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Abstract We study the dynamics of a consumer-resource reaction-diffusion
model, proposed recently by Zhang et al (2017), in both homogeneous and
heterogeneous environments. For homogeneous environments we establish the
global stability of constant steady states. For heterogeneous environments we
study the existence and stability of positive steady states and the persistence
of time-dependent solutions. Our results illustrate that for heterogeneous en-
vironments there are some parameter regions in which the resources are only
partially limited in space, a unique feature which does not occur in homoge-
neous environments. Such difference between homogeneous and heterogeneous
environments seems to be closely connected with a recent finding by Zhang
et al (2017), which says that in consumer-resource models, homogeneously
distributed resources could support higher population abundance than het-
erogeneously distributed resources. This is opposite to the prediction by Lou
(2006) for logistic-type models. For both small and high yield rates, we also
show that when a consumer exists in a region with a heterogeneously dis-
tributed input of exploitable renewed limiting resources, the total population
abundance at equilibrium can reach a greater abundance when it diffuses than

Xiaoqing He
Center for PDE, School of Mathematical Sciences and Shanghai Key Laboratory of PMMP,
East China Normal University, Shanghai 200241, China

� King-Yeung Lam
Department of Mathematics, The Ohio State University, Columbus, OH 43210, USA
Tel.: +1-614-6883919
E-mail: lam.184@math.ohio-state.edu

Yuan Lou
Department of Mathematics, The Ohio State University, Columbus, OH 43210, USA

Wei-Ming Ni
Chinese University of Hong Kong - Shenzhen, Shenzhen, China, and School of Mathematics,
University of Minnesota, MN 55455, USA



2 Xiaoqing He et al.

when it does not. In contrast, such phenomenon may fail for intermediate yield
rates.

Keywords Spatial heterogeneity · global asymptotic stability · consumer-
resource model · reaction-diffusion equations
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1 Introduction

Population abundance, or biomass of populations, is often the critical factor
in deciding management strategies for the protection of endangered species
and the control of exotic invasive species. For homogeneous environments in
which the resources are evenly distributed in space, the total population of
a single population is usually determined by the carrying capacity. However,
when the environment is spatially varying across the habitat, the connection
between biomass and carrying capacity may potentially be complicated, partly
due to different movement behaviors of organisms. This issue has been largely
addressed in theoretical studies, in both discrete and continuous spatial mod-
els. For a two-patch system of a single population with logistic growth,it was
shown by Freedman and Waltman (1977) and Holt (1985) that for high move-
ment rates, the total biomass of population at equilibrium could exceed the
sum of the carrying capacities of the two patches. See also a recent thorough
study of the two-patch system by Arditi et al (2015).

The continuous model for a single population with logistic growth and
diffusion is studied by DeAngelis et al (2016b), in which it is assumed that
both intrinsic growth rate and carrying capacity vary spatially. DeAngelis et
al. showed that if the growth rate is positively correlated with the carrying
capacity, then the total population at equilibrium could exceed the total carry-
ing capacity. This extended the results of Lou (2006), where the growth rate is
assumed to be proportional to the carrying capacity. The total population of a
single species model also plays an important role in determining the interesting
dynamics of models of two competing species which diffuse in heterogeneous
environments, e.g., it could occur that without diffusion two competing species
will coexist at any location, but with diffusion one competitor can wipe out the
other at every location. We refer interested readers to (Cantrell and Cosner,
1991, 1998; Hastings, 1983; He and Ni, 2013a,b, 2016a,b, 2017; Lam and Ni,
2012; Lou, 2006) and references therein for further details.

In contrast to these theoretical developments, empirical works in validating
the theoretical predictions are lacking until the recent works of Zhang et al
(2015) and of DeAngelis et al (2016a). In their experimental studies Zhang
et al (2015) measured the growth of the duckweed in a five-patch system
with different nutrient levels, by manually moving a portion of the duckweed
between the adjacent patches in a fixed time period. Their experimental results
showed that the total population of the duckweed is higher than the total
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carrying capacity of the system and it is peaked at a relatively low diffusion (or
mixing) rate, in agreement with the theoretical predictions from both discrete
and continuous spatial models.

The experimental work of Zhang et al (2015) mimicked the classical logistic
model with diffusion, in which carrying capacity is held to be spatially varying
but temporally constant. Such considerations neglected several important fac-
tors, one of which is the feedback of resources from exploitations by consumers.
To remedy such restrictions, Zhang et al (2017) first experimentally tested sev-
eral hypotheses suggested previously by the logistic model, and then, based on
their experiments, extended the logistic models to consumer-resource reaction-
diffusion models to include exploitable renewed resources. Their experiments
also confirmed that spatial diffusion will increase the total population in het-
erogeneous environments, as predicted by logistic models. Surprisingly, their
experimental results also showed that homogeneously distributed resources
actually supported higher population abundance than heterogeneously dis-
tributed resources, which is opposite to the prediction from logistic models. In
Appendix E of the supplementary materials in (Zhang et al, 2017), a mathe-
matical proof of this fact was given under some suitable assumptions. In this
paper we will analytically study the dynamics of a consumer-resource model
proposed by Zhang et al (2017).

The paper is organized as follows: In Section 2 we will introduce the math-
ematical model and discuss our main results. In Section 3 we study the per-
sistence of consumer and resource populations in heterogeneous environments
and establish the existence of a positive steady state. The linear stability of
the positive steady state is investigated in Section 4. Section 5 is devoted to
studying the dynamics of the model in homogeneous environments, in which
we show that the constant positive steady state is unique and globally asymp-
totically stable. In Section 6 we study some qualitative properties of the unique
positive steady state determined in Section 3 and investigate two hypotheses
raised by Zhang et al (2017). We conclude with discussions in Section 7.

2 Mathematical model and main results

Consider the following consumer-resource model derived, based on the exper-
iments, by Zhang et al (2017) (see Model I therein)

Zt = d∆Z + Z
(
r(x)N
k+N − g(x)Z

)
for x ∈ Ω, t > 0,

Nt = NR(x)− r(x)NZ
γ(k+N) for x ∈ Ω, t > 0,

∂nZ = 0 for x ∈ ∂Ω, t > 0,
Z(x, 0) = Z0(x), N(x, 0) = N0(x) for x ∈ Ω.

(1)

Here Z(x, t) and N(x, t) are the densities of consumer and resource popu-
lations at location x and time t, respectively. d is the diffusion rate of the

consumer, ∆ = ΣN
i=1

∂2

∂x2
i

is the usual Laplace operator, r(x) is the growth rate
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of the consumer under unlimited resources, k is the half saturation rate, g(x)
is the loss rate due to self regulation of the consumer population, NR(x) is
the resource input, and γ is the yield rate (measured as individuals per unit
resources).

Throughout this paper we assume that d, k and γ are positive constants,
and r(x), g(x) and NR(x) are positive, Hölder continuous functions in Ω̄ =
Ω ∪ ∂Ω, where Ω is a bounded domain in Euclidean space RN , with smooth
boundary ∂Ω. n(x) is the outward unit normal vector at x ∈ ∂Ω, and ∂nZ :=
n · ∇Z. The zero Neumann boundary condition for Z means that there is no
flux of consumer population across the boundary. We assume that Z0 and N0

are non-negative, not identically zero and continuous in Ω̄.
Our first observation is that for solutions of (1), it may occur thatN(x, t)→

∞ as t→∞, i.e. the resources become unlimited in space. Accordingly, set

U(x, t) :=
Z(x, t)

γ
, M(x, t) :=

N(x, t)

k +N(x, t)
,

then we obtain the equivalent system
Ut = d∆U + U (rM − γgU) for x ∈ Ω, t > 0,
kMt = (1−M)2(NR − rMU) for x ∈ Ω, t > 0,
∂nU = 0 for x ∈ ∂Ω, t > 0,
U(x, 0) = U0(x), M(x, 0) = M0(x) for x ∈ Ω.

(2)

Here U0 = Z0/γ and M0 = N0/(k + N0) satisfy U0 ≥ 0, U0 6≡ 0, M0 ≥ 0,
M0 6≡ 0, and M0 < 1 in Ω̄. Our first result settles the homogeneous case.

Theorem 1 Suppose that r(x), NR(x) and g(x) are positive constant func-
tions, denoted by r̄, N̄R and ḡ, respectively. Then the positive constant steady
state of (2), given by

min

{
1,

√
γḡN̄R
r̄

}
·
(
r̄

γḡ
, 1

)
is globally asymptotically stable among all solutions of (2) with initial data
(U0,M0) satisfying

U0(x) ≥ 0, M0(x) ≥ 0, U0(x) 6≡ 0, M0(x) 6≡ 0 and M0(x) < 1 for all x ∈ Ω̄.
(3)

That is, the following statements hold:

(a) If γ ≥ r̄2

ḡN̄R
, then

(
r̄
γḡ , 1

)
is globally asymptotically stable;

(b) If γ < r̄2

ḡN̄R
, then

(√
N̄R
γḡ ,

√
γḡN̄R
r̄

)
is globally asymptotically stable.

Theorem 1 fully determines the dynamics of system (1) in the homogeneous
case. Namely, if the yield rate is greater than or equal to some critical value,
part (a) implies that the resource density will grow to infinity in Ω as t→∞,



Dynamics of a Consumer-Resource Reaction-Diffusion Model 5

which we refer as the case of unlimited resources; in contrast, part (b) illustrates
that if the yield rate is smaller than the critical value, the resource density
will remain bounded in Ω as t → ∞, i.e. the resources are limited uniformly
in space. In other words, for homogeneous environments the resources are
either unlimited across the habitat or limited everywhere. We shall see that
the situation will be more complicated for heterogeneous environments.

We now consider system (2) with general positive r(x), NR(x) and g(x),
for which (U,M) = (0, 1) is always a non-negative steady state. We focus on
positive steady states (Ũ , M̃) of (2) that satisfy Ũ > 0 and 0 < M̃ ≤ 1 in Ω̄.

Note that
(

1
γ θ, 1

)
is always a positive steady state of (2), where θ = θ(x) is

the unique positive solution of the scalar problem{
d∆θ + θ [r(x)− g(x)θ] = 0 for x ∈ Ω,
∂nθ = 0 for x ∈ ∂Ω. (4)

(It is a standard fact that the above equation has a unique positive solution;
see e.g. Propositions 3.2 and 3.3 of (Cantrell and Cosner, 2003).) A natu-
ral question is whether system (2) has any positive steady state other than(

1
γ θ, 1

)
. This is addressed in the next result.

Theorem 2 Suppose that r(x), NR(x) and g(x) are positive and Hölder con-
tinuous in Ω̄.

(a) If γ ≥ supx∈Ω
r(x)θ(x)
NR(x) , then

(
1
γ θ, 1

)
is globally asymptotically stable. In

particular,
(

1
γ θ, 1

)
is the only positive steady state of (2);

(b) If γ < supx∈Ω
r(x)θ(x)
NR(x) , then (2) has at least one additional positive steady

state, denoted by (u∗,m∗), satisfying u∗ > 0, 0 < m∗ ≤ 1 and m∗ 6≡ 1 in
Ω̄. Moreover, u∗ is the unique positive solution of

d∆u∗ + u∗
[
rmin

{
NR
ru∗

, 1

}
− γgu∗

]
= 0 in Ω, ∂nu

∗|∂Ω = 0, (5)

and m∗ is given by m∗ = min
{
NR
ru∗ , 1

}
.

(c) The positive steady state (u∗,m∗) is linearly stable whenever it exists.

A natural question is whether (u∗,m∗), if it exists, is unique. It turns out
that, due to the degeneracy of the second equation of (2) when M = 1, the
system can admit infinitely many steady states in general. In view of the linear
stability result of part (c), we conjecture that the steady state (u∗,m∗) given
by part (b) is globally asymptotically stable among all solutions of (2) with
initial data (U0,M0) satisfying (3). See Remark 1 for additional discussion.

By a priori estimates infΩ
r
g ≤ θ ≤ supΩ

r
g , which follows readily from the

maximum principle, we have the following more explicit result:

Corollary 1 Suppose that r(x), NR(x) and g(x) are positive and Hölder con-
tinuous in Ω̄.
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(a) If γ ≥ supΩ
r
NR
· supΩ

r
g , then

(
1
γ θ, 1

)
is globally asymptotically stable.

(b) If γ < supΩ
r
NR
· infΩ

r
g , then (2) has at least one additional positive steady

state, denoted by (u∗,m∗), satisfying u∗ > 0, 0 < m∗ ≤ 1 and m∗ 6≡ 1 in
Ω̄. Furthermore, u∗ can be determined by (5).

Next we proceed to discuss qualitative properties of positive steady state
(u∗,m∗) and illustrate some differences between heterogeneous and homo-
geneous cases. We write the unique positive solution of (5) as u∗(x, γ) to
stress its dependence on γ. Since u∗(x, γ) is strictly decreasing in γ, i.e.
u∗(x, γ1) < u∗(x, γ2) in Ω̄ if γ1 > γ2, the following concise result is a con-
sequence of Theorem 2.

Corollary 2 For any d > 0, there exist two positive constants γ∗(d) and γ∗(d)
satisfying(

inf
Ω

r2

N2
R

)(
inf
Ω

NR
g

)
≤ γ∗(d) ≤ γ∗(d) ≤

(
sup
Ω

r

NR

)(
sup
Ω

r

g

)
(6)

and that:

(a) If 0 < γ < γ∗(d), then m∗ < 1 in Ω̄;

(b) If γ∗(d) ≤ γ < γ∗(d), both sets {x ∈ Ω : m∗(x) = 1} and {x ∈ Ω : m∗(x) <
1} are non-empty;

(c) If γ ≥ γ∗(d), then m∗ ≡ 1 in Ω̄.

The proof of Corollary 2 is given at the end of Section 3. Cases (a) and
(c) correspond to the cases of limited and unlimited resources, respectively,
which is similar to the homogeneous case. However, for the homogeneous case
γ∗ = γ∗ = r̄2/(ḡN̄R) holds, thus case (b) is null for the homogeneous case.
For the heterogeneous case, i.e. r(x), NR(x) and g(x) are non-constant func-
tions, it holds generally that γ∗ < γ∗, and case (b) implies that the resources
are unlimited in some locations but limited elsewhere. Such scenario can be
regarded as resources partially limited in space, which is a unique feature for
heterogeneous environments. This will be further elaborated in Section 6.

Three hypotheses were proposed and tested by Zhang et al (2017) both
mathematically and experimentally, of which two can be stated as follows:

Hypothesis A: When a consumer exists in a region with a heterogeneously dis-
tributed input of exploitable renewed limiting resources, the total population
abundance at equilibrium can reach a greater abundance when it diffuses than
when it does not.

Hypothesis B: A consumer diffusing in a region with a heterogeneously dis-
tributed input of exploitable renewed limiting resources can have greater total
population abundance at equilibrium than a population diffusing in a space
with the same total amount of resources distributed homogeneously.

For logistics models of single populations, it was previously shown by Lou
(2006) that both hypotheses hold when the intrinsic growth rate and the car-
rying capacity are proportional to each other. The situation becomes more
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complicated otherwise, as is shown by DeAngelis et al (2016b). One of the
main findings by Zhang et al (2017), experimentally as well as mathematically
for the consumer-resource model and its discrete counterpart, is that Hypoth-
esis B is false when the diffusion rate is small.

In Section 6 we study some qualitative properties of steady state u∗ of
(5) under the additional assumption that g ≡ 1. Our main findings are: (i)
both Hypotheses A and B hold when the resources are unlimited everywhere
in space (large γ); (ii) when the resources are limited everywhere in space,
Hypothesis A holds but Hypothesis B fails (small γ); (iii) when the resources
are partially limited in space, both Hypotheses A and B may fail (intermediate
γ).

3 Persistence and existence of positive steady states

In this section we study positive steady states of (2) and the persistence of
time-dependent solutions of (2). Part (a) of Theorem 1 and parts (a) and (b)
of Theorem 2 follow directly from the following result:

Theorem 3 Suppose that r(x), NR(x) and g(x) are positive and Hölder con-
tinuous in Ω̄.

(a) Suppose γ ≥ supx∈Ω
r(x)θ(x)
NR(x) , then

(
1
γ θ, 1

)
is globally asymptotically stable;

(b) Suppose γ < supx∈Ω
r(x)θ(x)
NR(x) , then

(i) the steady state
(

1
γ θ, 1

)
is weakly repelling, i.e. there is no solution

(U,M) of (2) with initial data satisfying (3) such that (U,M)→
(

1
γ θ, 1

)
as t→ +∞;

(ii) system (2) has at least one additional positive steady state, denoted by
(u∗,m∗), satisfying u∗ > 0, 0 < m∗ ≤ 1 and m∗ 6≡ 1 in Ω̄. Furthermore,
u∗ is the unique positive solution of

d∆u∗ + u∗
[
rmin

{
NR
ru∗

, 1

}
− γgu∗

]
= 0 in Ω, ∂nu

∗|∂Ω = 0;

and m∗ is given by m∗ = min
{
NR
ru∗ , 1

}
.

Remark 1 (i) Here we adopt the notion of weak repeller with respect to the
set of initial data satisfying (3) from Definition 8.15 of (Smith and Thieme,
2011).

(ii) The linear stability of the steady state (u∗,m∗) given in Theorem 3(b)(ii)
will be established in Section 4, here we conjecture that the steady state
(u∗,m∗) is actually globally asymptotically stable with respect to all initial
conditions satisfying (3).
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(iii) If we relax the initial condition (u0,m0) of (2) so that for some open subset
Ω0 of Ω̄,{

u0(x) ≥ 0, m0(x) ≥ 0, u0(x) 6≡ 0,
m0(x) < 1 for x ∈ Ω0 and m0(x) = 1 for x ∈ Ω \Ω0,

then we conjecture that the corresponding solution (U(·, t),M(·, t)) →
(u∗Ω0

,m∗Ω0
) as t→∞, where the latter are determined by

d∆u∗Ω0
+ u∗Ω0

[
rm∗Ω0

− γgu∗Ω0

]
= 0 in Ω, ∂nu

∗
Ω0
|∂Ω = 0;

m∗Ω0
(x) =

{
min

{
NR(x)
ru∗
Ω0

(x) , 1
}

x ∈ Ω0,

1 x ∈ Ω̄ \Ω0,

whenever (θ/γ, 1) is unstable. Note that m∗Ω0
(x) may potentially be dis-

continuous.
(iv) Concerning the domain of attraction of the steady state (u∗,m∗) given

in Theorem 1(b), we conjecture that limt→∞(U(·, t),M(·, t)) = (u∗,m∗),
provided that {x ∈ Ω : m0(x) = 1} ⊂ {x ∈ Ω : m∗(x) = 1}.

(v) The above discussion also explains the connection with the case when m0 ≡
1, in which case it must hold that U(x, t)→ 1

γ θ(x) as t→∞.

Before we prove Theorem 3, we first state and prove lemmas:

Lemma 1 Let V (x, t) be twice continuously differentiable in x and continu-
ously differentiable in t and satisfiesVt − aijVxixj − bjVxj ≥ f(x, t, V ) for x ∈ Ω, t ≥ t0,

∂nV ≥ 0 for x ∈ ∂Ω, t ≥ t0,
infx∈Ω V (x, t0) > −∞,

where the coefficients aij(x, t) and bj(x, t) are assumed to be Hölder continu-
ous, with (aij) being uniformly positive-definite on Ω̄ × [t0,∞), and the Ein-
stein convention is used so that repeated indices are summed. Assume also that
f(x, t, s) is Hölder continuous in x and t and Lipschitz continuous in s, and
there exist η, δ > 0 such that

f(x, t, s) ≥ η

1 + t
for x ∈ Ω, t ≥ t0, and s ≤ δ

1 + t
. (7)

Then there exists T > t0 such that

V (x, t) >
δ

1 + t
for x ∈ Ω, t ≥ T.

Proof We claim that it is enough to show that

inf
x∈Ω

V (x, T ) ≥ δ

1 + T
for some T ≥ t0. (8)
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Suppose that (8) holds. Using δ
1+t as a comparison function, by standard

arguments involving the strong maximum principle, we have

V (x, t) >
δ

1 + t
for x ∈ Ω̄, t > T.

In particular, the lemma is proved in case infx∈Ω V (x, t0) ≥ δ
1+t0

.

Suppose now that infx∈Ω V (x, t0) < δ
1+t0

, then there exists T > t0 such
that

inf
x∈Ω

V (x, t0) + η log

(
1 + T

1 + t0

)
=

δ

1 + T
.

Define the auxiliary function

V (t) = inf
x∈Ω

V (x, t0) + η log

(
1 + t

1 + t0

)
for t0 ≤ t < T.

Claim V has the following properties in t0 ≤ t ≤ T , i.e.

(i) V t − aijV xixj − bjV xj≤f(x, t, V ) for x ∈ Ω and t ∈ [t0, T ];
(ii) ∂nV = 0 for x ∈ ∂Ω and t0 ≤ t ≤ T ;
(iii) V (t0) ≤ V (x, t0) for x ∈ Ω.

It suffices to verify the differential inequality (i) as assertions (ii) and (iii)
clearly hold. For (i), observe that V (t) ≤ δ

1+t for all t ∈ [t0, T ]. Hence, by (7)

V t − aijV xixj − bjV xj =
η

1 + t
≤ f(x, t, V (t)) for x ∈ Ω, 0 ≤ t < T.

This proves the claim.
By the above claim, we may apply the parabolic maximum principle to

conclude that V (x, t) ≥ V (t) for all x ∈ Ω and t0 ≤ t ≤ T . In particular, (8)
holds.

Corollary 3 Let f(t, s) be a Lipschitz continuous function from [t0,+∞)×R
to R, and δ, η > 0 are given such that

f (t, s) ≥ η

1 + t
for t ≥ t0 and s ≤ δ

1 + t
.

If Ṽ (t) ∈ C1([t0,+∞)) satisfies the differential inequality

Ṽ ′ ≥ f(t, Ṽ ) for t ≥ t0,

then there exists T > t0 such that

Ṽ (t) >
δ

1 + t
for t ≥ T.

Lemma 2 Let (U,M) be a solution of (2) with initial data (U0,M0) satisfying
(3). Then
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(a) For each time-dependent solution of (2), there exists C1 > 0 such that

M(x, t) ≤ 1− C1

1 + t
for x ∈ Ω̄ and t ≥ 0.

(b) There exist T1 > 0 and 0 < δ1 < 1, depending on initial data, such that

U(x, t) ≤ 1

γ
θ(x)

(
1− δ1

1 + t

)
for t ≥ T1.

Proof First, we prove (a). Fix a non-negative, non-trivial initial data (U0,M0)
such that M0 < 1 for x ∈ Ω̄ and consider the corresponding time-dependent

solution of (2). Let C1 = min
{

infΩ(1−M0), k
supΩ NR

}
.

It suffices to observe, by the equation of M , that

k

(
1

1−M

)
t

≤ (supNR)

so that
1

1−M(x, t)
≤ 1

1−M0(x)
+

(supNR)

k
t ≤ 1 + t

C1
.

This proves (a).

For (b), setting w(x, t) := γ U(x,t)
θ(x) , we have

wt − d∆w − 2d∇θθ · ∇w ≤ gθw
[
− infx∈Ω

(
r
gθ

)
C1

1+t + 1− w
]
x ∈ Ω, t > 0,

∂nw = 0 x ∈ ∂Ω, t > 0,
w(x, 0) = γU0(x)/θ(x) x ∈ Ω.

(9)
Now, observe that V1(x, t) := 1− w(x, t) satisfies

(V1)t − d∆V1 − 2d
∇θ
θ
· ∇V1 ≥ f1(x, t, V1) for x ∈ Ω, t ≥ 0, (10)

where

f1(x, t, s) = g(x)θ(x)(1− s)
[

inf
x∈Ω

(
r

gθ

)
C1

1 + t
− s
]
.

Moreover, letting

δ1 =
1

2
min

{
1, C1 inf

x∈Ω

(
r

gθ

)}
and η1 =

C1

4

(
inf
x∈Ω

gθ

)(
inf
x∈Ω

r

gθ

)
,

it holds that

f1 (x, t, s) ≥ g(x)θ(x) (1− s)
[

inf
x∈Ω

(
r

gθ

)
C1

1 + t
− s
]
≥ η1

1 + t
(11)

for t ≥ 0 and s ≤ δ1
1+t .

By Lemma 1, there exists T1 ≥ 0 such that

V1(x, t) >
δ1

1 + t
for x ∈ Ω, t ≥ T1.

This proves (b).
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Next, we prove Theorem 3.

Proof We first prove (a). Suppose γ ≥ supx∈Ω
r(x)θ(x)
NR(x) , i.e. NR(x) ≥ 1

γ r(x)θ(x)

in Ω̄. Recall that M ≤ 1, then

kMt = (1−M)2(NR − rMU) ≥ (1−M)2r

(
1

γ
θ − U

)
, for x ∈ Ω̄, t ≥ 0.

By Lemma 2, we deduce that M(x, t) < 1 for t ≥ 0, and Mt(x, t) > 0 for
x ∈ Ω and t ≥ T1. This implies that m∞(x) := limt→∞M(x, t) exists and
satisfies m∞(x) ≤ 1 for all x ∈ Ω.

It remains to show that m∞(x) ≡ 1. Suppose to the contrary that m∞(x) <
1 somewhere. Next, let µ1 be the principal eigenvalue of

d∆ϕ+ rm∞ϕ+ µϕ = 0 in Ω, and ∂nϕ = 0 on ∂Ω.

Define ŵ ≡ 0 when µ1 ≥ 0; and when µ1 < 0, define ŵ to be the unique
positive solution of {

d∆ŵ + ŵ(rm∞ − gŵ) = 0 in Ω,
∂nŵ = 0 on ∂Ω.

(12)

Then, when µ1 < 0, 1
γ ŵ is the unique positive solution of

d∆

(
1

γ
ŵ

)
+

(
1

γ
ŵ

)[
rm∞ − γg

(
1

γ
ŵ

)]
= 0 in Ω.

In either case, limt→∞ U(x, t) = 1
γ ŵ(x) uniformly for x ∈ Ω̄. Since m∞ ≤ 1, 6≡

1, we may deduce by comparison that ŵ < θ in Ω̄. Now, choose δ′, T ′ so that

U(x, t) ≤ 1

γ
ŵ(x) + δ′ <

1

γ
θ(x)− δ′ for all x ∈ Ω, t ≥ T ′.

Then

k∂t

(
1

1−M

)
=

kMt

(1−M)2
= NR − rMU ≥ r

(
1

γ
θ − U(x, t)

)
≥ rδ′

for all x ∈ Ω̄ and t ≥ T ′. This implies that m∞(x) = limt→∞M(x, t) = 1,
which is a contradiction. This proves (a).

Next, we prove (b)(i). Suppose to the contrary that there is some time-
dependent solution (U(x, t),M(x, t)) of (2), with non-negative, non-trivial
initial data (U0,M0) such that M0 < 1 for x ∈ Ω̄, which is attracted to(

1
γ θ, 1

)
as t→∞. By the hypothesis, there exists x0 ∈ Ω such that NR(x0) <

1
γ r(x0)θ(x0). Fix x = x0, then for all sufficiently large t,

kMt(x0, t) = (1−M(x0, t))
2 [NR(x0)− r(x0)M(x0, t)U(x0, t)]

= (1−M(x0, t))
2
[
NR(x0)− r(x0)M(x0, t)

(
1
γ θ(x0) + o(1)

)]
< 0,
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rendering it impossible that M(x0, t)→ 1 as t→∞. This proves (b)(i).
To show assertion (b)(ii), let (µ̃1, ϕ̃1) be the principal eigenpair of

d∆ϕ̃+ rϕ̃+ µ̃ϕ̃ = 0 in Ω, and ∂nϕ̃ = 0 on ∂Ω.

Then

µ̃1 = −
∫
Ω

∆ϕ̃1 + rϕ̃1

ϕ̃1
dx = −

∫
Ω

(
|∇ϕ̃1|2

ϕ̃2
1

+ r

)
dx < 0.

Now, for 0 < ε� 1, εϕ̃1 and 1
γ θ gives a pair of strict lower and upper solutions

of {
d∆ũ+ ũ

[
rmin

{
NR(x)
rũ(x) , 1

}
− γgũ

]
= 0 for x ∈ Ω,

∂nũ = 0 for x ∈ ∂Ω.
(13)

Here we have used the condition γ < supx∈Ω
r(x)θ(x)
NR(x) to ensure that 1

γ θ is a

strict upper solution. This proves the existence of at least one positive solution
u∗ to (13) such that u∗(x) < 1

γ θ(x) in Ω̄. The uniqueness of u∗ follows from

the fact that f(x, u) := r(x) min{NR(x)
r(x)u , 1}−γgu is decreasing in u and Hölder

continuous in x; see, e.g. Proposition 3.3 of (Cantrell and Cosner, 2003). (Al-
ternatively, one may also argue by the subhomogeneity of the semiflow, see
Theorem 2.3.4 of (Zhao, 2017).)

Setting m∗(x) = min
{
NR(x)
ru∗(x) , 1

}
, we obtain the existence of a positive

steady state (u∗,m∗). Finally, since u∗(x) 6≡ 1
γ θ, we must have m∗(x) 6≡ 1.

This proves Theorem 3.

Finally we establish Corollary 2.

Proof of Corollary 2. For any d > 0, define

γ∗(d) = sup
Ω

r(x)θ(x)

NR(x)
and γ∗(d) = sup

{
γ > 0 : sup

Ω

NR
rũ

< 1

}
, (14)

where θ is the unique positive solution of (4) and ũ is the unique positive
solution of

d∆ũ+ (NR − γgũ2) = 0 in Ω. ∂nũ
∣∣
∂Ω

= 0. (15)

Let (u∗,m∗) be the steady state of (2) as given by Theorem 2. Then m∗ =
min

{
1, NRru∗

}
and u∗ is the unique solution to (5). Ifm∗ ≡ 1 inΩ, then u∗ = θ/γ

and NR
ru∗ ≥ 1 in Ω̄. This implies m∗ ≡ 1 in Ω iff γ ≥ γ∗(d).

Next, suppose that m∗ < 1 somewhere in Ω. Then m∗ < 1 in Ω̄ iff

u∗ = ũ, and sup
Ω

NR
rũ

< 1.

Hence, fixing all parameters except γ, then

m∗ < 1 in Ω̄ iff γ is such that sup
Ω

NR
rũ

< 1.
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The definition of γ∗(d) follows from the fact that ũ is strictly decreasing in γ.
Finally, the inequalities in (6) are direct consequences of the definitions of

γ∗(d), γ∗(d), and that supΩ θ ≤ supΩ
r
g , infΩ ũ

2 ≥ infΩ
NR
γg . This establishes

Corollary 2.

4 Linear stability of positive steady states

In this section we consider the linear stability of positive steady state (u∗,m∗),
which is given in Theorem 2. The main result is stated as follows:

Theorem 4 If the steady state (u∗,m∗) exists, then it is linearly stable; i.e.
if λ ∈ C is an eigenvalue of the linear problem−kλΨ = (−ru∗Ψ − rm∗Φ)(1−m∗)2 for x ∈ Ω,

−λΦ = d∆Φ+ Φ(rm∗ − 2γgu∗) + ru∗Ψ for x ∈ Ω,
∂nΦ = 0 for x ∈ ∂Ω,

(16)

then necessarily Reλ > 0 holds.

We caution the readers that in the first equation of (16), the term −2(1−
m∗)(NR−rm∗u∗)Ψ actually vanishes, as a consequence of the definition of m∗

after (5).

Remark 2 Let (u∗,m∗) be a steady state given by Theorem 3(b)(ii). Define
Ω0 := {x ∈ Ω : m∗(x) < 1}. Then the above linearization concerns perturba-
tions from the steady state (u∗,m∗) within the function space

X1 =
{

(ũ, m̃) ∈ C(Ω̄;R+ × [0, 1]) : m̃(x) < 1 in Ω0, m̃(x) = 1 in Ω \Ω0

}
.

Proof We eliminate Ψ by the substitution

Ψ = X{x:m∗(x)<1}
rm∗

kλ
(1−m∗)2 − ru∗

Φ = X{x:m∗(x)<1}
(1−m∗)2

k

[
rm∗

λ− ru∗(1−m∗)2

k

]
Φ

to obtain the nonlinear eigenvalue problemd∆Φ+ Φ

[
rm∗ − 2γgu∗ + λ+ X{x:m∗(x)<1}

(1−m∗)2

k
r2u∗m∗

λ− ru
∗(1−m∗)2

k

]
= 0 for x ∈ Ω,

∂nΦ = 0 for x ∈ ∂Ω.
(17)

Claim The following holds:

inf
ϕ∈H1(Ω)

∫
Ω

[d|∇ϕ|2 − (rm∗ − γgu∗)ϕ2] dx = 0. (18)
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This assertion follows by observing that 0 is an eigenvalue (with positive
eigenfunction ϕ1 = u∗) of the problem{

d∆ϕ+ (rm∗ − γgu∗)ϕ+ µϕ = 0 for x ∈ Ω,
∂nϕ = 0 for x ∈ ∂Ω.

We further claim that for each constant k > 0, the nonlinear eigenvalue
problem (17) does not admit any eigenvalue with non-positive real part. Sup-
pose to the contrary that λ = α+ iβ is an eigenvalue, with α ≤ 0, β ∈ R, and
eigenfunction Φ = φ+ iψ, where φ, ψ are real-valued functions. Then−d∆φ+Aφ = Bψ for x ∈ Ω,

−d∆ψ +Aψ = −Bφ for x ∈ Ω,
∂nφ = ∂nψ = 0 for x ∈ ∂Ω,

(19)

where A and B are given by

A = −rm∗−α+2γgu∗+X{x:m∗(x)<1}
(1−m∗)2u∗r2m∗

k
· −α+ ru∗(1−m∗)2/k

β2 + (−α+ ru∗(1−m∗)2/k)2

and, respectively,

B = β

(
−1 + X{x:m∗(x)<1}

(1−m∗)2u∗r2m∗

k
· 1

β2 + (−α+ ru∗(1−m∗)2/k)2

)
.

Claim There exists σ0 > 0 independent of k, such that

σ0

∫
ϕ2 dx ≤

∫ [
d|∇ϕ|2 +Aϕ2

]
dx for all ϕ ∈ H1(Ω). (20)

To establish our assertion, we make use of (18) to get

inf
ϕ∈H1(Ω)

∫
[d|∇ϕ|2 +Aϕ2] dx∫

ϕ2 dx

≥ inf
ϕ∈H1(Ω)

∫
[d|∇ϕ|2 + (−rm∗ + γgu∗)ϕ2] dx∫

ϕ2 dx
+

∫
γgu∗ϕ2 dx∫
ϕ2 dx

≥ γ inf
Ω

(gu∗) > 0.

Multiplying the equation of φ by φ, the equation of ψ by ψ, integrating the
results by parts and adding them together, we obtain (by using (20))

σ0

∫
(φ2 + ψ2) dx ≤

∫ [
d|∇φ|2 + d|∇ψ|2 +A(φ2 + ψ2)

]
dx

=

∫
[Bψφ−Bφψ] dx = 0.

Hence φ ≡ ψ ≡ 0, and this shows that any λ with Reλ ≤ 0 is not an eigenvalue.
This concludes the proof of the theorem.
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5 Global asymptotic stability in the homogeneous case

Throughout this section r(x), NR(x) and g(x) are positive constant functions,
denoted by r̄, N̄R and ḡ, respectively. We establish Theorem 1 for the case
γ < r̄2/(ḡN̄R) as the other case γ ≥ r̄2/(ḡN̄R) is covered by part of (a) of
Theorem 3. For the ease of notation we drop the bars and write them as NR,
g and r for the rest of this section.

Proposition 1 For each time-dependent solution of (2), there exist δ0 > 0
and T0 > 0 such that

NR
r

+
δ0

1 + t
≤ U(x, t) ≤ r

γg
− δ0

1 + t
and

γgNR
r2

+
δ0

1 + t
≤M(x, t) ≤ 1− δ0

1 + t

for x ∈ Ω and t ≥ T0.

Proof By Lemma 2, there exist C1, T1 > 0 and 0 < δ1 < min
{

1, rγg

}
such

that

M(x, t) ≤ 1− C1

1 + t
and U(x, t) ≤ r

γg
− δ1

1 + t
for x ∈ Ω, t ≥ T1,

where we have used the fact that 1
γ θ = r

γg .

Claim There exist δ2 > 0 and T2 > 0 such that M(x, t) ≥ γgNR
r2 + δ2

1+t for
x ∈ Ω and t ≥ T2.

Fix x ∈ Ω, and let V2(t) = M − γgNR
r2 , then for t ≥ T1,

k(V2)′ =

(
1− γgNR

r2
− V2

)2 [
NR − r

(
V2 +

γgNR
r2

)
U(x, t)

]
≥
(

1− γgNR
r2

− V2

)2 [
NR − r

(
V2 +

γgNR
r2

)(
r

γg
− δ1

1 + t

)]
=

(
1− γgNR

r2
− V2

)2 [(
− r

2

γg
+

rδ1
1 + t

)
V2 +

γgNRδ1
r

1

1 + t

]
.

Hence, we define f2(t, s) =
(

1− γgNR
r2 − s

)2 [(
− r2

γg + rδ1
1+t

)
s+ γgNRδ1

r
1

1+t

]
,

so that
k(V2)′ ≥ f2(t, V2) for t ≥ T1.

Setting δ2 = 1
2 min

{
1− γgNR

r2 , γ
2g2NRδ1
r3

}
, we deduce that, for t ≥ T1 and

s ≤ δ2
1+t ,

f2 (t, s) ≥
(

1− γgNR
r2

− s
)2 [(

− r
2

γg
+

rδ1
1 + t

)
δ2

1 + t
+
γgNRδ1

r

1

1 + t

]
≥
(

1− γgNR
r2

− s
)2 [
− r

2

γg

δ2
1 + t

+
γgNRδ1

r

1

1 + t

]
≥ 1

4

(
1− γgNR

r2

)2
γgNRδ1

2r

1

1 + t
.
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By Corollary 3, there exists T2 ≥ T1 such that V2(t) ≥ δ2
1+t for all t ≥ T2. This

proves the claim.

Claim There exist δ3 > 0 and T3 > 0 such that U(x, t) ≥ NR
r + δ3

1+t for x ∈ Ω
and t ≥ T3.

By the previous claim, we deduce that{
Ut − d∆U ≥ U

[
γg
(
NR
r − U

)
+ r δ2

1+t

]
for x ∈ Ω, t ≥ T2,

∂nU = 0 for x ∈ ∂Ω, t ≥ T2.

By comparison it is not hard to show that lim inf
t→∞

U(x, t) ≥ NR
r
. In particular,

there exists T ′2 ≥ T2 such that

inf
x∈Ω

U(x, t) ≥ NR
2r

for t ≥ T ′2. (21)

Let V3(x, t) = U(x, t)− NR
r , then

(V3)t − d∆V3 ≥ f3(x, t, V3) for x ∈ Ω, and t ≥ T ′2,

where, using (21),

f3(x, t, s) :=


(
s+ NR

r

) (
rδ2
1+t − γgs

)
when γgs ≥ rδ2

1+t ,

NR
2r

(
rδ2
1+t − γgs

)
when γgs ≤ rδ2

1+t .

Setting δ3 = rδ2
2γg , we have, for all t ≥ T ′2 and s ≤ δ3

1+t ,

f3 (x, t, s) ≥ NR
2r

(
rδ2

1 + t
− γg δ3

1 + t

)
≥ NR

2r
· rδ2

2
· 1

1 + t
.

And Lemma 1 again implies the existence of T3 ≥ T ′2 such that V3(t) ≥ δ3
1+t

for all t ≥ T3. This proves the claim.
Finally, the proposition follows by letting T0 = max{T1, T2, T3} and δ0 =

min{C1, δ1, δ2, δ3}.

Theorem 5 Suppose γ < r2/(gNR), then the positive (constant) steady state
(u∗,m∗) for (2) is globally asymptotically stable among initial values (U0,M0)
satisfying (3).

Proof Suppose the constant parameters satisfy γ < r2/(gNR), then the steady
state

(u∗,m∗) =

(√
NR
γg

,

√
γgNR
r

)
is determined by

rm∗ = γgu∗ and NR = rm∗u∗.
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Clearly, m∗ < 1.
Step 1. Suppose the initial condition satisfies (3), then there exists T0 > 0 such
that

NR
r

< U(x, T0) <
r

γg
and

γgNR
r2

< M(x, T0) < 1 for x ∈ Ω. (22)

This follows from Proposition 1. Thus we may assume without loss of generality
that the initial data (U0,M0) satisfies (22).

Define, for ξ ∈
(
u∗, rγg

)
,

U(ξ) := ξ, U(ξ) :=
NR
γgξ

, M(ξ) :=
γg

r
ξ, and M(ξ) :=

NR
rξ

where, by construction, for all x ∈ Ω̄ it holds that

NR
r

< U < u∗ < U <
r

γg
,

γgNR
r2

< M < m∗ < M < 1, MU = MU =
NR
r
.

Next, define the family of (invariant) sets Γ (ξ) as follows:

Γ (ξ) :=
{

(y1, y2) ∈ R2 : U(ξ) ≤ y1 ≤ U(ξ) and M(ξ) ≤ y2 ≤M(ξ)
}
.

By Step 1, it is possible to choose ξ ∈
(
u∗, rγg

)
close enough to r

γg such that

(U(x, 0),M(x, 0)) ∈ intΓ (ξ) for all x ∈ Ω̄. (23)

Step 2. Let ξ ∈
(
u∗, rγg

)
. We claim that if (U(x, 0),M(x, 0)) ∈ intΓ (ξ) for all

x ∈ Ω̄ then (U(x, t),M(x, t)) ∈ intΓ (ξ) for all x ∈ Ω̄ and t ≥ 0.
Suppose to the contrary that Step 2 is false, then for some t1 > 0,

(U(x, t),M(x, t)) ∈ intΓ (ξ) for all x ∈ Ω̄ and t ∈ [0, t1),

and one of the following alternatives holds (in the following we suppress the
dependence of ξ in U,U,M,M):

(i) U(x1, t1) = U or U(x1, t1) = U for some x1 ∈ Ω̄.
(ii) U < U(x, t1) < U for all x ∈ Ω̄, but M(x1, t1) = M or M(x1, t1) = M for

some x1 ∈ Ω̄.

For case (i), we observe that for t ∈ [0, t1], M ≤M(x, t) ≤M for all x ∈ Ω̄
and hence{

γgU(U − U) ≤ Ut − d∆U ≤ γgU(U − U) for x ∈ Ω, t ∈ [0, t1],
∂nU = 0 for x ∈ ∂Ω, t ∈ [0, t1].

(24)

Since U < U(x, 0) < U for x ∈ Ω̄, the strong maximum principle for parabolic
equations yields that U < U(x, t) < U for all x ∈ Ω̄ and t ∈ [0, t1]; a contra-
diction, i.e. case (i) is impossible.
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For case (ii), for x = x1 and t ∈ [0, t1], we have

Mt = (1−M)2

k [rMU − rMU + rM(U − U)]

= − r(1−M)2

k U(M −M) + r(1−M)2

k M(U − U)

and also
Mt = (1−M)2

k

[
rMU − rMU − rM(U − U)

]
= r(1−M)2

k U(M −M)− r(1−M)2

k M(U − U)

i.e. (still fixing x = x1)

(M −M)t = −r(1−M)2

k
U(M −M) +

r(1−M)2

k
M(U − U) (25)

and

(M −M)t = − (1−M)2

k
rU(M −M) +

r(1−M)2

k
M(U − U). (26)

Since U < U(x, t) < U for x ∈ Ω̄ and t ∈ [0, t1], we have

M(x1, t1)−M > exp

(
−
∫ t1

0

rU

k
(1−M(x1, s))

2 ds

)
(M(x1, 0)−M) ≥ 0.

Similarly, we deduce that M −M(x1, t1) > 0, a contradiction, i.e. case (ii) is
also impossible. This finishes Step 2.

Step 3. Let t0 ≥ 0, and let ξ ∈
(
u∗, rγg

)
be fixed so that

(U(x, t0),M(x, t0)) ∈ Γ (ξ) for x ∈ Ω̄, (27)

then
(U(x, t),M(x, t)) ∈ Γ (ξ) for x ∈ Ω̄, and t > t0. (28)

To show Step 3, suppose (27) holds. Then (U(x, t0),M(x, t0)) ∈ intΓ (ξ̂)

for all x ∈ Ω̄ and for all ξ̂ ∈
(
ξ, rγg

)
. In view of Step 2, for all ξ̂ ∈

(
ξ, rγg

)
, we

have
(U(x, t),M(x, t)) ∈ intΓ (ξ̂) for all x ∈ Ω̄, t ≥ t0.

Since ∩ξ̂∈(ξ, rγg )intΓ (ξ̂) = Γ (ξ), this implies (28).

Step 4. Define

ξ∗ := inf

{
ξ ∈

(
u∗,

r

γg

)
: ∃t0 s.t. (U(x, t),M(x, t)) ∈ Γ (ξ) for x ∈ Ω̄, t ≥ t0

}
.

By Steps 1 and 3, ξ∗ ∈
[
u∗, rγg

)
is well-defined. If ξ∗ = u∗, then (U(·, t),M(·, t))→

(u∗,m∗) as t→∞, and we are done.

Suppose to the contrary that ξ∗ ∈
(
u∗, rγg

)
. By parabolic regularity theory

and a standard diagonal process, passing to a sequence tj → ∞, we may

assume that U(x, t+ tj)→ Ũ(x, t) weakly in W 2,1,p
loc (Ω × [0,∞)) and strongly
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in C1+α,(1+α)/2(Ω̄ × [0,∞)). Moreover, denoting U = U(ξ∗) and similarly for
U,M,M , we have for each ε > 0, there exists t0 > 0 such that

(U(x, t),M(x, t)) ⊂ Γ (ξ∗ + ε) for all x ∈ Ω̄, t ≥ t0,

so that if we let t→∞ and then ε→ 0, we have

lim sup
t→+∞

sup
x∈Ω

M(x, t) ≤M, and lim inf
t→+∞

inf
x∈Ω

M(x, t) ≥M (29)

and that

lim sup
t→+∞

sup
x∈Ω

U(x, t) ≤ U, and lim inf
t→+∞

inf
x∈Ω

U(x, t) ≥ U. (30)

Passing to the weak limit for the equation of U , we deduce differential inequal-
ities for the nonnegative functions (U − Ũ) and (Ũ − U) that are similar to
(24),

(U − Ũ)t − d∆(U − Ũ) = −Ũt + d∆Ũ ≥ −γgŨ(U − Ũ), (x, t) ∈ Ω × [0,∞),

(Ũ − U)t − d∆(Ũ − U) = Ũt − d∆Ũ ≥ −γgŨ(Ũ − U), (x, t) ∈ Ω × [0,∞),

∂n(U − Ũ) = ∂n(Ũ − U) = 0 (x, t) ∈ ∂Ω × [0,∞),

U − Ũ ≥ 0 and Ũ − U ≥ 0 (x, t) ∈ Ω × [0,∞).
(31)

By the weak Harnack inequality for strong solutions of parabolic equations
(see Theorem 7.37 of (Lieberman, 1996)) applied to (U − Ũ) and (Ũ − U),
there can only be three cases:

(i) there exists t0 > 0 such that U < Ũ(x, t) < U for (x, t) ∈ Ω̄ × (t0,∞);
(ii) Ũ(x, t) ≡ U for (x, t) ∈ Ω̄ × [0,∞);
(iii) Ũ(x, t) ≡ U for (x, t) ∈ Ω̄ × [0,∞);

We will make use of the following technical lemma, whose proof will be
postponed to the end of this section.

Lemma 3 Suppose tj → +∞ and Ũ(x, t) = limj→∞ U(x, t + tj) weakly in

W 2,1,p
loc (Ω × [0,∞)).

(a) If Ũ < U in Ω̄ × [1, 3], then there exist δ1 > 0 and j0 ∈ N such that for all
j ≥ j0,

M(x, tj + t) > M + δ1 and U(x, tj + t) < U − δ1 in Ω̄ × [2, 3];

(b) If Ũ > U in Ω̄ × [1, 3], then there exist δ1 > 0 and j0 ∈ N such that for all
j ≥ j0,

M(x, tj + t) < M − δ1 and U(x, tj + t) > U + δ1 in Ω̄ × [2, 3].

In both assertions δ1 is independent of j ≥ j0.
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Assume the lemma holds. Then for case (i),

U < Ũ(x, t) < U for x ∈ Ω̄ and t0 + 1 ≤ t ≤ t0 + 3.

By parts (a) and (b) of Lemma 3, we deduce that for j ≥ j0,

M(ξ∗) + δ1 < M(x, tj + t0 + t) < M(ξ∗)− δ1,
U(ξ∗) + δ1 < U(x, tj + t0 + t) < U(ξ∗)− δ1,

for x ∈ Ω̄ and t ∈ [2, 3]. Hence, there exists ξ∗∗ such that u∗ < ξ∗∗ < ξ∗ and

(U(x, tj + t0 + 2),M(x, tj + t0 + 2)) ∈ Γ (ξ∗∗) for x ∈ Ω̄.

By the invariance of Γ (ξ∗∗) (proved in Step 3), we deduce

(U(x, t),M(x, t)) ∈ Γ (ξ∗∗) for x ∈ Ω̄, t ≥ tj + t0 + 2.

This contradicts the minimality of ξ∗. Thus case (i) is impossible.
Next we consider case (ii), where Ũ ≡ U . This implies, by way of Lemma

3(a), that for some constant δ1 and for all j ≥ j0,

M(x, tj + t)−M ≥ δ1 for x ∈ Ω̄, t ∈ [2, 3].

Hence the second differential inequality in (31) can be improved to
Ũt − d∆Ũ ≥ γgŨ

(
U + rδ1

γg − Ũ
)

for x ∈ Ω, t ∈ [2, 3],

∂nŨ = 0 for x ∈ ∂Ω, t ∈ [2, 3],

Ũ ≥ U for x ∈ Ω, t ∈ [2, 3].

Standard comparison yields that Ũ(x, t) > U for x ∈ Ω̄ and t ∈ (2, 3]. This is
a contradiction to Ũ ≡ U for all x ∈ Ω̄ and t ≥ 0. Thus case (ii) is impossible.
Similarly, we can deduce that case (iii) is also impossible. We thus have arrived
at a contradiction from the assumption that ξ∗ > u∗. Thus ξ∗ = u∗ and we
are done.

Finally, we supply the proof of Lemma 3. We only prove (a), as the proof
of (b) is analogous. Solving (25) in the interval [tj , tj + t], we have

M(x, tj + t)−M

= exp

(
−
∫ tj+t

tj

rU

k
(1−M(x, s))2ds

)
×

[
(M(x, tj)−M)

+

∫ tj+t

tj

exp

(∫ tj+τ

tj

rU

k
(1−M(x, s))2ds

)
r(1−M(x, τ))2

k
M(x, τ)(U − U(x, τ))dτ

]
.

Choose, by Step 1, a parameter ξ0 ∈
(
u∗, rγg

)
such that

(U(x, 0),M(x, 0)) ∈ Γ (ξ0) for all x ∈ Ω̄,
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and set M0 = M(ξ0) < 1, and M0 = M(ξ0) > 0. By Step 3, we have
(U(x, t),M(x, t)) ∈ Γ (ξ0) for all x ∈ Ω̄ and t ≥ 0, i.e. M0 ≤ M(x, t) ≤ M0

for all x ∈ Ω̄ and t ≥ 0.
By assumption, Ũ(x, t) = limj→∞ U(x, t + tj) < U in the compact set

Ω̄ × [1, 3]. Hence it is possible to choose δ0 and j1 so that for all j ≥ j1,{
U − U(x, tj + t) ≥ δ0 for x ∈ Ω̄, t ∈ [1, 3],

infx∈Ω(M(x, tj)−M) ≥ − 1
2

[
r(1−M0)2

k M0δ0

]
,

where we have made use of (29). Hence, for each x ∈ Ω̄ and t ∈ [2, 3],

M(x, tj + t)−M

≥ exp

(
−
∫ tj+t

tj

rU

k
(1−M(x, s))2ds

)
·

[
inf
x∈Ω

(M(x, tj)−M) +

∫ tj+t

tj+1

r(1−M0)2

k
M0δ0dτ

]

≥ exp

(
−
∫ tj+t

tj

rU

k
(1−M(x, s))2ds

)
·

[
inf
x∈Ω

(M(x, tj)−M) +
r(1−M0)2

k
M0δ0

]

≥ exp

(
−
∫ tj+3

tj

rU

k
ds

)
· 1

2
·
[
r(1−M0)2

k
M0δ0

]
= exp

(
−3rU

k

)[
r(1−M0)2

2k
M0δ0

]
:= δ1 > 0.

Since the last expression is independent of x ∈ Ω̄ and t ∈ [2, 3], part (a) of
Lemma 3 is proved. The proof of part (b) is analogous and is skipped.

Remark 3 In fact, it is not difficult to construct a Lyapunov function as follows:

V (t) := max
x∈Ω̄

{
U(x, t),

r

γg
M(x, t),

NR
γgU(x, t)

,
NR

rM(x, t)

}
.

However, due to the lack of compactness of the semiflow generated by (2), one
cannot directly invoke LaSalle’s Invariance Principle to conclude the global
asymptotic stability of the homogeneous steady state (u∗,m∗).

6 Qualitative properties of steady state: Case g ≡ 1

In this section we study some qualitative properties of the unique positive
steady state u∗ of (5), under the condition g ≡ 1. The main goal of this
section is to determine when Hypothesis A and Hypothesis B hold or fail for
the special case g ≡ 1.

Throughout this section we assume that g ≡ 1 and rewrite (5) as{
d∆u∗ + u∗

[
min{NRu∗ , r} − γu∗

]
= 0 in Ω,

∂nu
∗ = 0 on ∂Ω.

(32)
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Note that u∗ depends upon d and γ. For the sake of brevity we write it as u∗ in-

stead of u∗(x, d, γ). By Theorem 3 we may assume that if γ ≥ supx∈Ω
r(x)θ(x)
NR(x) ,

then u∗ = θ/γ.
In terms of u∗, Hypothesis A is equivalent as∫

Ω

u∗ dx > lim
d→0

∫
Ω

u∗ dx

holds for all d > 0, and Hypothesis B is equivalent to∫
Ω

u∗ dx > lim
d→∞

∫
Ω

u∗ dx

holds for all d > 0.
We start with a few properties for u∗ which hold for all γ.

Lemma 4 For any d > 0 and γ > 0,

max
Ω̄

u∗ ≤ min

{
maxΩ̄ r

γ
,

maxΩ̄
√
NR√

γ

}
; min

Ω̄
u∗ ≥ min

{
minΩ̄ r

γ
,

minΩ̄
√
NR√

γ

}
.

(33)

Proof Suppose that maxΩ̄ u
∗ = u∗(x0) for some x0 ∈ Ω̄. By Proposition 2.2

of (Lou and Ni, 1996),

γu∗(x0) ≤ min

{
NR(x0)

u∗(x0)
, r(x0)

}
,

from which the first inequality of (33) follows. The proof for the second in-
equality of (33) is similar and thus omitted.

The proofs of the following two results are also standard; See (DeAngelis
et al, 2016b).

Lemma 5 As d→ 0+,

u∗(x)→ u0(x) := min

{√
NR(x)

γ
,
r(x)

γ

}

uniformly in x ∈ Ω̄.

Lemma 6 As d→∞, u∗ → u∞ uniformly in x ∈ Ω̄, where u∞ is the positive
constant uniquely determined by

γ|Ω|u∞ =

∫
Ω

min

{
NR(x)

u∞
, r(x)

}
dx.

We consider three scenarios: large, small and intermediate γ, and determine
whether Hypotheses A and B hold or fail in these parameter regions. Our main
findings are as follows.
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(i) (large γ) When the resources are unlimited everywhere in space, then Hy-
potheses A and B hold.

(ii) (small γ) When the resources are limited everywhere in space, then Hy-
pothesis A holds but Hypothesis B fails.

(iii) (intermediate γ) When the resources are partially limited in space, then
both Hypotheses A and B may fail.

6.1 Large γ case

Theorem 6 Suppose that γ ≥ γ̄ := maxΩ̄ r · maxΩ̄
r
NR

and r(x) is non-
constant. Then for any d > 0,∫

Ω

u∗ dx > lim
d→0+

∫
Ω

u∗ dx = lim
d→∞

∫
Ω

u∗ dx.

Theorem 6 implies that for suitably large γ, both Hypothesis A and B
hold, similarly as predictions on logistic models. This is not surprising as u∗

satisfies the logistic equation, as asserted in the following result:

Lemma 7 If γ ≥ γ̄, then u∗ satisfies{
d∆u∗ + u∗ [r − γu∗] = 0 in Ω,
∂nu

∗ = 0 on ∂Ω.
(34)

Proof By Lemma 4,

max
Ω̄

u∗ ≤ maxΩ̄ r

γ
≤ min

Ω̄

NR
r
,

whenever γ ≥ γ. Hence, NR/u
∗ ≥ r in Ω̄, and thus u∗ satisfies (34).

The proof of Theorem 6 follows from Lemmas 5, 6 and 7; see, e.g., the
proof of of (Lou, 2006).

From the proof of Lemma 7 we see that if γ is suitably large, then m∗ =
min{NRru∗ , 1} ≡ 1 in Ω̄. This implies that N(x, t) → ∞ as t → ∞, i.e. the
resources are unlimited everywhere in space. In other words, both Hypotheses
A and B hold when the resources are unlimited everywhere in space.

6.2 Small γ case

This is the case when the resources are limited everywhere in space, which is
opposite to the case of large γ. In this case, we will show that Hypothesis A
holds but Hypothesis B fails.



24 Xiaoqing He et al.

Theorem 7 Suppose that 0 < γ ≤ γ, where

γ := min

{(
min
Ω̄

r2

N2
R

)(
min
Ω̄

NR

)
,

(
min
Ω̄

r

)(
min
Ω̄

r

NR

)}
,

and NR(x) is non-constant. Then
∫
Ω
u∗ dx is strictly increasing in d. In par-

ticular,

lim
d→0

∫
Ω

u∗ dx <

∫
Ω

u∗ dx < lim
d→∞

∫
Ω

u∗ dx.

holds for any d > 0.

Lemma 8 If γ ≤ γ, then u∗ = ũ, where ũ = ũ(·; d) is the uniquely positive
solution of {

d∆ũ+NR − γũ2 = 0 in Ω,
∂nũ = 0 on ∂Ω.

(35)

Proof By Lemma 4,

min
Ω̄

u∗ ≥ min

{
minΩ̄ r

γ
,

minΩ̄
√
NR√

γ

}
≥ max

Ω̄

NR
r
,

where the last inequality follows from γ ≤ γ. Hence, NR/u
∗ ≤ r in Ω̄, and

thus u∗ satisfies (35).

Lemma 9 Let ũ = ũ(·; d) be the unique positive solution of (35). Suppose
that NR is non-constant. Then

∫
Ω
ũ(x; d) dx is strictly increasing in d.

Proof We denote ∂ũ/∂d as ũ′. Differentiating (35) with respect to d, we have{
d∆ũ′ +∆ũ− 2γũũ′ = 0, x ∈ Ω,
∂nũ

′ = 0 x ∈ ∂Ω. (36)

Set L := (−d∆+2γũ)−1, i.e. the inverse of the operator −d∆+2γũ subject
to the Neumann boundary condition. By (35) and (36) we have

ũ = L(NR + γũ2), and dũ′ = L(d∆ũ) = L(γũ2 −NR).

Hence
d
(∫
Ω
ũ
)′

= d
∫
Ω
ũ′

= d
∫
Ω
L(∆ũ)

=
∫
Ω
L(d∆ũ)

=
∫
Ω
L(γũ2 −NR)

=
∫
Ω
L(2γũ2)−

∫
Ω
L(γũ2 +NR)

=
∫
Ω
L(2γũ2)−

∫
Ω
ũ.

(37)

It remains to show that ∫
Ω

L(2γũ2) >

∫
Ω

ũ,

from which it follows that
∫
Ω
ũ is strictly increasing in d.
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To prove our assertion, let v = L(2γũ2), i.e. v satisfies{
−d∆v + 2γũv = 2γũ2, x ∈ Ω,
∂nv = 0 x ∈ ∂Ω. (38)

By the maximum principle, v > 0 in Ω̄. As ũ is non-constant, v is also non-
constant. Dividing (38) by v and integrating the result in Ω we obtain

−d
∫
Ω

|∇v|2

v2
+ 2γ

∫
Ω

ũ = 2γ

∫
Ω

ũ2

v
.

Since v is non-constant, we have∫
Ω

ũ >

∫
Ω

ũ2

v
,

which can be written as ∫
Ω

ũ(v − ũ)

v
> 0.

Note that ∫
Ω

(v − ũ)−
∫
Ω

(v − ũ)2

v
=

∫
Ω

ũ(v − ũ)

v
.

Hence, ∫
Ω

(v − ũ) >

∫
Ω

(v − ũ)2

v
≥ 0,

which proves the assertion.

Theorem 7 now follows from Lemmas 8 and 9.

6.3 Intermediate γ

The results from previous two subsections illustrate that Hypothesis A hold
for small and large γ. In this subsection we show that Hypothesis A could fail
for intermediate values of γ.

Theorem 8 Suppose that maxΩ̄
r2

NR
<

∫
Ω
r

|Ω| maxΩ̄
r
NR

holds. Then

lim
d→0

∫
Ω

u∗ dx > lim
d→∞

∫
Ω

u∗ dx

for

γ ∈ [max
Ω̄

r2

NR
,

∫
Ω
r

|Ω|
max
Ω̄

r

NR
).
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Remark 4 It is easy to construct functions NR and r for which maxΩ̄
r2

NR
<∫

Ω
r

|Ω| maxΩ̄
r
NR

holds; for instance, it holds when r is non-constant and NR is

proportional to r2. We also note that maxΩ̄
r2

NR
<

∫
Ω
r

|Ω| maxΩ̄
r
NR

does not hold

when NR is proportional to r.
In fact, when NR(x) = kr(x) for some k > 0, then limd→0

∫
Ω
u∗ dx ≤

limd→∞
∫
Ω
u∗ dx holds for every γ > 0. Precisely, by Lemmas 4 and 5,

u∞ =

√
r̄

γ
min

{√
k,

√
r̄

γ

}
, and u0(x) =

√
r(x)

γ
min

{
√
k,

√
r(x)

γ

}

Hence, by Schwartz’s inequality,∫
Ω

u0 dx ≤
∫
Ω

√
kr(x)

γ
dx =

√
k|Ω|
|Ω|

∫
Ω

√
r(x)

γ
dx ≤

√
k|Ω|

√
r̄

γ
=

∫
Ω

u∞ dx

in case k < r̄
γ ; and∫

Ω

u0 dx ≤
∫
Ω

r(x)

γ
dx =

r̄

γ
|Ω| =

∫
Ω

u∞ dx

in case k ≥ r̄
γ .

An immediate corollary of Theorem 8 says that for γ belong to the in-

terval [maxΩ̄
r2

NR
,
∫
Ω
r

|Ω| maxΩ̄
r
NR

), limd→0

∫
Ω
u∗ dx >

∫
Ω
u∗ dx for large d; in

particular, Hypothesis A could fail for large d.
One can also construct examples such that Hypothesis B fails for interme-

diate values of γ and small d.
Given two functions F,G on Ω̄, define

A :=

(∫
Ω

min{F,G} dx
)2

−
∫
Ω

min

{
|Ω|F 2,

(∫
Ω

min{F,G} dx
)
G

}
.

Lemma 10 Suppose that F,G ∈ C(Ω̄) and F ≥ G in Ω̄. Then A ≥ 0 holds.
Furthermore, A = 0 if and only if |Ω|F 2 ≥

(∫
Ω
G
)
G in Ω̄.

Proof By F ≥ G,

A =
(∫
Ω
G
)2 − ∫

Ω
min{|Ω|F 2,

(∫
Ω
G
)
G}

=
(∫
Ω
G
)2 − ∫

Ω
G ·
∫
{x:|Ω|F 2≥(

∫
Ω
G)G}G−

∫
{x:|Ω|F 2<(

∫
Ω
G)G} |Ω|F

2

=
∫
Ω
G ·
∫
{x:|Ω|F 2<(

∫
Ω
G)G}G−

∫
{x:|Ω|F 2<(

∫
Ω
G)G} |Ω|F

2

=
∫
{x:|Ω|F 2<(

∫
Ω
G)G}

[
(
∫
Ω
G)G− |Ω|F 2

]
≥ 0,

and the last equality holds if and only if the set {x : F 2 < (
∫
Ω
G)G} has zero

measure, i.e. |Ω|F 2 ≥ (
∫
Ω
Gdx)G in Ω̄.
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Proof of Theorem 8: For s ∈ (0,∞), set

f(s) = γ|Ω|s2 −
∫
Ω

min{NR(x), sr(x)} dx.

As f(s)/s is strictly increasing, f(s) is positive for large s and negative for
small s, f(s) = 0 has a unique positive root, which is precisely given by u∞,

by the definition of u∞ (Lemma 6). Recall that u∗ → u0 = min
{√

NR
γ , rγ

}
as d → 0 and u∗ → u∞ as d → ∞. Hence, to compare limd→0

∫
Ω
u∗ dx and

limd→∞
∫
Ω
u∗ dx, it suffices to determine the sign of f

(
1
|Ω|
∫
Ω
u0 dx

)
. More

precisely, if f
(

1
|Ω|
∫
Ω
u0 dx

)
> 0, then 1

|Ω|
∫
Ω
u0 dx is strictly greater than

the unique root u∞ of f , and thus limd→∞
∫
Ω
u∗ dx = |Ω|u∞ <

∫
Ω
u0 dx =

limd→0

∫
Ω
u∗ dx.

By direct computation we have

|Ω|
γ
f

(∫
Ω
u0

|Ω|

)
=

(∫
Ω

min

{√
NR
γ
,
r

γ

})2

−
∫
Ω

min

{
|Ω|NR

γ
,

(∫
Ω

min

{√
NR
γ
,
r

γ

})
· r
γ

}
.

By choosing F =
√
NR/γ and G = r/γ we see that

|Ω|
γ
f

(∫
Ω
u0

|Ω|

)
= A.

By assumption γ ≥ maxΩ̄
r2

NR
, F =

√
NR/γ ≥ G = r/γ in Ω̄. Hence, by

Lemma 10, A ≥ 0 and A = 0 holds if and only if γ ≥
∫
Ω
r

|Ω| maxΩ̄
r
NR

. This

completes the proof of Theorem 8.

7 Discussions

In this paper we have investigated the dynamics of a consumer-resource reaction-
diffusion model, proposed recently by Zhang et al (2017), for both homoge-
neous and heterogeneous environments. For homogeneous environments we
have established the global stability of the constant steady state. In particu-
lar, if the yield rate is greater than or equal to some critical value, the resources
will become unlimited across the habitat; if the yield rate is smaller than the
critical value, the resources are limited in the whole habitat. For heteroge-
neous environments we have studied the existence and stability of positive
steady states and the persistence of time-dependent solutions. For heteroge-
neous environments, our results imply that the resources will be unlimited
across the habitat for large yield rate and limited in the space for sufficiently
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small yield rate. However, there is some range of yield rates in which the re-
sources are partially limited in space, a unique feature which does not occur
in homogeneous environments.

As was mentioned in the Introduction, an experiment performed by Zhang
et al (2017) showed, surprisingly, that Hypothesis B was false. In fact, this
can be easily seen by comparing Figure 4 in p.1124 and Figure 6 in p.1126.
A mathematical proof of this fact was included in the Appendix E of (Zhang
et al, 2017) for the case when γ is small. For the reader’s convenience, we
include it here for comparison purposes.

Proposition 2 Let ud and vd be respectively the unique positive solution of
the following problems{

d∆u+NR − γgu2 = 0 in Ω,
∂nu = 0 on ∂Ω,

(39)

and {
d∆v + N̄R − γgv2 = 0 in Ω,
∂nv = 0 on ∂Ω.

(40)

where N̄R = 1
|Ω|
∫
Ω
NR dx. Then, for d small∫

Ω

ud <

∫
Ω

vd

provided that NR and g are positively correlated and, either NR or g is non-
constant.

The proof follows from the following lemma which compares the respective
carrying capacities of the two systems.

Lemma 11 ∫
Ω

√
NR
γg

dx <

∫
Ω

√
N̄R
γg

dx

if NR and g are positively correlated and, either NR or g is nonconstant.

Proof If NR and g are positively correlated, then NR and 1/g are negatively
correlated, then by Lemma 26 in p.247 of (DeAngelis et al, 2016b), it follows
that ∫

Ω

√
NR
γg

dx ≤ 1

|Ω|

∫
Ω

√
N̄R

∫
Ω

√
1

γg
=

∫
Ω

√
N̄R
γg

dx

Combining Proposition 2 and Theorem 7, we see that, for γ small, we
now have a fairly good understanding of why Hypothesis B fails. This seems
particularly relevant, as the experiments performed by Zhang et al (2017) seem
to indicate that the parameter γ is quite small.

Another hypothesis proposed by Zhang et al (2017) stated that when a con-
sumer exists in a region with a heterogeneously distributed input of exploitable
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renewed limiting resources, the total population abundance at equilibrium can
reach a greater abundance when it diffuses than when it does not. While we
show that such hypothesis holds for both small and high yield rates, a new
finding of this paper is that this second hypothesis proposed by Zhang et al
(2017) may fail for intermediate values of yield rates.

The phenomenon of partially limited resources in space can be regarded
as a transition between the current consumer-resource model with small yield
rates and the classical logistic model. The details of such transition in terms
of parameters such as the diffusion rate and the yield rate yet remain to be
understood and invite further investigation. To illuminate the situation, we
make some comments to clarify the general conditions on the critical yield
rates given in Theorem 3 and Corollary 2 versus those in Section 6 (Theorems
6, 7, 8). To this end, for any given d > 0, recall the following critical rates
specified in (14) (see also Corollary 2):

γ∗(d) = sup
Ω

r(x)θ(x)

NR(x)
and γ∗(d) = sup

{
γ > 0 : sup

Ω

NR
rũ
≤ 1

}
.

Since maxΩ̄ θ < maxΩ̄ r and minΩ̄ θ > minΩ̄ r when g = 1, it is easy to show

γ < inf
d>0

γ∗(d) < sup
d>0

γ∗(d) < γ,

which implies thatm∗ ≡ 1 everywhere for those values of γ as given in Theorem
6, whereas m∗ < 1 everywhere in case of Theorem 7. This in particular implies
that γ−γ∗(d) does not change sign for those values of γ as given in Theorems
6 and 7, respectively. In contrast, for those γ in Theorem 8, γ − γ∗(d) always
changes sign as it holds that(

max
Ω̄

r2

NR
,

∫
Ω
r

|Ω|
max
Ω̄

r

NR

)
⊂
(

inf
d>0

γ∗(d), sup
d>0

γ∗(d)

)
,

which follows from γ∗(d)→ maxΩ̄
r2

NR
when d→ 0 and γ∗(d)→

∫
Ω
r

|Ω| maxΩ̄
r
NR

when d→∞.
Determing the shapes of γ∗(d) and γ∗(d) will be useful in understanding

the transition between the consumer-resource model with small yield rates
and the classical logistic model. For the case of NR(x) proportional to r(x),
it was conjectured by Lou and Wang (2017) that γ∗(d) is strictly monotone
decreasing in d; see also the work by Li and Lou (2018) for recent development.
It seems interesting but challening to determine the general shapes of γ∗(d)
and γ∗(d), as functions of the diffusion rate d.
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