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Abstract. Stewart et al. have shown that flow invariant subspaces for
coupled networks are equivalent to a combinatorial notion of a balanced
coloring. Wang and Golubitsky have classified all balanced two colorings
of planar lattices with either nearest neighbor (NN) or both nearest
neighbor and next nearest neighbor coupling (NNN). This classification
gives a rich set of patterns and shows the existence of many nonspatially
periodic patterns in the NN case. However, all balanced two-colorings in
the NNN case on the square and hexagonal lattices are spatially periodic.
We survey these and new results showing that all balanced k-colorings
in the NNN case on square lattices are spatially periodic.
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1 Coupled Cell Systems

A wide variety of physical and biological systems can naturally be modelled by
networks of nonlinear dynamical systems, see Wang [7], Stewart [5]. The theoretical
understanding of such systems is also under intensive development. Networks of
differential equations possess additional structure, namely, canonical observables —
the dynamical behavior of the individual nodes [3]. These observables can be com-
pared, revealing such features as synchrony or specified phase-relations in periodic
solutions, and these features are important in many applications. Any theoretical
treatment of network dynamics must take this additional structure into account.
In particular, the topology (or ‘architecture’) of the network imposes constraints
on the dynamics, with the result that many new phenomena become ‘generic’ for
a given architecture, see for example Golubitsky et al. [2].

Stewart, Golubitsky, Pivato, and Török [6, 4] formalize the concept of a coupled
cell network, where a cell is a system of ordinary differential equations (ODEs) and
a coupled cell system consists of cells whose equations are coupled. Stewart et
al. define the architecture of coupled cell networks and develop a theory that shows
how network architecture leads to synchrony. The architecture of a coupled cell
network is a graph that indicates which cells have the same phase space, which
cells are coupled to which, and which couplings are the same.

In its simplest form the input set I(c) of a cell c consists of all cells coupled to
c. Two input sets are isomorphic if there is a bijection between the input sets that
preserves coupling types. A coupled cell network is homogeneous if the input sets
of all cells are isomorphic. Suppose we color the cells in a homogeneous network.
That coloring is balanced if for each pair of cells c and d with the same color, there
is a color and coupling type preserving bijection from I(c) to I(d).

A lattice dynamical system is a homogeneous coupled cell system with cells
indexed by a lattice L. Such a system has the form

ẋc = g(xc, xI(c)) c ∈ L (1.1)

where xc ∈ Rn, I(c) = {c1, . . . , ck}, xI(c) = (xc1
, . . . , xck

) ∈ (Rn)k and g :

(Rn)k+1 → Rn.
A polydiagonal is a subspace of the phase space of a coupled cell network that is

defined by equality of cells coordinates. A polydiagonal is robustly polysynchronous
if it is flow-invariant for every coupled cell system with the given network archi-
tecture. Robustly polysynchronous polydiagonals are identified with patterns of
synchrony. Stewart et al. [6, Theorem 6.1] prove that a polydiagonal is robustly
polysynchronous if and only if the coloring given by coloring cells that have the same
coordinates with the same color is balanced. Thus, classifying robustly polysyn-
chronous polydiagonals is equivalent to the combinatorial question of classifying
balanced colorings.

Some patterns of synchrony can be predicted by symmetry, namely, those that
correspond to fixed-point subspaces of the group of network symmetries. However,
not all patterns can be obtained in this way, and some of these nonsymmetric pat-
terns are quite interesting. Golubitsky et al. [2] give an infinite class of two-color
patterns of synchrony on square lattice dynamical systems with nearest neighbor
coupling. Wang and Golubitsky [8] classify all possible two-color patterns of syn-
chrony of square lattice differential equations with two different architectures —
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nearest neighbor coupling (NN) and both nearest neighbor and next nearest neigh-
bor coupling (NNN). These classification results are stated in Theorems 3.1-3.2. It
follows from these theorems that with NNN architecture balanced two-colorings are
finite in number and spatially doubly-periodic. Thus, there is a profound difference
between balanced two-colorings in the NN and NNN cases: one classification is
finite, the other is infinite; one set has spatially periodic and nonperiodic colorings,
the other has only periodic colorings.

In this note we prove that all balanced colorings of a one-dimensional lattice are
spatially periodic (Theorem 2.4) and that for each k ≥ 3 there are exactly four bal-
anced k colorings (Theorem 2.5). The proof that balanced k colorings are periodic
and finite in number uses a notion of window (a small finite patch of the network
that determines the full pattern associated to any balanced k-coloring) and that
proof generalizes to higher dimensions. In Section 3 we discuss balanced colorings
in square arrays with nearest and next nearest neighbor coupling. We begin by
summarizing the classification of balanced 2-colorings by Wang and Golubitsky [8].
Then we state the generalization of the results in Section 2 to square lattices and
end with a brief discussion of some generalizations. Proofs and exact statements of
these results appear in Antoneli et al. [1].

2 Linear Arrays with Nearest Neighbor Coupling

Let G be a one-dimensional lattice network with nearest neighbor coupling. An
interval of a one-dimensional lattice network G is a finite sequence of consecutive
cells c1 . . . cn. The interior of this interval is the cell sequence c2 . . . cn−1.

Definition 2.1 Given a one-dimensional lattice network G and a balanced k-
coloring, we say that an interval is a window for the balanced coloring if its interior
contains all k colors.

Note that the part of any balanced k-coloring that lies inside a window extends
uniquely to the whole lattice. Since the k-coloring is balanced and each of the k

colors has its nearest neighbors inside the interval, the colors of the cells on the right
and left ends of the interval are determined. Proceeding recursively, the coloring
can be extended uniquely to the whole lattice.

Lemma 2.2 Given a balanced coloring of G with ` colors. Then every interval
of length 2k − 1, where k ≤ `, contains k colors.

Proof Certainly every interval of length 1 contains one color. By induction,
assume that the statement is valid for k − 1. An interval of length 2k − 1 has the
form ac1 . . . c2k−3b. By induction the interval c1 . . . c2k−3 contains at least k − 1
colors. If that subinterval contains k colors, we are done. Similarly, if a or b is a kth

color, then we are done. Suppose not. Since the coloring is balanced and each of
the k − 1 colors has its nearest neighbors inside the interval, the coloring uniquely
extends to the whole lattice and the extended coloring has fewer than k colors, a
contradiction.

Proposition 2.3 Any interval of size 2k + 1 is a window for every balanced
k-coloring of the linear lattice.

Proof This follows directly from the definition of window and Lemma 2.2.
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Theorem 2.4 For every k there exists a finite number of balanced k-colorings
in one-dimensional lattice dynamical systems with nearest neighbor coupling. More-
over, all balanced colorings are periodic.

Proof First, given a window W , there is a finite number of ways to color the
cells in W with k colors. In particular, there is a finite number of balanced k-
colorings inside any window. Therefore, the number of balanced k-colorings on the
lattice is finite.

Given a balanced k-coloring of G, by Proposition 2.3, any interval of size 2k+1
is a window that determines it uniquely. Let W be one such window. Consider a
covering of the lattice by disjoint translates of W . Since there is an infinite number
of such translates but only a finite number of balanced colorings, there must be
at least two translates W1 and W2 exhibiting exactly the same coloring and thus
these two windows determine the same balanced k-coloring. Now observe that any
translation of a balanced k-coloring is again a balanced k-coloring. It follows that
the translation that takes W1 to W2 leaves the k-coloring invariant and so the
coloring is periodic.

Theorem 2.5 Fix k and let A1, A2, . . . , Ak be k distinct colors. Then, every
balanced k-coloring of the one-dimensional lattice with nearest neighbor coupling
has one the following four forms.

(i) No reflection; period k

· · ·A1A2 · · ·Ak A1A2 · · ·Ak · · ·

(ii) Two reflections both without fixed cells; period 2k

· · ·A1A2 · · ·AkAk · · ·A2A1 A1A2 · · ·AkAk · · ·A2A1 · · ·

(iii) Two reflections one with fixed cell and one without fixed cell; period 2k − 1

· · ·A1A2 · · ·Ak · · ·A2A1 A1A2 · · ·Ak · · ·A2A1 · · ·

(iv) Two reflections both with fixed cells; period 2k − 2

· · ·A1A2 · · ·Ak · · ·A2A1A2 · · ·Ak · · ·A2A1 · · ·

All of these balanced colorings are distinct when k ≥ 3; balanced colorings (i) and
(iv) are the same when k = 2; and all balanced colorings are identical when k = 1.

Proof The case k = 1 is straightforward and we assume k ≥ 2. We fix a
balanced k-coloring and let m ≥ 0 be the smallest number of cells that occur
between two cells of the same color. We claim that the balanced coloring has a
reflection symmetry that fixes no cells when m = 0; a reflection that fixes a cell
when m = 1; and is of type (i) when m ≥ 2.

When m = 0 the balanced coloring contains two neighboring cells of the same
color. Thus the balanced pattern contains · · ·AA · · · . If color B is the left neighbor
of the first A, then balanced implies that B is also the right neighbor of the second
A and the pattern has the form · · ·BAAB · · · . Inductively, balanced implies that
the coloring has a reflection symmetry that fixes no cells.

When m = 1 the balanced coloring contains the pattern · · ·ABA · · · . If color
C is the left neighbor of the first A, then balanced implies that C is also the right
neighbor of the second A and the pattern has the form · · ·CABAC · · · . Inductively,
balanced implies that the coloring has a reflection symmetry that fixes a cell.
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When m ≥ 2, the balanced coloring contains the pattern

· · ·AB1B2 · · ·BmA · · ·

where, from the definition of m, the colors of A and all of the Bj are distinct. It
follows from balanced that the color to the left of the first A must be Bm and the
color to the right of the second A must be B1; that is, the pattern contains

· · ·BmAB1B2 · · ·BmAB1 · · ·

Inductively, balanced implies that the pattern has the form (i) (and m = k − 1).
We can now assume that the coloring has a reflection symmetry. All lattice

reflections have the form

rj(i) = j − i

where j is an integer. Note that rj is the reflection about the point j

2 and is a
reflection with a fixed cell when j is even and a reflection without a fixed cell when
j is odd.

Theorem 2.4 states that every balanced k-coloring is periodic and hence has
a translation symmetry i 7→ i + p where p is the minimum period of the coloring.
It follows that the balanced pattern must have two independent reflections; just
compose translation by p with rj to obtain

rj(i + p) = j − (i + p) = rj−p(i)

The point of reflection in the second reflection is distance p

2 from the point of
reflection of the first. Moreover, the composition of two reflections rj and rq is a
translation by j − q; just compute

rj(rq(i)) = rj(q − i) = j − (q − i) = i + (j − q)

It follows that a pattern with minimum period p cannot have reflections whose
points of reflection are closer than p

2 . Hence these patterns have exactly two reflec-
tions in a minimum period. Note also that if p is even either both reflections have
a fixed cell or both do not. If p is odd there is one reflection of each type. Thus,
there are three cases to consider: p even and reflections with a fixed cell; p even
and reflections without fixed cells; and p odd and one reflection of each type. We
claim that these cases lead to the patterns (iv), (ii), and (iii), respectively.

We now consider the case where p is even and the coloring has two reflections
without fixed cells and show that this case leads to case (ii). It follows by reflection
about the midpoint between two A cells, as in the case m = 0, that the pattern has
the form

· · ·B0B0B1 · · ·B`B`+1B`+1 · · ·

where ` = p

2 − 2. Reflecting about B`+1 leads to the periodic pattern

· · ·B0B0B1 · · ·B`B`+1B`+1B` · · ·B1B0B0 · · ·

We claim that balanced implies that the colors are B0, . . . , B`+1 are all distinct.
Suppose that Bj+1 is the first color in this sequence that is the same as one of the
colors B0, . . . , Bj . If the color of Bj+1 is the same as the color of Bj , then, as in
the case m = 0 above, the pattern has an additional reflection. If the color of Bj+1

is the same as the color of Bj−1, then, as in the case m = 1 above, the pattern
has an additional reflection. If the color of Bj+1 is the same as one of the previous
colors, then the coloring is not balanced. The claim is verified and the number of
colors in this pattern is k = ` + 2 and the period is p = 2` + 4 = 2k, as desired.
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The remaining two cases are proved similarly by considering the appropriate
reflections.

3 Balanced Colorings on Square Arrays

In this section we review results on balanced colorings on square arrays. In
particular we note that balanced two-colorings on square arrays need not be spa-
tially periodic when only nearest neighbor coupling is assumed, whereas they are
spatially periodic if both nearest and next nearest neighbor coupling are assumed.
Indeed, the results of Section 2 can be extended to square arrays; namely, balanced
k-colorings are spatially periodic when nearest and next nearest neighbor coupling
are assumed.

Theorem 3.1 ([8]) There are eight two-color periodic patterns of synchrony
of square lattice differential equations with nearest neighbor coupling shown in Fig-
ure 1. There are two infinite families of two-color patterns of synchrony that are
generated from the periodic patterns in Figure 2 by interchanging black and white
on diagonals along which black and white cells alternate. Up to symmetry, these
are all of the two-color patterns of synchrony.

Figure 1 Illustrations of patterns of synchrony of finite classes [8].

Figure 2 Illustrations of patterns of synchrony of infinite classes [8].

Some examples of the infinite number of nonperiodic balanced two-colorings
are given in Figure 3.
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Figure 3 Patterns of synchrony that are not spatially periodic [2, 8].

Theorem 3.2 ([8]) Up to symmetry, there are twelve two-color patterns of syn-
chrony in square lattice differential equations with nearest and next nearest neighbor
couplings: the seven patterns in Figure 1 except for the boxed pattern, Figure 2 (a),
and the four patterns in Figure 4.

Figure 4 The four patterns in this figure and Figure 2 (left) are NNN-

balanced [8].

Remark 3.3 All twelve patterns are doubly-periodic. Those patterns in Fig-
ure 4 can be generated from Figure 2 (a) by interchanging black and white along
diagonals on which black and white cells alternate.

Indeed more is true once next nearest neighbor coupling is assumed.

Theorem 3.4 ([1]) For any integer k > 0, there are only a finite number of
k-color patterns of synchrony of square lattice dynamical systems with nearest and
next nearest couplings. All of these patterns are periodic.

The proof of Theorem 3.4 proceeds as in the case of one-dimensional arrays.
Given a k-coloring of a two-dimensional square lattice network G, a bounded square
subarray of G is called a window if its interior contains all k colors. We then prove
that windows determine uniquely the whole pattern and that every square of size
2k + 1 is a window. The proof of the theorem follows from these observations.

We call a lattice Euclidean if it is generated by vectors of the same length.
It is true that if enough different kinds of coupling are present, then all balanced
k-colorings of any planar Euclidean lattice dynamical system are spatially periodic.
See [1] for details. We conjecture that this result is valid in all dimensions.
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