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Exploring the evolutionary dynamics of infectious
diseases through SIS epidemic models

KING-YEUNG LAM, YUAN LOU, and SHIZHAO MA

For the spread and evolution of infectious diseases, we incorporate
phenotypic structure into Susceptible-Infected-Susceptible (SIS)
epidemic models of the reaction-diffusion type. It is shown that
the unique disease-free equilibrium is globally asymptotically sta-
ble when the basic reproduction number is less than one, and the
infected population persists when the basic reproduction number
is greater than one. The asymptotic profile of the endemic equilib-
rium is determined when the mutation rate of the infected popu-
lation converges to zero. We integrate analytical results with nu-
merical simulations to investigate how multiple phenotypic traits
evolve. Our findings confirm that the susceptible population evolves
to be primarily made up of individuals with low immunity, while
the infected population is eventually comprised of highly infectious
individuals with low mutation rate. These results indicate that as
the disease infectivity continues to increase, the group immunity
will decrease. In addition, if the virus mutation rate is initially
small, it will first increase rapidly before eventually decreasing. Fi-
nally, those strains with low mutation rates are more advantageous,
i.e. the virus might first employ the high mutation rate to increase
infectivity and decrease immunity, and then use the low mutation
rate to maintain high infectivity and low immunity.

1. Introduction

The coronavirus pandemic 2019 (COVID-19) is caused by the infection of
SARS-CoV-2 disease [1]. First discovered in December of 2019, the disease
spread rapidly across the globe. As of December 14, 2022, a total number
of 650,661,649 confirmed cases are reported along with 6,656,920 deaths [2].
COVID-19 has become one of the largest epidemics in human history.

During the early phase of COVID-19, the virus evolved rapidly and
maximized transmission between individuals [3, 4, 5]. As the vaccinated
and infected population grows, host immune pressure increases the selection
of SARS-CoV-2 variants that is more prone to immune escape [3, 4, 5].
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Antigenic drift, which is caused by the high viral mutation rate, enables
immune escape, and limits the duration of immunity conferred by infection
or vaccination. This is especially relevant in the evolution of SARS-CoV-2
[3].

The World Health Organization has classified 5 major variants of con-
cern (VOC) regarding SARS-CoV-2. They include the Alpha variant (De-
cember 2020), the Beta variant (December 2020), the Gamma variant (Jan-
uary 2021), the Delta variant (May 2021) and the Omicrion variant (August
2021) [6].

Since the outbreak of COVID-19, the adaptive evolution of virus can be
observed in terms of the changes of transmissibility, virulence and immune
escape [6]. As the virus evolves, each VOC seemed to be more infectious than
the strain it displaced [7, 6, 8]. Most of VOCs feature immune escape muta-
tion [5, 9], especially Omicron, which spreads explosively between individuals
with high immunity due to previous infection or vaccination [5, 10, 11].

While viral immune escape and transmissibility are also under strong
evolutionary pressure, the evolution of virulence is typically a by-product of
these effects and is hard to predict. Ultimately, the evolution of virulence
depends on the complex interactions between factors in both the host and
the pathogen [5].

Mathematical modeling [12, 13, 14, 15] has played an important role
in describing the dynamics of infectious diseases and in policy making. Us-
ing systems of nonlinear differential equations, classical epidemic models
aim to predict and provide a guide for policy-makers for the goals of dis-
ease prevention and control. The research of partial differential equation
(PDE) epidemiological models mainly focuses on the influence of spatial (or
phenotypic) heterogeneity on disease progression. See, for instance the spa-
tial Susceptible-Infected-Susceptible (SIS) epidemic reaction-diffusion model
[16] and a population evolution model with a continuously varying pheno-
typic trait [17].

In this paper, we introduce a set of partial differential equation models
with phenotypic heterogeneity to better understand the spread and evolu-
tion of diseases. These PDE models take into account the heterogeneity in
the susceptibility (determined by host immunological trait) of the healthy
population as well as the heterogeneity in the infectiousness (determined by
virus variants) of the population inflicted with the disease. In these models,
we presume that gene expression affect the immunological trait, and the
viral strain determines the infectivity of the infected population. In a long-
lasting epidemic, it is commonly observed that the immunity of susceptible
population decreases, while the infectivity of infected population increases.



Exploring the evolutionary dynamics of infectious diseases 3

Based upon the mutation of quantitative traits in infectious diseases, our
models suggest some underlying mechanism for the evolution of infectivity,
immunity and mutation rate.

The rest of the paper is organized as follows. In Sect. 2, we introduce
several structured SIS PDE models for infectious diseases and perform the
mathematical analysis of the continuous trait models, together with the
numerical simulations of the dynamics of the models. We also consider the
asymptotic profile of the endemic equilibrium as the mutation rate converges
to zero. In Sect. 3, building upon the models in Sect. 2, we introduce another
set of structured mathematical models to study the evolution of the mutation
rate, and numerical simulations are presented to explore the evolutionary
trend of the infectious diseases. Some discussions are given in Sect. 4.

2. Evolution of infectivity and immunity

We start by introducing the Kermack-McKendrick model in epidemiology
[18, 19]. A population is divided into susceptible compartment and infected
compartment according to the proportion of uninfected and infected popu-
lations over the time. To be more specific, let S(t) and I(t) be the number of
susceptible individuals and infected individuals at time t, respectively. The
susceptible individuals become infected with the transmission rate β and the
infected individuals recover at the rate γ. It is assumed that each infected in-
dividual after recovery immediately becomes susceptible again. This process
is illustrated in Fig. 1A. The corresponding Susceptible-Infected-Susceptible
model is described by the system

(2.1)

{
S′(t) = − βSI

S+I + γI,

I ′(t) = βSI
S+I − γI, t > 0.

This simple epidemic model (2.1) ignores individual variations in sus-
ceptibility and immunity. On the other hand, the heterogeneity of the pop-
ulation can be captured by introducing multiple compartments [20].

The properties which determine a host’s infectivity, such as the viral
load levels or the virus variants with higher infectivity, can differ among
individuals over time [14]. To explore the effects of individual variations, we
extend the single strain case (2.1) into the case of multiple infected groups Ij
that is infected with different virus strains j (j = 1, ...,m). Similarly, we take
into account n immunological types (or other properties that determine the
susceptibility, such as differential exposure to infection [12]) of susceptible
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Figure 1: Schematic illustrations of models. (Panel A) S (or I) repre-
sents susceptible (or infected) individuals; (Panel B) Si (i = 1, ..., n) indi-
cates the susceptible sub-populations with varied immunological traits, and
Ij (j = 1, ...,m) indicates the sub-populations infected with virus strain j.
An illustration of m = n = 2 is given in Fig. 1B. The dashed lines represent
the mutation process, while the solid lines represent the transmission and
recovery.

individuals in order to model the individual variations in susceptibility to

infection.

On the basis of the above assumption, we construct an epidemic model

in which all individuals are divided into n+m classes: The uninfected pop-

ulation is divided according to the type host immunological trait indexed

by i (Si, i = 1, ..., n), and the infected population is divided according to

the viral strain indexed by j (Ij , j = 1, ...,m). Note that we do not consider

infection of an individual by more than one strain. This model highlights

population heterogeneity and link heterogeneity to disease transmission rate

and recovery rate, that is, different individuals can be characterized by their

transmission rate or recovery rate. We assume that Si(t) denotes the num-

ber of susceptible individuals of type i at time t; Ij(t) indicates the num-

ber of individuals infected with virus strain j at time t, respectively. Let

S = (S1, S2, ..., Sn), I = (I1, I2, ..., Im) and define the n ×m matrix β, the

m× 1 matrix γ and the n× 1 matrix θ as follows:
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β =


β11 β12 · · · β1m
β21 β12 · · · β1m
...

...
. . .

...
βn1 βn2 · · · βnm

 , γ =


γ1
γ2
...
γm

 , θ =


θ1
θ2
...
θn

 ,

where βij represents the transmission rate at which susceptible individu-

als Si become infected with the virus strain j; γj is the recovery rate for

the disease caused by virus strain j; θi denotes the probability that, as an

infected individual recovers, he/she enters the susceptible compartment Si

after recovery. Note that the vector θ satisfies
n∑
i=1

θi = 1, i.e. every recovered

person becomes susceptible again.

In order to incorporate the adaptation of individuals into the mathemat-

ical model, we use the mutation matrix to model the effect of the genetic or

phenotypic variations occurring at rate dS and dI , respectively. We define

the n× n mutation matrix M and m×m mutation matrix N as follows:

M =


M11 M12 · · · M1n

M21 M22 · · · M2n
...

...
. . .

...
Mn1 Mn2 · · · Mnn

 , N =


N11 N12 · · · N1m

N21 N22 · · · N2m
...

...
. . .

...
Nm1 Nm2 · · · Nmm

 ,

where M and N satisfy

Mii < 0, Mij ≥ 0 for i 6= j, and

n∑
i=1

Mij = 0 for all j,

and

Nii < 0, Nij ≥ 0 for i 6= j, and

m∑
i=1

Nij = 0 for all j.

This process is shown in Fig. 1B for the case m = n = 2. The model is

described by a system of n+m ordinary differential equations as follows:
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(2.2)

dSi

dt = dS

n∑
k=1

MkiSk︸ ︷︷ ︸
Mutation

−

m∑
j=1

βijIj

n∑
i=1

Si +
m∑
j=1

Ij

Si

︸ ︷︷ ︸
Infection

+ θi

n∑
j=1

γjIj︸ ︷︷ ︸
Recovery

, t > 0, i = 1, ..., n,

dIj
dt = dI

m∑
k=1

NkjIk︸ ︷︷ ︸
Mutation

+

n∑
i=1

βijSi

n∑
i=1

Si +
m∑
j=1

Ij

Ij

︸ ︷︷ ︸
Infection

− γjIj ,︸︷︷︸
Recovery

t > 0, j = 1, ...,m.

Next, we let n,m→∞ and extend the multi-compartment model (2.2)
to a continuum (in trait) version. For this purpose, we introduce the con-
tinuous variables x ∈ Ω1 = [0, L1] and y ∈ Ω2 = [0, L2] for the phenotypic
state of populations. As a result, S(x, t) denotes the density of susceptible
population with phenotypic state x at time t and I(y, t) denotes the density
of infected population with phenotypic state y at time t, respectively.

Generally speaking, x (or y) can refer to the expression levels of marker
genes and can be measured by single cell sequencing techniques [21]. For
simplicity, we refer to x as quantities that affect immunological trait and
y as quantities that affect infectivity, that is, the coefficients β, γ and θ in
model (2.2) are individual-specific and depending on the state x or y in the
population. We suppose that β(x, y) accounts for the rate of disease trans-
mission with phenotypic state x and y; Infected individuals with phenotypic
state y recover at rate γ(y). As in model (2.2), the probability of individuals

becoming susceptible again, θ(x), satisfies
∫ L1

0 θ(x) dx = 1. The dynam-
ics of the susceptible and infected populations is modeled by the following
reaction-diffusion system, which generalizes (2.2):

(2.3)

St(x, t) = dSSxx(x, t)−
∫ L2
0

β(x,y)I(y,t) dy∫ L1
0

S(x,t) dx+
∫ L2
0

I(y,t) dy
S(x, t)

+θ(x)
∫ L2

0 γ(y)I(y, t) dy, 0 < x < L1, t > 0,

It(y, t) = dIIyy(y, t) +
∫ L1
0

β(x,y)S(x,t) dx∫ L1
0

S(x,t) dx+
∫ L2
0

I(y,t) dy
I(y, t)− γ(y)I(y, t),

0 < y < L2, t > 0,

Sx(x, t) = Iy(y, t) = 0, x ∈ {0, L1}, y ∈ {0, L2}, t > 0,

S(x, 0) = S0(x) ≥ 0, I(y, 0) = I0(y) ≥ 0, 0 < x < L1, 0 < y < L2.
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The interpretations of all nonnegative parameters in model (2.3) are
given in Table 1.

Table 1: The variables in model (2.3)

NotationDescription
x Immunity status of susceptible individuals
y Infectivity status of infected individuals
S(x, t) The density of susceptible population with phenotypic state x at time t
I(y, t) The density of infected population with phenotypic state y at time t
dS The mutation rate of immunity
dI The mutation rate of infectivity
β(x, y) The rate of disease transmission
γ(y) The rate of recovery
θ(x) The probability of individuals at state x becoming susceptible again
[0, L1] The mutation space of immunity x
[0, L2] The mutation space of infectivity y

We define the size of susceptible and infected populations at time t,
respectively, as follows:

S̄(t) =

∫ L1

0
S(x, t) dx, Ī(t) =

∫ L2

0
I(y, t) dy.

Moreover, we define the mean phenotypic state at time t as

x̄(t) =

∫ L1

0 xS(x, t) dx∫ L1

0 S(x, t) dx
, ȳ(t) =

∫ L2

0 yI(y, t) dy∫ L2

0 I(y, t) dy
.

Throughout this paper, we assume that the initial conditions satisfy∫ L1

0
S(x, 0) dx+

∫ L2

0
I(y, 0) dy = N,

where N is a positive constant which is fixed throughout this paper.
Integrating the equation of S over x and integrating the equation of I

over y, summing two equations, we deduce that

∂

∂t

(∫ L1

0
S(x, t) dx+

∫ L2

0
I(y, t) dy

)
= 0, t > 0.

Therefore, it follows that

(2.4)

∫ L1

0
S(x, t) dx+

∫ L2

0
I(y, t) dy ≡ N for all t ≥ 0.
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We are interested in the non-negative equilibrium solutions of model
(2.3), that is, the non-negative solutions of the following system:

(2.5)
dSSxx(x)−

∫ L2
0 β(x,y)I(y) dy∫ L1

0 S(x) dx+
∫ L2
0 I(y) dy

S(x) + θ(x)
∫ L2

0
γ(y)I(y) dy = 0, 0 < x < L1,

dIIyy(y) +
∫ L1
0 β(x,y)S(x) dx∫ L1

0 S(x) dx+
∫ L2
0 I(y) dy

I(y)− γ(y)I(y) = 0, 0 < y < L2,

Sx(x) = Iy(y) = 0, x ∈ {0, L1}, y ∈ {0, L2}.

Here, S(x) and I(y) denote the density of susceptible and infected individ-
uals at equilibrium, respectively. Recall (2.4), we have

(2.6)

∫ L1

0
S(x) dx+

∫ L2

0
I(y) dy ≡ N.

In the population model (2.5), only solution (S(x), I(y)) satisfying S(x)
≥ 0 on [0, L1] and I(y) ≥ 0 on [0, L2] are of interest. A disease-free equilib-
rium (DFE) is a solution of (2.5)-(2.6) so that I(y) = 0 for every y ∈ (0, L2);
An endemic equilibrium (EE) of (2.5)-(2.6) is a solution in which I(y) > 0
for some y ∈ (0, L2). We denote a DFE by (Ŝ, 0) and an EE by (S̃, Ĩ). By di-
rect computations and condition (2.6), we get Ŝ(x) = N/L1. Thus (2.5) have
a unique disease-free equilibrium, which is phenotypically homogeneous.

Following [16], we define the basic reproduction number for model (2.3)
as follows:

(2.7) R0 = sup
ϕ∈H1([0,L2])

ϕ6=0

{
1
L1

∫ L1

0

∫ L2

0 β(x, y)ϕ2(y) dxdy

dI
∫ L2

0 (ϕ′(y))2 dy +
∫ L2

0 γ(y)ϕ2(y) dy

}
.

Remark 2.1. It follows from (2.7) that R0 > 1 provided that

1

L1

∫ L1

0

∫ L2

0
β(x, y) dxdy >

∫ L2

0
γ(y) dy.

2.1. Mathematical analysis of model (2.3)

In this subsection, we study the dynamics of model (2.3) when the basic
reproduction number is less than one and greater than one, respectively.
Subsect. 2.1.1 provides some preliminary estimates on the solutions of model
(2.3). Subsect. 2.1.2 is devoted to the stability analysis of the disease-free
equilibrium. In Subsect. 2.1.3 the existence of endemic equilibrium is estab-
lished.
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2.1.1. Preliminary estimates Let

X =

{
(S0, I0) ∈ C([0, L1];R+)× C([0, L2];R+) :

∫ L1

0

S0 dx+

∫ L2

0

I0 dy = N

}
.

We prove several a priori estimates of solutions to (2.3) in the next three
lemmas.

Lemma 2.2. Let
∫ L1

0 S0 dx+
∫ L2

0 I0 dy = N for some constant N > 0. Then

(2.8) lim inf
t→∞

∫ L1

0
S(x, t) dx ≥ N min

1,

min
[0,L2]

γ

max
[0,L1]×[0,L2]

β

 .

Proof. Denote

S̄(t) =

∫ L1

0
S(x, t) dx and Ī(t) =

∫ L2

0
I(y, t) dy

and

β∗ = sup
[0,L1]×[0,L2]

β and γ∗ = inf
[0,L2]

γ.

If I0 ≡ 0, then it is easy to see that S(x, t) → N/L1 as t → ∞, and we are
done. We will henceforth assume that I0 6≡ 0, i.e. Ī(0) > 0 and S̄(0) < N .
Integrate the first equation of (2.3) over x ∈ [0, L1], then

dS̄

dt
≥ Ī

(
γ∗ −

β∗

N
S̄

)
= (N − S̄)

(
γ∗ −

β∗

N
S̄

)
.

This, together with S̄(0) < N , implies that (2.8) holds.

Lemma 2.3. Let t1 > 1. For any p > 0, there exists C0 > 0 independent of
t1 such that

(2.9) sup
0<x<L1
t1<t<t1+1

S ≤ C0

(
‖S‖Lp([0,L1]×[t1−1,t1+1]) + sup

t≥t1−1
‖I(·, t)‖L1([0,L2])

)
.

In particular,

(2.10) sup
[0,L1]×[1,∞)

S ≤ 2C0N.
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Proof. The estimate (2.9) is a direct consequence of the local maximum
principle [22, Theorem 7.36]. Next, take p = 1 in (2.9), and use the fact that∫ L1

0 S(x, t) dx+
∫ L2

0 I(y, t) dy = N , we deduce (2.10).

Lemma 2.4. Let t1 ≥ 2. There exists C1 > 0 such that for any solution
(S, I) of (2.3) with initial data in X, we have

(2.11) sup
t≥2

[
‖S(·, t)‖C1([0,L1]) + ‖I(·, t)‖C1([0,L2])

]
≤ C1.

Proof. By the Harnack inequality [23, 24], there exists C2 > 1 independent
of initial data such that

(2.12) sup
0<y<L2

I(y, t) ≤ C2 inf
0<y<L2

I(y, t) for t ≥ 1.

Note that we have used the fact that I satisfies a linear parabolic equation,
with L∞ bounded coefficient 1

N

∫ L1

0 β(x, y)S(x, t) dx− γ(y), in the above. It
follows that

sup
t>1
‖I(·, t)‖L∞([0,L2]) ≤ C2 sup

t>1

∫ L2

0
I(y, t) dy ≤ C2N.

Combining with (2.10) we have

sup
t≥1

[
‖S(·, t)‖L∞([0,L1]) + ‖I(·, t)‖L∞([0,L2])

]
≤ C3.

By Lp estimates and Sobolev embedding, we obtain (2.11).

Definition 2.5. (i) We define Φ to be the semiflow generated by (2.3);
i.e. for initial data P0 = (S0, I0) ∈ X and each t ≥ 0 for which the
solution remains in X, define Φt(P0) = (S(·, t), I(·, t)), where (S, I) is
the solution of (2.3) with initial data (S0, I0).

(ii) We say that Φ is point-dissipative if there exists C > 0 independent
of initial condition such that

lim sup
t→∞

(‖S(·, t)‖+ ‖I(·, t)‖) ≤ C.

(iii) We say that Φ is eventually bounded on compact subsets K of X if
∪t≥t0Φt(K) is bounded for some t0 ≥ 0.

(iv) For each t > 0, we say that Φt : X → X is compact if Φt(B) is
precompact for every bounded subset B of X.
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Proposition 2.6. The system (2.3) generates a semiflow Φ in X. Moreover,
Φ is (i) point-dissipative, (ii) eventually bounded on X, and (iii) Φt : X → X
is compact for each t > 1.

Proof. This is a consequence of (2.11).

Corollary 2.7 (Existence of compact global attractor). The semiflow Φ
has a compact attractor A of X, i.e. distX(Φt(X), A)→ 0 as t→∞.

Proof. Since Φ is point-dissipative, eventually bounded in X and that Φt :
X → X is compact for some t > 0, it follows from [25, P.41, Theorem 2.30
and Remark 2.26(b)].

Lemma 2.8. Let λ1 be the principal eigenvalue of the problem

(2.13)

{
dIϕyy + ϕ[ 1

L1

∫ L1

0 β(x, y) dx− γ(y)] = λϕ for 0 < y < L2,

ϕy = 0 for y = 0, L2,

then

sgn(R0 − 1) = sgnλ1.

Proof. By the definition of R0, there exists some positive function φ ∈
C2([0, L2]) such that

(2.14)

{
−dIφyy + γ(y)φ = 1

R0L1

(∫ L1

0 β(x, y) dx
)
φ for 0 < y < L2,

φy = 0 for y = 0, L2.

The principal eigenvalue λ1 satisfies

(2.15){
dI(ϕ1)yy + ϕ1[

1
L1

∫ L1

0 β(x, y) dx− γ(y)] = λ1ϕ1 for 0 < y < L2,

(ϕ1)y = 0 for y = 0, L2.

Multiplying (2.14) by ϕ1 and integrating by parts in (0, L2), we have

(2.16)

dI

∫ L2

0
φx(ϕ1)y dy +

∫ L2

0
γ(y)φϕ1 dy =

1

R0L1

∫ L1

0

∫ L2

0
β(x, y)φϕ1 dxdy.

Multiplying (2.15) by φ and integrating by parts in (0, L2), we have
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(2.17)

− dI
∫ L2

0
φx(ϕ1)ydy +

∫ L2

0
[

∫ L1

0

β(x, y)

L1
dx− γ(y)]φϕ1dy = λ1

∫ L2

0
φϕ1dy.

Adding (2.16) and (2.17), we can obtain

(2.18) (1− 1

R0
)

1

L1

∫ L1

0

∫ L2

0
β(x, y)φϕ1 dxdy = λ1

∫ L2

0
φϕ1 dy.

Since 1
L1

∫ L1

0

∫ L2

0 β(x, y)φϕ1 dxdy > 0 and
∫ L2

0 φϕ1 dy > 0, we can obtain

that sgn(R0 − 1) = sgnλ1. This proves Lemma 2.8.

Definition 2.9. (i) Define a function ρ : X → [0,∞) by

ρ((S0, I0)) = inf
0<y<L2

I0(y).

(ii) We say that the semiflow Φ is uniformly weakly ρ-persistent (resp.

uniformly ρ-persistent) if there exists η0 > 0 independent of initial

data (S0, I0) ∈ X such that any solution to (2.3) satisfies

lim sup
t→∞

ρ(S(·, t), I(·, t)) ≥ η0 (resp. lim inf
t→∞

ρ(S(·, t), I(·, t)) ≥ η0).

Lemma 2.10. If R0 > 1, then Φ is uniformly weakly ρ-persistent.

Proof. Suppose R0 > 1, by Lemma 2.8, the principal eigenvalue λ1 of (2.13)

is positive. By continuous dependence on parameter, there exists 0 < δ1 < 1

such that the principal eigenvalue λ̂1 of

(2.19)

{
dIϕyy + ϕ

[
1−δ1
L1

∫ L1

0 β(x, y) dx− γ(y)
]

= λϕ for 0 < y < L2,

ϕy = 0 for y = 0, L2

is positive. We denote by φ̂1 a positive eigenfunction corresponding to the

prinicipal eigenvalue λ̂1 of (2.19). Let 0 < δ2 < 1 be a positive number to

be specified later. Suppose to the contrary that for some t1 ≥ 2,

(2.20) inf
0<y<L2

I(y, t) <
δ2N

C2L2
for all t ≥ t1,
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where C2 is as in (2.12). By this choice of C2, we obtain

sup
0<y<L2

I(y, t) <
δ2N

L2
for all t ≥ t1.

Decompose S(x, t) = S̄(t) + S̃(x, t), where S̄(t) =
∫ L1

0 S(x, t) dx. Then

(2.21) S̄(t) = N −
∫ L2

0
I(y, t) dy ≥ N(1− δ2) for t ≥ t1 − 2,

and {
S̃t − dSS̃xx = F (x, t)−

∫ L1

0 F (x, t) dx for 0 < x < L1, t > 1,

S̃x = 0 for x = 0, L1, t > 1,

where

F (x, t) = −S(x, t)

N

∫ L2

0
β(x, y)I(y, t) dy + θ(x)

∫ L2

0
γ(y)I(y, t) dy.

Using (2.10) we have

‖F (x, t)‖L∞([0,L1]×[t1−2,∞)) ≤ (2C0‖β‖∞ + ‖θ‖∞‖γ‖∞)Ī(t) ≤ C4δ2N.

Let L = −∂xx and X2 = {ψ ∈ L2([0, L1]) :
∫ L1

0 ψ dx = 0}, then

S̃(·, t) = e−tLS̃(·, 1) +

∫ t

t1

e−(t−s)L
[
F (·, s)−

∫ L1

0
F (x, s) dx

]
ds.

By the fact that e−tL : X2 → X2 satisfies (see, e.g. [24, Theorem 4.22])

‖e−tL‖ ≤ e−σt for some σ > 0,

we deduce that there is t2 ∈ (t1,∞) and C5 > 0 such that

‖S̃(·, t)‖L2([0,L1]) ≤ C5δ2, for t ≥ t2,

where t2 = t2(δ2) but C5 can be chosen to be independent of δ2. Combining
with (2.21), we have∫ L1

0
β(x, y)S(x, t) dx =

∫ L1

0
β(x, y) dxS̄(t) +

∫ L1

0
β(x, y)S̃(x, t) dx
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≥ N(1− δ2)
∫ L1

0
β(x, y) dx− C6

√
δ2

≥ N(1− δ1)
∫ L1

0
β(x, y) dx for t ≥ t2,

where δ1 is given in (2.19). Note that this is possible by choosing δ2 small

enough, as inf β > 0 is a fixed positive constant. We deduce that I(y, t) is a

supersolution of{
wt = dIwyy +

[
1−δ1
L1

∫ L1

0 β(x, y) dx− γ(y)
]
w for 0 < y < L2, t > t2,

wy = 0 for y = 0, L2, t > t2.

By taking η > 0 small enough, we observe that I(y, t) = ηeλ̂1(t−t2)φ̂1(y) is a

subsolution of the above problem with λ̂1 > 0. It follows that

I(y, t) ≥ ηeλ̂1(t−t2)φ̂1(y) for 0 < y < L2, t ≥ t2.

This is in contradiction with (2.20).

2.1.2. Stability of the Disease-Free Equilibrium (DFE) To study

the stability of the DFE, we consider an eigenvalue problem associated with

(2.3). We linearize (2.3) around DFE to obtain

(2.22)


ηt(x, t) = dSηxx(x, t)− 1

L1

∫ L2

0 β(x, y)ξ(y, t) dy

+θ(x)
∫ L2

0 γ(y)ξ(y, t) dy, 0 < x < L1, t > 0,

ξt(y, t) = dIξyy(y, t) + ( 1
L1

∫ L1

0 β(x, y) dx− γ(y))ξ(y, t),

0 < y < L2, t > 0.

Suppose that (η, ξ) = (e−λtφ, e−λtψ) is a solution of the linear system where

λ ∈ R, φ = φ(x), and ψ = ψ(y). We substitute this solution into the lin-

earized equations and divide by e−λt to get the following linear eigenvalue

problem

(2.23)
dSφxx(x)− 1

L1

∫ L2

0 β(x, y)ψ(y) dy + θ(x)
∫ L2

0 γ(y)ψ(y) dy = λφ(x),

0 < x < L1,

dIψyy(y) + ( 1
L1

∫ L1

0 β(x, y) dx− γ(y))ψ(y) = λψ(y), 0 < y < L2,
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with boundary conditions

(2.24)

φx(x) = 0 for x ∈ {0, L1}, and ψy(y) = 0 for y ∈ {0, L2}.

By (2.6), we additionally impose that

(2.25)

∫ L1

0
φ(x) dx+

∫ L2

0
ψ(y) dy = 0.

Lemma 2.11. If R0 < 1 then the DFE is stable, but if R0 > 1 then it is

unstable.

Proof. 1. Suppose first that R0 < 1. We will show that the DFE is linearly

stable. Suppose the conclusion is false, then we can find (λ, φ, ψ) which is

a solution of (2.23) with the condition (2.24), with at least one of φ and ψ

not identical zero, and that Reλ ≥ 0. We consider the case (i) ψ 6≡ 0 and

(ii) ψ ≡ 0.

For the first case, 0 ≤ Reλ ≤ λ1, where λ1 is the principal eigenvalue

of (2.13). But this is in contradiction with Lemma 2.8. Therefore we must

have ψ ≡ 0 on [0, L2] and φ 6≡ 0 on [0, L1]. Hence,

(2.26)

{
dSφxx(x) = λφ, 0 < x < L1,

φx(x) = 0, x ∈ {0, L1}.

It is easy to see that λ is real and nonpositive (e.g. by multiplying (2.26)

with the complex conjugate of φ(x) and integrating by parts). Since also

Reλ ≥ 0, we deduce that λ = 0 and φ is a constant. But then (2.25) implies

that φ ≡ 0. This is again a contradiction. Therefore, we must have Reλ < 0,

i.e. the DFE is linearly stable.

2. Suppose that R0 > 1. We will show that DFE is linearly unstable.

We will establish that there exists a solution (λ, φ, ψ) of (2.23) with λ > 0.

Lemma 2.8 implies that the principal eigenvalue λ1 > 0 and is associated

with a positive eigenfunction ψ1(x) > 0. Consider the first equation of (2.23)

with (λ, ψ) = (λ1, ψ1), i.e.,

(2.27)
−dSφxx(x) + λ1φ = − 1

L1

∫ L2

0 β(x, y)ψ1(y) dy + θ(x)
∫ L2

0 γ(y)ψ1(y) dy,

0 < x < L1,

φx(x) = 0, x ∈ {0, L1}.
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By the invertibility of the operator −dS∂xx+λ1 I with zero Neumann bound-
ary condition, (2.27) has a unique solution φ1. Hence, the triple (φ1, ψ1, λ1)
satisfies (2.23). Hence, the DFE is linearly unstable.

Next, we show that if R0 < 1 then the DFE is globally asymptotically
stable.

Lemma 2.12. If R0 < 1 then (S̃, Ĩ) → (Ŝ, 0) in C([0, L1]) × C([0, L2]) as
t→∞.

Proof. Suppose that R0 < 1. By the equation of (2.3), we have

Ĩt(y, t) ≤ dI Ĩyy(y, t)+

(
1

L1

∫ L1

0
β(x, y)dx− γ(y)

)
Ĩ(y, t), 0 < y < L2, t > 0.

Set u(y, t) = Me−λ1tψ1 where λ1 > 0 by Lemma 2.8, ψ1 > 0 on [0, L2], and
M is chosen so large that Ĩ(y, 0) < u(y, 0) for every y ∈ [0, L2]. Here, u(y, t)
satisfies
(2.28){
ut(y, t) = dIuyy(y, t) + ( 1

L1

∫ L1

0 β(x, y) dx− γ(y))u(y, t),0 < y < L2, t > 0,

uy(y) = 0, y ∈ {0, L2}.

By the comparison principle, Ĩ(y, t) ≤ u(y, t) for every y ∈ [0, L2] and t > 0.
Since u(y, t)→ 0 as t→∞ for every y ∈ [0, L2], we also have that Ĩ(y, t)→ 0
as t→∞ for every y ∈ [0, L2].

Finally we show that S̃ tends to Ŝ as t→∞. Observe the first equation
of (2.3)

S̃t(x, t)− dSS̃xx(x, t) =−
∫ L2

0 β(x, y)Ĩ(y, t) dy∫ L1

0 S̃(x, t) dx+
∫ L2

0 Ĩ(y, t) dy
S̃(x, t)

+ θ(x)

∫ L2

0
γ(y)Ĩ(y, t) dy, 0 < x < L1, t > 0,

By the continuity of β(x, y) and γ(y) on [0, L2], together with the above
argument about I(y, t) and u(y, t), we have

|S̃t(x, t)− dSS̃xx(x, t)| ≤ C8e
−λ1t, x ∈ [0, L1], t > 0,

for some positive constant C8. Since the right-hand side tends to 0 exponen-
tially, it follows that S̃(x, t) tends to some positive function S̃∗(x) as t→∞,
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where S̃∗ satisfies

(S̃∗)xx = 0 in [0, L1], (S̃∗)x = 0 for x = 0, L1, and

∫ L1

0
S̃∗ dx = N.

Thus, S̃∗(x) = N/L1 = Ŝ(x).

The global asymptotic stability of the DFE when R0 < 1 implies that
there can be no EE in this case. We consider the situation when R0 > 1 in
the next subsection.

2.1.3. Existence of Endemic Equilibrium (EE) The main result of
this subsection is given by the following theorem.

Theorem 2.13. If R0 > 1, then the following statements hold.

(a) The infected population is uniformly ρ-persistent, i.e. there exists η0 >
0 (independent of initial data) such that for any solution (S, I) of (2.3)
such that I0 6≡ 0, we have

lim inf
t→∞

[
inf

0<y<L2

I(y, t)

]
≥ η0.

(b) There exists at least one EE.
(c) If, in addition, β(x, y) = β(y), then EE is unique, and is globally

asypmtotically stable among solutions of (2.3) with initial data in X
satisfying I0 6= 0.

Proof. Suppose R0 > 1. First, we prove (a), i.e. Φ is uniformly ρ-persistent.
Now, let

B = {(S0, I0) ∈ X : ‖S0‖C1([0,L1]) + ‖I0‖C1([0,L2]) ≤ C1},

where C1 is given by Lemma 2.4. Observe that B satisfies the following:

(i) For every P0 ∈ X such that ρ(P0) > 0, we have dist(Φt(P0), B)→ 0;
(ii) B is compact;
(iii) If P0 ∈ X and ρ(P0) > 0, then ρ(Φt(P0)) > 0 for all t > 0;
(iv) Φ is uniformly weakly ρ-persistent.

Here (i) and (ii) follow from Lemma 2.4, (iii) follows from the strong maxi-
mum principle applied to the second equation of (2.3), and (iv) follows from
Lemma 2.10. We can then apply [25, Theorem 4.13] to conclude assertion
(a), i.e. Φ is uniformly ρ-persistent.
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Next, we prove (b). We have shown that (v) the semiflow Φ is uniformly

ρ-persistent, (vi) Φt : X → X is compact for each t > 1, and (vii) Φ has

a compact attractor of X. Observe, in addition, that (viii) X is a closed

convex subset of the Banach space C([0, L1];R) × C([0, L2];R), and (ix)

ρ : X → [0,∞) is continuous and concave. Here concave means

ρ(τ(S1, I1) + (1− τ)(S2, I2)) ≥ τρ(S1, I1) + (1− τ)ρ(S2, I2)

for τ ∈ [0, 1], (Si, Ii) ∈ X. Having verified (v) - (ix), the existence of an

endemic equilibrium then follows from [25, P. 158, Theorem 6.2]. This proves

(b).

Suppose β(x, y) = β(y). Then the equation of I can be written as

(2.29) It(y, t) = dIIyy(y, t) + β(y)

∫ L1

0 S dx

N
I(y, t)− γ(y)I(y, t)

for 0 < y < L2, t > 0. Using the conservation (2.4), we observe that I(y, t)

in fact satisfies a single PDE with nonlocal dependence:

(2.30)


It(y, t) = dIIyy(y, t) +

[
β(y)− γ(y)− 1

N

∫ L2

0 I(y′, t) dy′
]
I(y, t)

for 0 < y < L2, t > 0,

Iy(y, t) = 0 for y = 0, L2, t > 0,

I(y, 0) = I0(y) for 0 < y < L2.

It then follows from [24, Theorem 10.1.1] that when

(2.31) β(y) > γ(y),

the nonlocal parabolic equation (2.30) has a unique positive equilibrium

Ie(y) and moreover that I(·, t) → Ie in C([0, L2]) as t → ∞. This proves

the assertion (c) when (2.31) holds. For the general case, observe that the

hypothesis (2.31) is needed to conclude that the principal eigenvalue λ̂1 of

(2.32) dIφyy + (β − γ)φ+ λ̂1φ = 0 in [0, L2], φy(0) = φy(L2) = 0,

is negative. Since (2.32) is a special case of (2.13), this is equivalent to

R0 > 1 thanks to (2.8). Once we have that λ̂1 < 0, we can then repeat the

proof of [24, Theorem 10.1.1] to show the existence, uniqueness and global

attractivity of equilibrium Ie.
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Finally, we prove convergence of S as t → ∞. By compactness, we
can pass to a subsequence tn → ∞ such that S(x, t + tn) → S̃(x, t) in
Cloc([0, L1]× R), where S̃ is a bounded entire solution of

(2.33)

{
S̃t = dSS̃xx − p(x)S̃ + q(x) for 0 < x < L1, t ∈ (−∞,∞),

S̃x(0, t) = S̃(L1, t) = 0 for t ∈ (−∞,∞),

where p(x) = 1
N

∫ L2

0 β(y)Ie(y) dy and q(x) = θ(x)
∫ L2

0 γ(y)Ie(y) dy > 0.

Since sup
t∈R
‖S̃(·, t)‖∞ is bounded, it follows that S̃(x, t) = Se(x), where Se =

[−dS∂xx + p(x)I]−1[q]. This completes the proof of (c).

2.2. Numerical simulation

In this subsection, we present some numerical results of model (2.3). Set
t̃ = δt, dI = ε2, where δ = τε indicates the time scale parameter for a fixed
τ . For the sake of simplicity in notations, we drop the tilde, with the focus
on the situation when ε is small.

(2.34)

δSt(x, t) = dSSxx(x, t)−
∫ L2
0

β(x,y)I(y,t) dy∫ L1
0

S(x,t) dx+
∫ L2
0

I(y,t) dy
S(x, t)

+θ(x)
∫ L2

0 γ(y)I(y, t) dy, 0 < x < L1, t > 0,

δIt(y, t) = ε2Iyy(y, t) +
∫ L1
0

β(x,y)S(x,t) dx∫ L1
0

S(x,t) dx+
∫ L2
0

I(y,t) dy
I(y, t)− γ(y)I(y, t),

0 < y < L2, t > 0,

Sx(x, t) = Iy(y, t) = 0, x ∈ {0, L1}, y ∈ {0, L2}, t > 0,

S(x, 0) = S0(x) ≥ 0, I(y, 0) = I0(y) ≥ 0, 0 < x < L1, 0 < y < L2.

We assume that initially, the immunity level of susceptible individuals,
indicated by the variable x, is uniformly distributed. In addition, vaccines
can prevent infection and render breakthrough cases less infectious to avert
transmission [11], so we assume that the initial distribution of infected pop-
ulation remains in low infectivity (indicated by y) level. Hence, we consider
the initial population density functions as shown below in order to appro-
priately describe the above assumptions:

(2.35)

S(x, 0) = N−
∫ 1

0
I(y, 0) dy, I(y, 0) = Cε exp

(
−(y − y0)2

ε

)
for some y0 > 0.
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In addition, we assume the followings.

• The transmission rate, β, decreases as immunity x increases or as
infectivity y decreases. For simulation purpose, we choose β(x, y) =
1+y
1+ax , where a is a positive number.

• All infected individuals, regardless of their infectivity, will recover at
the same rate. That is, the recovery rate is given by γ(y) ≡ 1.

• The immunity level of the individual changes after infection, and for
simulation purpose, assumed to be distributed with probability den-
sity θ(x) = 2(1 − x). We observe that the function θ(x) has a strong
influence on the long term immunity of the susceptible population. As
such, it is an important quantity to monitor in practice.

The results established by Theorem 2.13 are discussed in Subsect. 2.2.1
and illustrated by numerical simulations. In Subsect. 2.2.2, we are inter-
ested in how the dynamics and equilibrium solutions exhibit the dominant
phenotype under the processes of selection and mutation.

Table 2: The parameter values in model (2.34) simulation

SymbolRelation Value
dS Mutation rate of immunity x 1
ε2 Mutation rate of infectivity y 0.0012

y0 Mean infectivity state at t = 0 0.1
a Shape parameter for transmission rate0
N Total population size 1
τ Time scale parameter 100
[0, L1] The mutation space of immunity x [0,1]
[0, L2] The mutation space of infectivity y [0,1]

2.2.1. Population dynamics Point (c) of Theorem 2.13 reveals that, if

R0 > 1, i.e.
∫ 1
0

∫ 1
0 β(x, y) dxdy >

∫ 1
0 γ(y) dy is satisfied, the number of sus-

ceptible and infected populations (S̄(t), Ī(t)) converge to the stable positive
value. The result is illustrated by Fig. 2A which presents the total num-
ber of infected individuals Ī(t) =

∫ 1
0 I(y, t) dy and susceptible individuals

S̄(t) =
∫ 1
0 S(x, t) dx against time. We can observe that the total number of

infected individuals Ī(t) increases while the number of susceptible individu-
als S̄(t) decreases against time, eventually attaining endemic equilibrium.

2.2.2. Evolution of phenotypic heterogeneity The distribution of
susceptible population density S(x, t) and infected population density I(y, t)
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Figure 2: (A) The number of susceptible population S̄(t) =
∫ 1
0 S(x, t) dx and

the number of infected population Ī(t) =
∫ 1
0 I(y, t) dy are indicated by black

and grey curves, respectively. (B) Susceptible population density function
S(x, t) at t = 0, 20, 40, 60, 80 day. (C) Infected population density function
I(y, t) at t = 0, 20, 40, 60, 80 day. The value of parameters in simulation is
the same with Table 2.

at various time points are shown in Figs. 2B and 2C, respectively. The im-
munity distribution S(x, t) at a fixed time indicates that the density of sus-
ceptible individuals S(x, t) increases as immunity (x) decrease. It is observed
that the infectivity distribution I(y, t) at a fixed time is unimodal with the
mean phenotypic state y = ȳ(t) being the maximum point of the distribu-
tion. Fig. 2C suggests that I(y, t) ≈ Ī(t)δ(y − ȳ(t)), i.e., I(y, t) behaves like
a moving Dirac mass, supported at y = ȳ(t).

For susceptible population, we can observe that as S̄(t) decreases over
time, the proportion of individuals with lower immunity increases, while the
proportion of individuals with higher immunity decreases as well. This find-
ing may help explain the phenomenon wherein the immunity of susceptible
people decreases in the process of increasing the infectivity of diseases. The
above results for continuous time are shown in Figs. 3A and 3B.

Moreover, the mean immunity x̄(t) of susceptible individuals, given by

x̄(t) =

∫ 1
0 xS(x, t) dx∫ 1
0 S(x, t) dx

,

declines against time (Fig. 3C). The mean infectivity ȳ(t) =
∫ 1

0
yI(y,t) dy∫ 1

0
I(y,t) dy

grad-

ually rises over time, the result is depicted in Fig. 3D. Finally, the infected
population is dominated by the individuals with the phenotypic state y = 1
(large phenotypic state correlating to the higher level of infectivity), as il-
lustrated in Fig. 3B. In other words, the infected population evolves to be
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mainly composed of highly infected individuals, in agreement with Fig. 2C.

While the decline in mean immunity is possibly attributed to the choice of a

decreasing θ(x), the increase in virulence seems to be a robust phenomenon

independent of our choice of parameters [26]. This is possibly due to the

choice of θ(x).

In addition, Fig. 3E shows the change in the heterogeneity of infectivity

over time, which also indicates that I(y, t) behaves like a moving Dirac mass,

supported at y = ȳ(t). Here ȳ(t) denotes the peak location of I(y, t), being

an increasing function against time. This result is also in agreement with

Fig. 2C and Fig. 3B and it will be further discussed in the next subsection.

Figure 3: Yellow denotes high density and blue denotes low density, respec-
tively. (A) Susceptible population density function S(x, t) in t ∈ [0, 100]. (B)
Infected population density function I(y, t) in t ∈ [0, 100]. (C) Mean immu-
nity state x̄(t) against time. (D) Mean infectivity state ȳ(t) against time.
(E) Infected population density function I(y, t) in t ∈ [0, 80] and y ∈ [0, 1].
The value of parameters in simulation is the same with Table 2.

2.3. Dirac asymptotics of infected populations: formal analysis

In this subsection, we formally determine the asymptotic profile of Iε(y, t),

where (Sε(x, t), Iε(y, t)) denotes solutions of model (2.34) with initial con-

dition (2.35). For model (2.34), as in Subsect. 2.2, we choose the following

formulas and parameters:

β(x, y) =
1 + y

1 + ax
, γ(y) ≡ 1, θ(x) = 2(1− x), L1 = L2 = 1, δ = τε.
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Based upon those assumptions, we will formally establish the asymptotic
behavior of Iε as ε→ 0. To this end, consider the WKB-ansatz

uε(y, t) = −ε log Iε(y, t) or Iε(y, t) = exp

(
−u

ε(y, t)

ε

)
.

Since
∫ 1
0 I

ε(y, t) dy is uniformly bounded away from zero and infinity, we
deduce that

inf
0<y<1

uε(y, t) = o(1).

For 0 < ε � 1, we will formally derive the law governing the moving
Dirac solution, i.e.

(2.36) Iε(y, t) ≈ Īε(t)δ(y − ȳε(t)).

Imposing (2.36) into the equation of Sε, we have

o(1) = Sεxx(x, t) +

[
− 1

N
Sε(x, t)β(x, ȳε(t)) + γ(ȳε(t))θ(x)

]
Īε(t).

Integrating in x, and using the Neumann boundary condition, we obtain

(2.37)
1

N

∫ 1

0
Sε(x, t)β(x, ȳε(t)) dx ≈ γ(ȳε(t))

∫ 1

0
θ(x) dx,

and

(2.38) Sε(x, t) = γ(ȳε(t))Īε(t)

[
−∂xx +

1

N
β(x, ȳε(t))Īε(t)

]−1
[θ(·)].

Integrating in x, and using the constraint S̄ε(t) + Īε(t) = N , we can
determine Īε(t) by

(2.39) N− Īε(t) = γ(ȳε(t))Īε(t)

∫ 1

0

[
−∂xx +

1

N
β(x, ȳε(t))Īε(t)

]−1
[θ(·)] dx.

Using the form γ(y) = 1 and subsitituting (2.37) into the equation of Iε, we
obtain

δIεt (y, t) = ε2Iεyy(y, t) +
1

N
Iε(y, t)

[∫ 1

0
(β(x, y)− β(x, ȳε(t))Sε(x, t) dx

]
.
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Now, we may derive the equation for the rate function uε(y, t) =
−ε log Iε(y, t):

τuεt − εuεyy + |uεy|2 + 1
N

∫ 1
0 (β(x, y)− β(x, ȳε(t)))Sε(x, t) dx ≈ 0

for (y, t) ∈ [0, 1]× R+,

inf uε(·, t) ≈ 0 for t ∈ R+.

Suppose that uε(y, t)→ u(y, t) locally uniformly, and that ȳε(t)→ ȳ(t), we
deduce that u is a solution, in viscosity sense, to the following equation

(2.40)


τut + |uy|2 + 1

N

∫ 1
0 (β(x, y)− β(x, ȳ(t)))S(x, t) dx = 0

for (y, t) ∈ [0, 1]× R+,

inf u(·, t) = u(ȳ(t), t) = 0 for t ∈ R+,

u(y, 0) = (y − y0)2 for y ∈ [0, 1],

with Neumann boundary condition. Here Ī(t) and S(x, t) can be uniquely
determined (for given ȳ(t)) by

N − Ī(t) = γ(ȳ(t))Ī(t)

∫ 1

0
[−∂xx +

1

N
β(x, ȳ(t))Ī(t)]−1[θ(·)] dx,

S(·, t) = γ(ȳ(t))Ī(t)[−∂xx +
1

N
β(x, ȳ(t))Ī(t)]−1[θ(·)].

If u(y, t) = σ(t)(y − ȳ(t))2 + O(|y − ȳ(t)|3), for some σ(t) > 0, then we
can differentiate the following identity

uy(ȳ(t), t) = 0 for t ≥ 0,

to obtain

uyy(ȳ(t), t)
d

dt
ȳ(t) = −uyt(ȳ(t), t) =

1

τN

∫ 1

0
βy(x, ȳ(t))S(x, t) dx.

Hence, we obtain the following equation governing the dynamics of ȳ(t):

d

dt
ȳ(t) =

1

τNuyy(ȳ(t), t)

∫ 1

0
βy(x, ȳ(t))S(x, t) dx.

Using the form β(x, y) = 1+y
1+ax , we have

(2.41)
d

dt
ȳ(t) =

1

τNuyy(ȳ(t), t)

∫ 1

0

1

1 + ax
S(x, t) dx > 0.
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(2.41) indicates that ȳ(t) is an increasing function. To support the re-
sult, we numerically solve the Hamilton-Jacobi equation (2.40). The value
of parameters in simulation is the same with Table 2. Numerically we found
that ȳ(t), the peak location of I(y, t), increases against time in Fig. 4A (in-
dicated by blue curve), which is consistent with the analytical description
in (2.41).

In Subsect. 2.2.2, we noted that when ε = 0.001, the mean infectivity ȳ(t)
in model (2.34) increases over time, as seen in Fig. 3D. Now we choose ε =
0.01, 0.02, 0.03, 0.04, 0.05 to simulate individually and the other parameters
in (2.34) are the same as those in Table 2.

Let error(ε) be the sum of squared errors between the mean infectivity
ȳε(t) of model (2.34) for different ε and ȳ(t) in Hamilton-Jacobi equation
(2.40), that is,

error(ε) = ‖ȳε(t)− ȳ(t)‖ =

√√√√ T∑
i=1

(ȳε(ti)− ȳ(ti))2,

where t ∈ [0, 60] and the time interval is discretised with the uniform step
∆t = 0.01. T indicates the number of time points.

In Fig. 4, we compare the results of ȳε(t) in model (2.34) for different ε
values with the result of Hamilton-Jacobi equation (2.40), which supports
that the results of ȳε(t) in model (2.34) for different ε values converge to the
result of Hamilton-Jacobi equation (2.40) as ε decreases.
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Figure 4: The results comparison of Hamilton-Jacobi equation and
model (2.34). (A) shows ȳε(t) at different ε values and (B) shows error(ε)
at different ε values.
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3. Evolution of mutation rate

In this section, we first consider k phenotypes of infected population with

continuous trait y (i.e. infectivity) based upon the model (2.3) introduced in

Sect. 2 and the mutation-selection model considered by Dockery et al. [27].

We assume that the phenotypes differ only in mutation rates, i.e. phenotype i

has mutation rate ε2i . σ
2Mij represents the mutation process from phenotype

i to j. When σ = 0, there is no mutation. The model has the following form:

(3.1)

∂
∂tS(x, t) = dS

∂2

∂x2S(x, t)−
k∑

i=1

∫ L2
0 β(x,y)Ii(y,t) dy∫ L1

0 S(x,t) dy+
k∑

i=1

∫ L2
0 Ii(y,t) dy

S(x, t)

+θ(x)
k∑
i=1

∫ L2

0
γ(y)Ii(y, t) dy, 0 < x < L1, t > 0, i = 1, ..., k,

∂
∂tIi(y, t) = ε2i

∂2

∂y2 Ii(y, t) +
∫ L1
0 β(x,y)S(x,t) dx∫ L1

0 S(x,t) dy+
k∑

i=1

∫ L2
0 Ii(y,t) dy

Ii(y, t)

−γ(y)Ii(y, t) + σ2
k∑
j=1

MjiIj(y, t), 0 < y < L2, t > 0, i = 1, ..., k,

∂
∂xS(x, t) = ∂

∂y Ii(y, t) = 0, x ∈ {0, L1}, y ∈ {0, L2}, t > 0, i = 1, ..., k,

S(x, 0) = S0 ≥ 0, Ii(y, 0) = Ii,0 ≥ 0, 0 < x < L1, 0 < y < L2, i = 1, ..., k,

where 0 < ε1 < ε2 < ... < εk are constants. M is a constant k × k matrix

which satisfies (i) Mii < 0 for all i and Mij ≥ 0 for i 6= j; (ii) Mii = −
∑
j 6=i

Mij .

σ2 ≥ 0 is the mutation rate. Other parameters are the same with model (2.3).

The continuum (in trait) version of the mutation-selection model con-

sidered by Dockery et al. [27] is studied in [28, 29, 30, 17, 31]. Similarly,

we further generalize that the rate of mutation ε is itself a continuous trait

varying in the range E = [J∗, J
∗] ⊆ (0,∞). We then obtain a continuum

version of the model (3.1) as follows:
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(3.2)

St(x, t) = dSSxx(x, t)−
∫ J∗
J∗

∫ L2
0 β(x,y)I(ε,y,t) dydε∫ L1

0 S(x,t) dx+
∫ J∗
J∗

∫ L2
0 I(ε,y,t) dydε

S(x, t)

+θ(x)
∫ J∗
J∗

∫ L2

0
γ(y)I(ε, y, t) dydε, 0 < x < L1, J∗ < ε < J∗, t > 0,

It(ε, y, t) = ε2Iyy(ε, y, t) +
∫ L1
0 β(x,y)S(x,t) dx∫ L1

0 S(x,t) dx+
∫ J∗
J∗

∫ L2
0 I(ε,y,t) dydε

I(ε, y, t)

−γ(y)I(ε, y, t) + σ2Iεε(ε, y, t), 0 < y < L2, J∗ < ε < J∗, t > 0,

Sx(x, t) = 0, x ∈ {0, L1}, t > 0,

Iy(ε, y, t) = 0, y ∈ {0, L2}, J∗ < ε < J∗, t > 0,

Iε(ε, y, t) = 0, 0 < y < L2, ε ∈ {J∗, J∗}, t > 0,

S(x, 0) = S0(x) ≥ 0, 0 < x < L1,

I(ε, y, 0) = I0(ε, y) ≥ 0, 0 < y < L2, J∗ < ε < J∗,

where S(x, t) denotes the density of susceptible population with immunity x
at time t; I(ε, y, t) indicates the density of infected population with mutation
rate ε2 and infectivity y at time t, respectively. We again impose the initial
value when t = 0 and the no-flux boundary condition in all other variables.

We now rescale time as t̃ = δt, where δ = τσ indicates the time scale
parameter for a fixed τ . To be consistent with model (2.34), we drop the
tilde and obtain the following model:

(3.3)

δSt(x, t) = dSSxx(x, t)−
∫ J∗
J∗

∫ L2
0 β(x,y)I(ε,y,t) dydε∫ L1

0 S(x,t) dx+
∫ J∗
J∗

∫ L2
0 I(ε,y,t) dydε

S(x, t)

+θ(x)
∫ J∗
J∗

∫ L2

0
γ(y)I(ε, y, t) dydε, 0 < x < L1, J∗ < ε < J∗, t > 0,

δIt(ε, y, t) = ε2Iyy(ε, y, t) +
∫ L1
0 β(x,y)S(x,t) dx∫ L1

0 S(x,t) dx+
∫ J∗
J∗

∫ L2
0 I(ε,y,t) dydε

I(ε, y, t)

−γ(y)I(ε, y, t) + σ2Iεε(ε, y, t), 0 < y < L2, J∗ < ε < J∗, t > 0,

where the boundary conditions and initial conditions are the same as in
(3.2).

Similar to the definitions in the model (2.34), we define the size of the
susceptible and infected populations at time t, respectively, as follows:

S̄(t) =

∫ L1

0
S(x, t) dx, Ī(t) =

∫ J∗

J∗

∫ L2

0
I(ε, y, t) dydε.

We also define the mean phenotype state at time t as

x̄(t) =

∫ L1

0 xS(x, t) dx∫ L1

0 S(x, t) dx
,
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ȳ(t) =

∫ L2

0

∫ J∗
J∗
yI(ε, y, t) dεdy∫ L2

0

∫ J∗
J∗
I(ε, y, t) dεdy

, ε̄(t) =

∫ J∗
J∗

∫ L2

0 εI(ε, y, t) dydε∫ J∗
J∗

∫ L2

0 I(ε, y, t) dydε
.

We assume that the initial infected population composed of low infectiv-

ity (y) and low mutation rate (ε) individuals, while susceptible population

composed of individuals with uniformly distributed immunity. Let the initial

population density functions be given by

S(x, 0) = N −
∫ J∗

J∗

∫ L2

0
I(ε, y, 0) dydε,

I(ε, y, 0) = exp

(
−(y − y0)2

ε
− (ε− ε0)2

σ

)
and fix an N > 0 such that

∫ L1

0
S(x, 0) dx+

∫ J∗

J∗

∫ L2

0
I(ε, y, 0) dydε = N,

where y0, ε0 are positive numbers.

Recall (2.4), for t > 0, we can obtain the total population size

∫ L1

0
S(x, t) dx+

∫ J∗

J∗

∫ L2

0
I(ε, y, t) dydε ≡ N.

Then we present the numerical simulation results of the model (3.3).

The choices of disease transmission rate β(x, y), recovery rate γ(y), and

probability distribution θ(x) are identical to those in Subsect. 2.2. The value

of parameters in simulation are also identical with Table 3. The numerical

results can be summarized as follows.

• The susceptible population evolves to be primarily made up of indi-

viduals with low immunity, which indicates that as diseases continue

to evolve, group immunity decreases. It could be important to boost

group immunity through techniques like ongoing immunization.

• The majority of the infected population is eventually comprised of

highly infectious individuals with a low mutation rate. This indicates

that the disease transmissibility will continue to increase.
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• When the ceiling of virulence is reached in the model, disease strains
with low mutation are more advantageous, assuming that the mutation
rates have no impact on disease transmission and recovery rates. In
other words, the virus will use the low mutation rate to maintain its
advantageous evolutionary position. We do note that death caused by
the disease is not included in the model. In fact, highly virulent strains
may not be selected if death rate is included.

These findings are discussed and illustrated by numerical simulation in
the following subsections. Because virus mutations can persist in human
population for years or decades [9], the time length of the simulation is set
at 120 months.

Table 3: The parameter values in model (2.34) simulation

SymbolRelation Value
y0 Mean infectivity state at t = 0 0.3
ε0 Mean mutation rate at t = 0 0.1
dS Mutation rate of immunity x 1
σ2 Mutation rate of trait ε 0.012

N Total population size 1
τ Time scale parameter 1500
[0, L1] The mutation space of immunity x [0,1]
[0, L2] The mutation space of infectivity y [0,10]
[J∗, J

∗]The mutation space of mutation rate ε[0.01, 0.5]

3.1. Convergence to endemic equilibrium

The number of infected individuals Ī(t) and susceptible individuals S̄(t)
throughout time is depicted in Fig. 5. We can observe that the number
of infected individuals Ī(t) increases while the number of susceptible indi-
viduals S̄(t) decreases against time, until reaching the endemic equilibrium
(EE).

3.2. Evolution of phenotypic heterogeneity

The distribution of susceptible population density S(x, t) and mean immu-
nity state x̄(t) in t ∈ [0, 120] are displayed in Fig. 6A. The mean immunity
of susceptible individuals declines x̄(t) over time, and then stabilizes at a
low level. It appears that the distribution of immunity level in suscepti-
ble population reaches an equilibrium distribution resembling the function
θ(x) = 2(1− x).
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Figure 5: The populations size. The number of susceptible population
S̄(t) and the number of infected population Ī(t) against time are indicated
by black and grey curves, respectively. All parameter values are the same as
in Table 3.

Similar to the results in model (2.34), when S̄(t) declines over time, sus-

ceptible individuals with lower immunity tend to become susceptible again,

which reduces the average immunity of susceptible population. This find-

ing highlights the importance of tracking the change of individual immunity

post infection. When current infection does not provide better immunity

against future infection (e.g. when θ(x) is decreasing in x), vaccination is a

way to improve the overall immunity level.

The mean infectivity level and the mean mutation rate in infected pop-

ulation I both increase rapidly in the first phase 0 ≤ t ≤ 10. These results

(indicated by yellow curves) are shown in Figs. 6B and 6C, where the heat

map of Î1(y, t) =
∫ J∗
J∗
I(ε, y, t) dε and Î2(ε, t) =

∫ L2

0 I(ε, y, t) dy are displayed.

That is, the number of individuals with high infectivity and mutation rate

increase rapidly at the initial time. This phenomenon can also be illustrated

in Figs. 7A-D, which depict the density distribution of infected population

I(ε, y, t) at t = 0, 2.5, 5, 10 month.

For t > 10, we observe in Figs. 6B and 6C that the infected individu-

als maintain high infectivity state, while the mutation rate of infected in-

dividuals starts to decrease over time. These results are consistent with

Figs. 7E-H, which are the density distribution of infected population at

t = 15, 25, 40, 50 month.

Fig. 6C indicates that the increase in mean mutation rate ε̄(t) is only an

initial transient: when t > 10, infected individuals with low mutation rate

will gradually dominate the population. Fig. 8 supports the conclusion that

lower mutation rates provide a competitive advantage. That is, the infected
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Figure 6: (A) Susceptible population density S(x, t) in t ∈ [0, 120]. (B)

The infectivity distribution of infected individuals Î1(y, t) =
∫ J∗
J∗
I(ε, y, t) dε

in t ∈ [0, 120]. (C) The mutation rate distribution of infected individuals

Î2(ε, t) =
∫ L2

0 I(ε, y, t) dy in t ∈ [0, 120]. Yellow denotes high density and
blue denotes low density, respectively. The yellow line highlights the mean
immunity x̄(t) of susceptible population, mean infectivity ȳ(t) and mean
mutation rate ε̄(t) of infected population, respectively. All parameter values
are the same as in Table 3.

population gradually evolves to be mainly composed of individuals with low
mutation rate.

4. Discussion

In this work, we propose to study a Susceptible-Infected-Susceptible (SIS)
model (2.3) for populations structured by phenotypical traits. Our analytical
results demonstrate that the existence of endemic equilibrium when the basic
reproduction number R0 > 1. Based upon asymptotic analysis of evolution-
ary dynamics, the simulation results generated from model (2.34) indicate
that the mean immunity of susceptible individuals gradually decreases over
time and eventually remains at a low level, while high infectivity individuals
have competitive advantage. There is good agreement between our numerical
simulations and analytical results. The results of our analysis and numeri-
cal simulations are consistent with the trend that more virulent strains are
selected over the less virulent wild type.

Furthermore, we consider an extension (3.2) of the model (2.3) to account
for the variability in mutation rate. Numerical simulations are carried out to
demonstrate that, if the virus mutation rate is low initially, it will increase
rapidly and then decrease slowly over time, resulting in the individuals with
the lowest mutation rate eventually dominating the infected population,
assuming the virulence ceiling have been reached.
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Figure 7: Infected population density function I(ε, y, t) at different time
points. Consider Fig. 7B as an illustration, the mean infectivity ȳ(t) and
mean mutation rate ε̄(t) increase compared to Fig. 7A (t = 0). The maximum
point of infected population density I(ε, y, t) is attained in phenotypic state
(y, ε) = (0.9, 0.14). Yellow denotes high density and blue denotes low density,
respectively. All parameter values are the same as in Table 3.

In model (3.2), we impose that the reaction term be independent of

mutation rate ε2, i.e., the correlation between mutation rate ε2 and disease

transmission rate β(x, y) and recovery rate γ(y) are not taken into account.

The assumption may not hold true in actual pandemic scenarios. The ad-

vantage of a low mutation rate may be strengthened or diminished by the

current lack of clarity regarding the relationship between mutation rate,

disease transmission rate and recovery rate.

We also discuss several possible extensions of current work. From the

perspective of mathematical modeling, it should be noted that our model

does not examine the spatial distribution of population. Spatial movement

of populations could play major role in speeding up the disease spreading.

Moreover, spatial environmental heterogeneity of population could also im-

pact disease spread. Our current model somewhat mimics the scenario when

the populations are quickly mixed in space, which may introduce error in our

estimate of the basic reproduction number. While current work is focused

on the dynamics of susceptible and infected individuals, we leave the role of

exposed individuals and asymptomatic individuals in disease dynamics for

future work. In this work we did not include the death caused by the dis-

ease so that the total population size remains to be constant in time, which
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Figure 8: The evolution of mutation rate ε. The mutation rate distri-
bution of infected individuals Î2(ε, t) =

∫ L2

0 I(ε, y, t) dy in t ∈ [10, 120]. The
infected sub-population with smallest mutation rate dominates the dynam-
ics for large t. Yellow denotes high density and blue denotes low density,
respectively. All parameter values are the same as in Table 3.

is accessible for mathematical analysis. Biologically, while COVID has sig-

nificant death rate in the early stage of pandemics, the current death rate

caused by the Omicron strain seems to be decreasing dramatically, so our

model might also help provide some insight into the current development

of COVID pandemics. From an epidemiological perspective, the model may

further consider the recruitment rate and mortality rate of populations, and

by integrating with the actual biological process and epidemiological data,

to achieve more accurate modeling of the epidemic. Last but not least, we

point out that the disease transmission rate β(x, y) is assumed to be station-

ary in time in this work. In epidemiology, the disease transmission rate is

usually time-dependent, and the time dependence corresponds to a variety

of factors, including changes in non-pharmaceutical interventions (NPIs),

behavioral changes and seasonal changes (influenced by weather or human

population migration schedules) [11].

Acknowledgements

This work is partially supported by NSF grant DMS-1853561 and DMS-

2325195 (KYL), NSFC grants No. 12250710674, 12261160366 (YL), NSFC

grant No. 12071476, 12171478 (SZM).



34 KING-YEUNG LAM et al.

References

[1] Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., Zhao, X.,
Huang, B., Shi, W., Lu, R., et al. (2020) A novel coronavirus from
patients with pneumonia in China, 2019. New England Journal of
Medicine,.

[2] Dong, E., Du, H., and Gardner, L. (2020) An interactive web-based
dashboard to track COVID-19 in real time. The Lancet Infectious Dis-
eases, 20(5), 533–534.

[3] Yewdell, J. W. (2021) Antigenic drift: understanding COVID-19. Im-
munity, 54(12), 2681–2687.

[4] Wang, R., Chen, J., Hozumi, Y., Yin, C., and Wei, G.-W. (2022) Emerg-
ing vaccine-breakthrough SARS-CoV-2 variants. ACS Infectious Dis-
eases, 8(3), 546–556.

[5] Markov, P. V., Katzourakis, A., and Stilianakis, N. I. (2022) Antigenic
evolution will lead to new SARS-CoV-2 variants with unpredictable
severity. Nature Reviews Microbiology, 20(5), 251–252.

[6] Telenti, A., Hodcroft, E. B., and Robertson, D. L. (2022) The evolution
and biology of SARS-CoV-2 variants. Cold Spring Harbor Perspectives
in Medicine, 12(5), a041390.

[7] Callaway, E. Beyond Omicron: what’s next for COVID’s viral evolution.
(2021).

[8] Lippi, G., Mattiuzzi, C., and Henry, B. M. (2022) Updated picture of
SARS-CoV-2 variants and mutations. Diagnosis, 9(1), 11–17.

[9] Jackson, C. B., Farzan, M., Chen, B., and Choe, H. (2022) Mechanisms
of SARS-CoV-2 entry into cells. Nature Reviews Molecular Cell Biology,
23(1), 3–20.

[10] Liu, L., Iketani, S., Guo, Y., Chan, J. F.-W., Wang, M., Liu, L., Luo,
Y., Chu, H., Huang, Y., Nair, M. S., et al. (2022) Striking antibody
evasion manifested by the Omicron variant of SARS-CoV-2. Nature,
602(7898), 676–681.

[11] Koelle, K., Martin, M. A., Antia, R., Lopman, B., and Dean, N. E.
(2022) The changing epidemiology of SARS-CoV-2. Science, 375(6585),
1116–1121.

[12] Gomes, M. G. M., Ferreira, M. U., Corder, R. M., King, J. G., Souto-
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