[c],  ̂D[c]

↵
a
�
⌦
�m,�m

↵
a

���

 C
⇤
5

km� m̄k
C�,�/2(⌦⇥R)

D�/4
+ sup

t2R
kU � ŪkL2(⌦)

�
.

(2.29)

Proof. Observe that
(
 D[c] = �m + I1 + I2 := �m + ( D[m]� �m) + D[U ],

 ̂D[c] = �m + I3 + I4 := �m + ( ̂D[m]� �m) +  ̂D[U ],

where, by Lemmas A.2 – A.4, the terms on the right can be estimated as follows:
8
>>>><

>>>>:

sup
t2R

k�mkH1(⌦)  M,

sup
t2R

⇥
kI2kH1(⌦) + kI4kH1(⌦)

⇤
 C sup

t2R
kU � ŪkL2(⌦),

sup
t2R

�
kI1kH1(⌦) + kI3kH1(⌦)

�
 CD

��/4km� m̄k
C�,�/2(⌦⇥R).

(2.30)

We estimate the inner product
⌦
 D[c],  ̂D[c]

↵
a
by Cauchy-Schwartz inequality:

sup
t2R

���
⌦
 D[c],  ̂D[c]

↵
a
�
⌦
�m,�m

↵
a

���

 ⇤ sup
t2R

k�mkH1

4X

k=1

kIkkH1 + ⇤
4X

k=1

kIkk2H1

 C

km� m̄k
C�,�/2(⌦⇥R)

D�/4
+ sup

t2R
kU � ŪkL2(⌦)

�
,

where we used
��⌦p, q

↵
a

��  ⇤
´
⌦

��rp| · |rq
�� dx  ⇤krpkL2(⌦)krqkL2(⌦), which

follows from (2.3). ⇤

Proof of Theorem 2.6. Using Lemma 2.10, we can rewrite (2.24) into
����
1

T

ˆ
T

0
H

0
D(t) dt�

1

D2T

ˆ
T

0

⌦
�m,�m

↵
a
dt

����

 CM

D2


km� m̄k

C�,�/2

D�/4
+ sup

t2R
kU � ŪkL2(⌦) +

1

D

�
+

CM,D

T
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which holds for each D � D6 := max{D4, D5} and all T � 1. Integrating from D

to D
⇤, we obtain

����
1

T

ˆ
T

0
HD(t) dt�

1

T

ˆ
T

0
HD⇤(t) dt+


1

D
� 1

D⇤

�
1

T

ˆ
T

0

⌦
�m,�m

↵
a
dt

����

 CM

����
1

D
� 1

D⇤

����


km� m̄k

C�,�/2

D�/4
+ sup

t2R
kU � ŪkL2(⌦) +

1

D

�
+

CM,D|D⇤ �D|
T

for each D
⇤
> D � D6 and all T � 1. Letting T ! 1, we obtain (2.16). Finally,

(2.17) can be obtained by letting D
⇤ ! +1 in (2.16) and using (2.13). ⇤

3. Uniform in N estimates for the semiflow

Define

M0 := 2|⌦|kmkL1(⌦⇥R+).

Lemma 3.1. Let (ui)Ni=1 be a non-negative solution of (1.1) then

sup
t�0

NX

i=1

kui(·, t)kL1(⌦)  max

(
NX

i=1

kui(·, 0)kL1(⌦), |⌦| sup
⌦⇥R+

m

)
,

and

lim sup
t!1

NX

i=1

kui(·, t)kL1(⌦) < M0.

In particular, the set N , given by

N :=

(
ũ 2 C

0(⌦;RN

+ ) :
NX

i=1

kũikL1(⌦) < M0

)
,

is forward-invariant with respect to (1.1).

Proof. Integrate (1.1) over ⌦ and sum over 1  i  N , we have

d

dt

�����

NX

i=1

ui(·, t)

�����
L1(⌦)

=

�����

NX

i=1

ui(·, t)m

�����
L1(⌦)

�

�����

NX

i=1

ui(·, t)

�����

2

L2(⌦)

 ( sup
⌦⇥R+

m)

�����

NX

i=1

ui(·, t)

�����
L1(⌦)

� 1

|⌦|

�����

NX

i=1

ui(·, t)

�����

2

L1(⌦)

,

where we used Cauchy-Schwartz inequality for the last inequality. The assertions
follow from the properties of the solution to the logistic type ODE. ⇤

Let (ui)Ni=1 be a positive solution to (1.1). To emphasize that the constants
obtained in the following lemmas are independent of the number N of the species
in (1.1), we define the following notation:
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Definition 3.2. Let B > 0 be given. We say that the triple (N, ~D, ~u) such that

N 2 N, and ( ~D, ~u) =
�
(Di)

N

i=1, (ui)
N

i=1

�
2 [R+]

N ⇥ [C2,1(⌦⇥ R+)]
N

satisfies condition (HB) if ~u is a solution of (1.1) with di↵usion rates ~D, and
(
B  D1 < D2 < ... < DN ,

inf⌦ ui(·, 0) > 0 for all 1  i  N, and
P

N

i=1 kui(·, 0)kL1(⌦) < M0.
(3.1)

Lemma 3.3. Suppose (N, ~D, ~u) satisfy condition (HB) for some B > 0, then

DikuikL1(⌦⇥[t�1/Di,t])  e
1
B kmkL1(⌦⇥R)kui(·, t� 1/B)kL1(⌦) (3.2)

for 1  i  N and t � 1/B.

Proof. The spatial average ūi(t) of ui(x, t) satisfies the di↵erential inequality
d

dt
ūi(t)  kmkūi(t), so that

DikuikL1(⌦⇥[t�1/Di,t])  sup
[t�1/B,t]

ūi(t)  e
1
B kmk1 ūi(t� 1/B),

where we used Di � B in the first inequality. ⇤
Lemma 3.4. There exists C⇤

6 = C
⇤
6 (kmk1) such that if (N, ~D, ~u) satisfy condition

(HB) for some B � 1, then

sup
t�2

"
NX

i=1

kui(·, t)kC1+�(⌦)

#
 C

⇤
6 . (3.3)

Proof. Suppose B � 1, so that Di � 1 for all i. Fix t � 1 and define vi(x, ⌧ ; t) =
ui(x, t+ ⌧/Di) for each 1  i  N , then

8
><

>:

@⌧vi ��vi =
m(x,⌧/Di)�

PN
j=1 uj(x,⌧/Di)

Di
vi in ⌦⇥ [�1,1),

@⌫vi = 0 on @⌦⇥ [�1,1),

vi(x, 0; t) = ui(x, t) in ⌦.

(3.4)

Next, we drop the nonlinear terms so that vi satisfies the di↵erential inequality
@⌧vi � �vi  m(x,⌧/Di)

Di
vi. By the local maximum principle [33, Theorem 7.36],

there exists C independent of B � 1, t � 1 and i (and any information of ~u) such
that kvi(·, 0)kC0(⌦)  CkvikL1(⌦⇥[�1,0]), i.e.

kui(·, t)kC0(⌦)  CDikuikL1(⌦⇥[t�1/Di,t]). (3.5)

Using Lemma 3.3 and (3.5), we get

kui(·, t)kC0(⌦)  CDikuikL1(⌦⇥[t�1/Di,t])
 C

0kui(·, t� 1/B)kL1(⌦).

Since C
0 is independent of B � 1, t � 1 and 1  i  N , we can take summation

in i to get
NX

i=1

kui(·, t)kC0(⌦)  C
0

NX

i=1

kui(·, t� 1/B)kL1(⌦)  C
0
M0
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for t � 1. Hence,
NX

i=1

kuikC0(⌦⇥[1,1))  C
00 (3.6)

for some C 00 = C
00(kmk1) that is uniform across all (N, ~D, ~u) satisfying condition

(HB).
Having shown the L

1 boundedness of m �
P

ui, we now apply parabolic L
p

estimate to (3.4) (which can be regarded as a linear parabolic equation of vi with
L
1 bounded coe�cients) and the Sobolev embedding theorem, to get

kvi(· , · ; t)kC1+↵,(1+↵)/2(⌦⇥[0,1])  C
0 sup
t�1

kvi(· , · ; t)kL1(⌦⇥[�1,1]), (3.7)

from which we yield the following concerning ui for t � 2:

kui(·, t)kC1+↵(⌦)  C
0kuikL1(⌦⇥[t�1,t+1])  kuikC0(⌦⇥[1,1)) (3.8)

where C
0 is independent of i and t � 2. The estimate (3.3) follows upon taking

summation in i and using (3.6). ⇤

Lemma 3.5. There exists C
⇤
7 = C

⇤
7 (kmk1) > 0 such that if (N, ~D, ~u) satisfy

condition (HB) for some B � 1, then

sup
t�3

NX

i=1

kui(·, t)� ūi(t)kL2(⌦) 
C

⇤
7

B
, (3.9)

where the constant C
⇤
7 = C

⇤
7 (⌦, kmkL1) is independent of B � 1.

Proof. First, since B � 1, we can use Lemma 3.4 to find C
0 = 2C⇤

6 + kmk1 such
that

sup
t�2

NX

i=1

ūi(t) + sup
t�2

kh(·, t)k
C0(⌦)  C

0
,

where h(x, t) = m(x, t) �
P

N

i=1 ui(x, t), and that C
0 is chosen uniformly over all

N 2 N, di↵usion rates satisfying min(Di)Ni=1 � B, and initial data in N .
Let ũi(x, t) = ui(x, t)� ūi(t), then

´
⌦ ũi dx = 0 for all t and

1

Di

@tũi ��ũi =
1

Di

h(x, t)ui �
1

Di

 
⌦
h(x, t)ui(x, t) dx.

Muiltiply the above by ũi and integrate over x, then

1

2Di

d

dt

ˆ
⌦
|ũi|2 dx+

ˆ
⌦
|rũi|2 dx =

ˆ
⌦

h(x, t)

Di

uiũi dx

 �

ˆ
⌦
|ũi|2 dx+

C�

(Di)2

ˆ
⌦
|ui|2 dx. (3.10)
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By Poincaré’s inequality, there exists a constant cp = cp(⌦) > 0 depending only
on ⌦ such that 2cp

´
⌦ |ũi|2 dx 

´
⌦ |rũi|2 dx, and so

1

2Di

d

dt

ˆ
⌦
|ũi|2 dx+ cp

ˆ
⌦
|ũi|2 dx  C

0

D
2
i

kuik2
C0(⌦)

for t � 2,

where we have taken � = cp. Solving the above di↵erential inequality in t 7!
d

dt

´
⌦ |ũi|2 dx, we obtainˆ

⌦
|ũi(·, t)|2 dx  e

�2Dicp(t�2)
ˆ
⌦
|ũi(·, 2)|2 dx+

C

D
2
i
cp

kuik2
C0(⌦⇥[2,1))

 C
0
✓
e
�2Dicp +

1

D
2
i

◆
kuik2

C0(⌦⇥[2,1))

for t � 3 and 1  i  N , i.e.

sup
t�3

kũi(·, t)kL2(⌦) 
C

00

Di

kuikC0(⌦⇥[2,1)) 
C

00

B
kuikC0(⌦⇥[2,1)),

where we used Di � B. We may now sum over i to obtain (3.9). ⇤

Remark 3.6. By interpolating (3.3) and (3.9), we can show

sup
t�3

NX

i=1

kui(·, t)� ūi(t)kC0(⌦) 
C

|min1iN Di|✓
for some 0 < ✓ < 1.

The constant C only depends on �, and kmk1 (via C
⇤
6 (kmk1) and C

⇤
7 (kmk1)).

4. Proof of Main Theorem

In this section, we set aij = �ij , so that

L = ��, and B = ⌫ ·r.

For given m(x, t) 2 C
�,�/2(⌦̄ ⇥ [0,1)) satisfying (1.3), the function �m(x, t), as

defined in (2.10), can be written as

�m(·, t) = (��)�1[m(·, t)� m̄(t)] 2 C
2+�(⌦) for each t � 0,

where (��)�1 is the inverse of the sectorial operator �� on ⌦ with homogeneous
Neumann boundary condition in the space X

? = {' 2 C
�(⌦) :

´
⌦ ' dx = 0}.

Proof of Theorem 1.2. Step 1. Define M > 0 and �0 by

M := 1 + 2kmk
C0(⌦⇥[0,1),

and

�0 := min

⇢
1,

1

3
lim inf
T!1

1

T

ˆ
T

0

ˆ
⌦
|r�m(x, t)|2 dxdt

�
.
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Since m satisfies (1.3), Lemma A.5 implies 0 < �0  1. Having chosen M > 0 and
0 < �0  1, we can fix B0 � 1 so that

B0 � C
⇤
7 , and �0 � C

⇤
2

"
M

B
�/4
0

+
C

⇤
7

B0
+

1

B0

#
(4.1)

where C
⇤
2 = C

⇤
2 (M) and C

⇤
7 = C

⇤
7 (kmk1) are given in Theorem 2.6 and Lemma

3.5 respectively.

Step 2. For N � 2, DN > DN�1 > ... > D1 � B0 and (ui)Ni=1 be an arbitrary
positive solution of (1.1). We will show that

max
2iN

sup
⌦

ui ! 0 uniformly as t ! 1.

By Lemma 3.1, we can perform a translation in time and assume without loss of
generality that supt�0

P
N

i=1 ku(·, t)kL1(⌦) < 2|⌦|kmk1. By Lemmas 3.4 and 3.5,
we can further assume that

sup
t�0

�����

NX

i=1

ui(·, t)

�����
C1+�(⌦)

 C
⇤
6 and sup

t�0

�����

NX

i=1

(ui(·, t)� ūi(t))

�����
L2(⌦)

 C
⇤
7

B
,

(4.2)
where C

⇤
6 = C

⇤
6 (kmk1) and C

⇤
7 = C

⇤
7 (kmk1).

Step 3. Extend the domain of definition of m to ⌦⇥ R by

m(x, t) =

(
m(x, t) in ⌦⇥ [0,1),

m(x, 0) in ⌦⇥ (�1, 0)

and extend (ui)Ni=1 to ⌦ ⇥ R in the same way. By standard Schauder estimate,
the extended m and (ui)Ni=1 are in C

�,�/2(⌦). By setting aij = �ij (so that L = �
and B = ⌫ ·r) and setting

c(x, t) = m(x, t) + U(x, t) = m(x, t)�
NX

i=1

(ui(x, t)� ūi),

we can define the corresponding principal Floquet bundle ('D, D, HD) for any
D > 0. Now, we use (4.1) and (4.2) to verify that for D � B0,

lim inf
T!1

 
T

0

ˆ
⌦
|r�m(x, t)|2 dxdt

� C
⇤
2


km� m̄k1

D�/4
+ sup

t2R
kU(·, t)�Ū(t)kL2(⌦) +

1

D

�
+�0.

Hence, we can apply Corollary 2.7 to deduce that

lim inf
T!1

 
T

0
HDi(t) dt�

 
T

0
HD1(t) dt

�
� �0

✓
1

D1
� 1

Di

◆
> 0 (4.3)

holds for 2  i  N .
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Step 4. Since (ui) is componentwise positive, we may assume, without loss of
generality, that

0 < inf
x2⌦

ui(x, 0)  sup
x2⌦

ui(x, 0) < 1. (4.4)

Noting that ui(x, t) and C'Di(x, t)e
�
´ t
0 HDi

(⌧) d⌧ satisfy the same linear heat equa-
tion in ⌦⇥ [0,1) with di↵usion rate Di and weight h(x, t) = m�

P
ui, and the

Neumann boundary condition on @⌦⇥ [0,1), we can apply the comparison prin-
ciple, so that

ci'Di(x, t)e
�
´ t
0 HDi

(⌧) d⌧  ui(x, t)  ci'Di(x, t)e
�
´ t
0 HDi

(⌧) d⌧ (4.5)

in ⌦⇥ [0,1) for 1  i  N and for some positive constants ci, ci. Using (4.5), we
deduce that for each i � 2,

ui(x, t)

u1(x, t)
 C

h
e
�
´ t
0 HDi

(⌧) d⌧+
´ t
0 HD1 (⌧) d⌧

i
'Di(x, t)

'D1(x, t)

 C

h
e
�t[ 1t

´ t
0 HDi

(⌧) d⌧+ 1
t

´ t
0 HD1 (⌧) d⌧ ]

i
(Ch)

2 (4.6)

where we used the fact that the constant Ch in Theorem 2.2 is independent of
D � B for the last inequality. Using (4.3), we deduce that for each 2  i  N ,

sup
x2R

ui(x, t)

u1(x, t)
 C

0
e
�t

h
�0

⇣
1

D1
� 1

Di

⌘
+o(1)

i

for t � 1.

Using the fact that ku1kC0(⌦⇥[0,1))  C (by (4.2)), we can take t ! 1 and get

lim
t!1

sup
x2⌦

ui(x, t) = 0 for 2  i  N.

Step 5. It remains to assume lim infT!1
´
T

0 m̄(t) dt > 0 and show the weak per-
sistence of u1. For this purpose, fix �1 > 0 such that

lim inf
T!1

1

T

ˆ
T

0
(m̄(t)� �1) dx > 0.

Using Remark 3.6 and by taking B larger, we may assume that

m(x, t)�
NX

i=1

ui(x, t) � m(x, t)� ū1(t)� �1 in ⌦⇥ [T0,1)

for some T0 � 1. Hence, the function ū1(t) satisfies the di↵erential inequality

d

dt
ū1(t) � (m̄(t)� �1 � ū1(t))ū1(t) for t � T0.

First, observe that sup[T0,1) ū1  max{ū1(T0), sup m̄}. For T > t > T0, divide

both sides by ū1(t)
T

and integrate t over the interval [T0, T ], we have

1

T
log

ū1(T0) _ sup m̄

ū1(T0)
� 1

T
log

ū1(T )

ū1(T0)
=

1

T

ˆ
T

T0

m̄(t) dt� �1 �
1

T

ˆ
T

T0

ū1(t) dt
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where a _ b = max{a, b} for a, b 2 R. Moving 1
T

´
T

T0
ū1(t) dt to the left hand side,

and taking T ! 1, we obtain

lim inf
T!1

1

T

ˆ
T

0
ū1(t) dt = lim inf

T!1

1

T

ˆ
T

T0

ū1(t) dt � lim inf
T!1

1

T

ˆ
T

T0

m̄(t) dt� �1 > 0.

This proves the weak persistence of the slowest di↵user u1 [49]. ⇤
Remark 4.1. If m = m(x), or if m(x, t) is periodic in t, then we will see that u1
converges to E1 = (⇥D1 , 0..., 0) (⇥D1 being the positive equilibrium or periodic
solution of the single species problem). In such cases, strong persistence holds:

lim inf
t!1

inf
⌦

u1(x, t) > 0. (4.7)

However, we do not expect strong persistence to hold in general. Consider the
case when m(x, t) = p(t) � q(x) where 0 < q(x)  1/2 is nonconstant, |p(t)|  1
and satisfies

p(t) =

(
�1 for t 2 [1

k=2[k
2
, k

2 + k]

1 for t 62 [1
k=2[k

2 � 1, k2 + k + 1].

Then the hypotheses of Theorem 1.2 is satisfied, namely, (1.3) holds, and

lim inf
T!1

1

T

ˆ
T

0

 
⌦
m(x, t) dxdt � lim inf

T!1

1

T

ˆ
T

0

 
⌦


p(t)� 1

2

�
dxdt =

1

2
.

Now, let u1 be a positive solution to
8
><

>:

@tu1 = �u1 + u1(m(x, t)� u1) in ⌦⇥ (0,1),

@⌫u1 = 0 on @⌦⇥ (0,1),

0 < u(x, 0)  1 in ⌦.

Then the spatial average ū1(t) =
�
⌦ u1(x, t) dx satisfies

d

dt
ū1  ū1(p(t)� ū1) with ū1(0)  1,

and it is easy to see that sup ū1  1. But since

d

dt
ū1(t)  �ū1(t) in [k2, k2 + k], ū1(k

2)  1,

we deduce that there exists tk := k
2 + k ! 1 such that

ū1(tk)  e
�k ! 0 as k ! 1,

i.e. (4.7) does not hold in this case.

For general sectorial operator L given in (2.1) with boundary operator B be
given by (2.2), consider

8
><

>:

@tui(x, t) = DiLui(x, t) + ui(x, t)
h
m(x, t)�

P
N

j=1 uj(x, t)
i

for x 2 ⌦, t > 0, 1  i  N,

Bui(x, t) = 0 for x 2 @⌦, t > 0, 1  i  N.

(4.8)



PRINCIPAL FLOQUET BUNDLE AND THE DYNAMICS OF FAST DIFFUSING COMMUNITIES23

By repeating our proofs, one can show the counterpart of Theorem 1.2 for (4.8):

Theorem 4.2. Given aij 2 C
1+�(⌦), and m(x, t) 2 C

�,�/2(⌦⇥ [0,1)) satisfying
(1.3), there exists B0 > 0 such that for any N � 1 and di↵usion rates

DN > DN�1 > ... > D1 � B0, (4.9)

any positive solution (ui)i=1 of (4.8) satisfies

lim
t!1

sup
x2⌦

|ui(·, t)| = 0 for 2  i  N.

If we assume, in addition, lim infT!1
1
T

´
T

0

´
⌦m(x, t) dxdt > 0, then we have

lim inf
t!1

1

T

ˆ
T

0

ˆ
⌦
u1(x, t) dxdt > 0.

5. Proof of Corollaries 1.4 and 1.6.

We only prove Corollary 1.6, as the proof of Corollary 1.4 is analogous.

Proof of Corollary 1.6. First, let m̃(x) be nonconstant, independent of time, and
satisfies

´
⌦ m̃ dx > 0, it is well-known (see [4]) that the single species problem

8
><

>:

ũt = D1�ũ+ ũ(m̃� ũ) in ⌦⇥ (0,1),

@⌫ ũ = 0 on @⌦⇥ (0,1),

ũ(x, 0) = ũ0(x) in ⌦

(5.1)

has a unique positive equilibrium ⇥D1(x) that is globally asymptotically stable
among all nonnegative, nontrivial solutions.

Let m 2 C
�,�/2(⌦) be given such that (1.10) holds, i.e. m(x, t) is asymptotic

to m̃(x). Then it obviously satisfies (1.3) and

lim
T!1

1

T

ˆ
T

0
m(x, t) dxdt =

ˆ
⌦
m̃(x) dx > 0.

By Theorem 1.2, there exists B0 > 0 such that for any N � 2 and any DN >

DN�1 > ... > D1 � B0, each positive solution u = (ui)Ni=1 of (1.1) satisfies

lim
t!1

sup
x2⌦

|ui(x, t)| = 0 for 2  i  N

and

lim inf
t!1

1

T

ˆ
T

0

ˆ
⌦
u1(x, t) dxdt > 0. (5.2)

Consider the !-limit set !1 given by

!1 := {û 2 C(⌦) : u1(·, tn) ! û for some tn ! 1}.
Then it follows [19] that !1 is an internally chain transitive set of the semiflow
generated by the limiting equation (5.1). Since (5.1) has one trivial equilibrium,
and a unique positive equilibria ⇥D1 which attracts all nonnegative, nontrivial
solutions, it follows that !1 = {0} or !1 = {⇥D1}. In view of (5.2), we must have
!1 = {⇥D1}. Hence, u1 ! ⇥D1 as t ! 1. This completes the proof. ⇤
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Appendix A. Estimates

Let L = �@xj (aij@xi) be the sectorial operator in X = L
2(⌦), with domain

Dom(L) = {u0 2 W
2,2(⌦) : Bu0 = 0}, where L and its associated conormal

derivative operator B are defined in Section 2. Since L is self-adjoint, all of its
eigenvalues are real and can be enumerated as 0 = ⌫0 < ⌫1 < ⌫2 < .... Moreover,
the principal eigenvalue ⌫0 = 0 is simple and the principal eigenfunction �0 is a
constant. It follows from [18, Theorem 1.5.2] that X = X1 �X2, where

X1 := span{1} and X2 := {u0 2 L
2(⌦) :

ˆ
⌦
u0dx = 0}

are invariant under the action of the semigroup operator e�tL, and that the spec-
trum �(L

��
X2

) satisfies

�(L
��
X2

) = {⌫k}1k=1 ⇢ {z 2 C : Re z > ⌫} for some ⌫ > 0. (A.1)

Hence, it follows from [18, Theorem 1.5.4] that there exists C1 > 0 such that

ke�tL
u0kL2(⌦)  C1e

�⌫tku0kL2(⌦) for all u0 2 X2 and t > 0 (A.2)

and

ke�tL
u0kH1(⌦) 

C1p
t
e
�⌫tku0kL2(⌦) for all u0 2 X2 and t > 0. (A.3)

Let h(x, t) 2 L
1(⌦⇥R) be given. We define �h(x, t),  D[h](x, t) and  ̂D[h](x, t)

as follows:

�h(·, t) =
ˆ 1

0
e
�⌧L[h(·, t)� h̄(t)] d⌧ (A.4)

 D[h](x, t) = D

ˆ
t

�1
e
�D(t�s)L[h(·, s)� h̄(s)] ds (A.5)

and

 ̂D[h](x, t) = D

ˆ 1

t

e
�D(s�t)L[h(·, s)� h̄(s)] ds. (A.6)

Note that they are well defined in L
1(R;X2 \H

1(⌦)), by (A.2).

Lemma A.1. Let h(x, t) 2 L
1(⌦⇥ R) be given.

(a) For each t, x 7! �h(x, t) is the unique solution to

L�h = h(x, t)� h̄(t) in ⌦, B�h = 0 on @⌦, and

ˆ
⌦
�h dx = 0. (A.7)

(b) The function wD,h(x, t) =  D[h](x, t) satisfies

wD,h(x, t) =

ˆ 1

0
e
�⌧L[h(·, t� ⌧

D
)� h̄(t� ⌧

D
)] d⌧ (A.8)

and is the unique solution to
8
<

:

1
D
@twD,h + LwD,h = h(x, t)� h̄(t) in ⌦⇥ R,

BwD,h = 0 on @⌦⇥ R and lim sup
t!�1

kwD,h(·, t)kL2(⌦) < +1.
(A.9)
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(c) The function vD,h(x, t) =  ̂D[h](x, t) satisfies

vD,h(x, t) =

ˆ 1

0
e
�L⌧ [h(·, t+ ⌧

D
)� h̄(t+

⌧

D
)] d⌧ (A.10)

and is the unique solution to
8
<

:
� 1

D
@tvD,h + LvD,h = h(x, t)� h̄(t) in ⌦⇥ R,

BvD,h = 0 on @⌦⇥ R and lim sup
t!+1

kvD,h(·, t)kL2(⌦) < +1.
(A.11)

Proof. See [18]. ⇤
Lemma A.2. There exists C⌫ depending only on ⌫ and C1 such that

sup
t2R

k D[h](·, t)kH1(⌦) + sup
t2R

k ̂D[h](·, t)kH1(⌦)  C⌫ sup
t2R

kh(·, t)� h̄(t)kL2(⌦).

Proof. For t 2 R, we apply (A.3) to (A.8) to get

k D[h](·, t)kH1(⌦) 
ˆ 1

0

C1p
⌧
e
�⌫⌧

ds sup
s2R

kh(·, s)� h̄(s)kL2(⌦)

 C⌫ sup
s2R

kh(·, s)� h̄(s)kL2(⌦).

The proof for  ̂D[h] is analogous. ⇤

Lemma A.3. If h 2 C
�,�/2(⌦⇥ R), then  D[h],  ̂D[h] 2 C

2+�,1+�/2(⌦⇥ R).

Proof. By Lemma A.3, supt2R k D[h]kL2(⌦⇥[t�2,t]) < 1. Hence, by applying
standard parabolic estimates on the equation (A.9), we have

sup
t2R

k D[h]kC2+�,1+�/2(⌦⇥[t�1,t]) < 1,

although the bound may generally depend on D. The proof for  ̂D[h] is analogous
and is omitted. ⇤
Lemma A.4. There exists C⌫ depending only on ⌫ and C1 such that

(
supt2R k D[h](·, t)� �h(·, t)kH1(⌦)  C⌫D

��/4kh� h̄k
C�,�/2(⌦⇥R)),

supt2R k ̂D[h](·, t)� �h(·, t)kH1(⌦)  C⌫D
��/4kh� h̄k

C�,�/2(⌦⇥R)).

Proof. Combining (A.4) and (A.8), we write  D[h](x, t) � �h(x, t) = J1 + J2,
where

(
J1 =

´ p
D

0 e
�⌧L[h(·, t� ⌧

D
)� h(·, t)� h̄(t� ⌧

D
) + h̄(t)] d⌧,

J2 =
´1p

D
e
�⌧L[h(·, t� ⌧

D
)� h(·, t)� h̄(t� ⌧

D
) + h̄(t)] d⌧.

We use (A.3) to estimate J1 and J2. Indeed, we have

kJ1kH1(⌦) 
ˆ p

D

0

C1p
⌧
e
�⌫⌧kh(·, t� ⌧

D
)� h(·, t)� h̄(t� ⌧

D
) + h̄(t)kL2(⌦) d⌧
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 C(1/
p
D)�/2kh� h̄kC�/2(R;C0(⌦))

ˆ p
D

0

C1p
⌧
e
�⌫⌧

d⌧

 CD
��/4kh� h̄k

C�,�/2(⌦⇥R)

and

kJ2kH1(⌦) 
ˆ 1

p
D

C1p
⌧
e
�⌫⌧kh(·, t� ⌧

D
)� h(·, t)� h̄(t� ⌧

D
) + h̄(t)kL2(⌦) d⌧

 2kh� h̄k
C0(⌦⇥R)e

�⌫
p
D

ˆ 1

p
D

C1p
⌧ �

p
D

e
�⌫(⌧�

p
D)

d⌧

 Ce
�⌫

p
Dkh� h̄k

C0(⌦⇥R).

The proof for  ̂D[h] is analogous and is omitted. ⇤
Lemma A.5. Given h 2 L

1((0,1);C�(⌦)). If

lim inf
T!1

1

T

ˆ
T

0

ˆ
⌦
|h(x, t)� h̄(t)|2 dxdt > 2⌘ > 0 for some ⌘ > 0, (A.12)

then

lim inf
T!1

1

T

ˆ
T

0

ˆ
⌦
|r�h(x, t)|2 dxdt > 0.

Proof. Define

A⌘ := {t :
ˆ
⌦
|h(x, t)� h̄(t)|2 dx � ⌘}.

Step 1. We claim that lim inf
T!1

1
T

´
[0,T ]\A⌘

´
⌦ |h(x, t)� h̄(t)|2 dxdt > ⌘.

This is a consequence of (A.12) and 1
T

´
[0,T ]\A⌘

´
⌦ |h(x, t)� h̄(t)|2 dxdt  ⌘.

Step 2. We claim that lim inf
T!1

1
T
|[0, T ] \A⌘| > 0.

Indeed, we have

lim inf
T!1

1

T
|[0, T ] \A⌘| �

lim inf
T!1

1
T

´
[0,T ]\A⌘

´
⌦ |h(x, t)� h̄(t)|2 dxdt

4|⌦|khk2
L1(⌦⇥R)

> 0.

Step 3. We claim that there is a constant c⌘ > 0 such that

inf
t2A⌘

ˆ
⌦
|r�h(x, t)|2 dx � c⌘. (A.13)

Suppose not, then there exists a sequence tk 2 A⌘ such that as tk ! 1,ˆ
⌦
|r�h(x, tk)|2 dx & 0.

Since h 2 L
1(R;C�(⌦)), we may assume without loss of generality that h(·, tk) !

h1(·) strongly in L
2(⌦). Hence,

´
⌦ |h1(x)�h̄1|2 dx � ⌘ > 0 and hence L�1

h1 2
H

1(⌦) is non-constant. Recall that the sectorial operator L is invertible inX2 (the
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space of L2 functions with zero spatial average). Moreover that L�1 : X2 ! H
1(⌦)

is compact, so that

�h(·, tk) = L�1
h(·, tk) ! L�1

h1 in H
1(⌦),

and hence we reach a contradiction:

0 = lim
k!1

ˆ
⌦
|r�h(x, tk)|2 dx =

ˆ
⌦
|rL�1[h1]|2 dx > 0.

This proves the claim.
Finally, we use Steps 3 and 4 to deduce

lim inf
T!1

1

T

ˆ
T

0

ˆ
⌦
|r�h(x, t)|2 dxdt

�

inf
t2A⌘

ˆ
⌦
|r�h(x, t)|2 dx

�
lim inf
T!1

1

T
|[0, T ] \A⌘| > 0.

This completes the proof. ⇤

Appendix B. Calculus Lemmas

Lemma B.1. Suppose p(t) satisfies sup
t2R

p(t) < +1 and the di↵erential inequality

p
0(t) +A1p(t)  B1 for t 2 R,

where A1 > 0 and B1 2 R are constants, then sup
t2R

p(t)  B1/A1.

Proof. Multiply the di↵erential inequality by e
A1t and integrate from s to t, then

p(t)  e
�A1(t�s)

p(s) +
B1

A1
(1� e

�A1(t�s)) for any �1 < s < t < 1.

Fix t and send s ! �1, by sup
s2R

p(s) < +1 we obtain the desired estimate. ⇤

Given a smooth bounded domain ⌦ in Rn. The Poincaré’s inequality asserts
the existence of a positive constant cp which depends only on ⌦ and n such that

2cp

ˆ
⌦

���(x)� �̄
��2 dx 

ˆ
⌦
|r�|2 dx for all � 2 H

1(⌦), (B.1)

where we recall that �̄ = 1
|⌦|

´
⌦ �(y) dy.

Lemma B.2. Let v(x, t) be a classical solution of
8
><

>:

@tv �DLv = F (x, t) + g(x, t)v(x, t) + ⇣0(t) in ⌦⇥ R,
Bv = 0 on @⌦⇥ R,
supt2R

⇥´
⌦ |v(x, t)|2 dx

⇤
< 1,

(B.2)

where L = @xi(aij@j) and B = ⌫iaij@xj are given in (2.1)-(2.2) such that aij

satisfies (2.3) for some constant ⇤ > 1, and

kgkL1(⌦⇥R) + sup
t2R

kF (·, t)kL2(⌦) < +1.
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Then

sup
t2R

ˆ
⌦
|v(x, t)�v̄(t)|2 dx  2

✓
⇤

cpD

◆2 
sup
t2R

kFk2
L2(⌦) + kgk2

L1(⌦⇥R) sup
t2R

kvk2
L2(⌦)

�
.

(B.3)
Assume, in addition, v̄(t) ⌘ 0 for all t 2 R and D � 2⇤kgkL1(⌦⇥R)/cp, then

sup
t2R

ˆ
⌦
|v(x, t)|2 dx  4

✓
⇤

cpD

◆2

sup
t2R

ˆ
⌦
|F (x, t)|2 dx, (B.4)

and

1

T

ˆ
T

0

ˆ
⌦
|rv|2 dx dt  4⇤2


2⇤

Dc2pT
+

1

cp

�
sup
t2R

ˆ
⌦

|F (x, t)|2

D2
dx. (B.5)

Proof. Let ṽ(x, t) = v(x, t)� v̄(t), then Bṽ = 0 on @⌦⇥ R and

@tṽ �DLṽ = F + gv + ⇣1(t), (B.6)

where ⇣1(t) = ⇣0(t)� (F + gv)(t). Multiply (B.6) by ṽ and integrate by parts, we
have

1

2

d

dt

ˆ
⌦
ṽ
2 +D

ˆ
⌦
aij ṽxi ṽxj =

ˆ
⌦
F ṽ +

ˆ
⌦
gvṽ

where we used
´
⌦ ṽ(x, t)⇣1(t) dx ⌘ 0.

Using (2.3), we have, for any � > 0,

1

2

d

dt

ˆ
⌦
ṽ
2 +

D

⇤

ˆ
⌦
|rṽ|2  2�

ˆ
⌦
ṽ
2 +

1

4�

ˆ
⌦
F

2 +
1

4�

ˆ
⌦
g
2
v
2
.

Taking � = Dcp

4⇤ , and using (B.1) we have

1

2

d

dt

ˆ
⌦
ṽ
2+

D

2⇤

ˆ
⌦
|rṽ|2  ⇤

cpD

ˆ
⌦
F

2 + kgk2
L1(⌦⇥R)

ˆ
⌦
v
2

�
for t 2 R. (B.7)

Applying (B.1) on the second term on the left side, we have

1

2

d

dt

ˆ
⌦
ṽ
2 +

cpD

2⇤

ˆ
⌦
|ṽ|2  ⇤

cpD

ˆ
⌦
F

2 + kgk2
L1(⌦⇥R)

ˆ
⌦
v
2

�
for t 2 R. (B.8)

By our assumption, the right hand side of (B.8) is bounded uniformly in t 2 R,
so we can apply Lemma B.1 to deduce (B.3).

Next, assume

v̄(t) ⌘ 0 and D � 2⇤kgkL1(⌦⇥R)/cp,

then ṽ = v and (B.4) follows from (B.3).
Substituting (B.4) into (B.7), we get

1

2

d

dt

ˆ
⌦
v
2 +

D

2⇤

ˆ
⌦
|rv|2  2⇤

cpD

ˆ
⌦
F

2 for t 2 R.
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Integrate the above over [0, T ], and divide by DT , we get

1

2DT

ˆ
⌦
v
2
dx

�
T

t=0

+
1

2⇤T

ˆ
T

0

ˆ
⌦
|rv|2  2⇤

cpD
2T

ˆ
T

0

ˆ
⌦
F

2
.

Hence,

1

2⇤T

ˆ
T

0

ˆ
⌦
|rv|2 dx dt  1

DT
sup
t2R

ˆ
⌦
v
2
dx+

2⇤

cpD
2
sup
t2R

ˆ
⌦
F

2
dx.

Upon combining with (B.4), we obtain (B.5). ⇤
Remark B.3. By letting T ! 1 in (B.5),

lim sup
T!1

1

T

ˆ
T

0

ˆ
⌦
|rv(x, t)|2 dxdt  4⇤2

cpD
2
lim sup
t!1

1

T

ˆ
T

0

ˆ
⌦
|F (x, t)|2 dx (B.9)

holds uniformly for D � 2⇤kgkL1(⌦⇥R)/cp.
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[21] J. Húska and P. Poláčik, The principal Floquet bundle and exponential separation for linear
parabolic equations, J. Dynam. Di↵erential Equations 24 (2004) 1312-1330.
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