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Patterns of Oscillation in
Coupled Cell Systems
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Ian Stewart

Dedicated to Jerry Marsden on the occasion of his 60th birthday

ABSTRACT Coupled oscillators or coupled cell systems are used as mod-
els in a variety of physical and biological contexfs. Each of these models
includes assumptions about the internal dynamics of a cell (a pendulum or
a neuron or a single laser) and assumptions abouf how the cells are coupled
to each other.

In a primitive sense, coupled cell systems are just moderate sized systems of
ODE; for example, an eight-cell system with four-dimensional internal dy-
namics (such as a Hodgkin-Huxley system) yields a 32-dimensional system
of ODE. In a more sophisticated sense, coupled cell systems have additional
structure; we want to be able to compare the dynamics in different cells
(are they synchronous, or a half-period out of phase, or do they have a
more complicated phase relation?).

In this paper we explore the extra structure that is associated with a cou-
pled cell system. We argue that those permutations of the cells that are
assumed to be symmetries of the cell system consititute a modelling as-
sumption — one thaf in large measure dictates the kinds of equilibria and
time periodic solutions that are expected in such models. We survey certain
general results in the context of specific models, including locomofor cen-
tral pattern generators for quadruped motion and coupled pendula. These
resulfs lead to a model for multirhythms.

Coupled cell dynamics are a worthwhile subject of study and we begin here
to discuss some of the fascinating features of this area.
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1 Introduction

Coupled oscillators or coupled cell systems have been much studied as
models for certain physical or biological systems (Josephson junction arrays
(Hadley, Beasley and Wiesenfeld, 1988], coupled lasers [Wang and Winful,
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1988; Bracikowski and Roy, 1990], central pattern generators [Kopell and
Ermentrout, 1986, 1988, 1990; Rand, Cohen and Holmes, 1988], speciation
[Cohen and Stewart, 2000], and so on). Many classical mechanical systems
can be inferpreted as coupled cell systems: for example chains of like rods
[Synge and Griffith 1959 p. 270], normal mode vibrations of a loaded string
[Fowles 1986 p. 301], linear motion of a triatomic molecule [Fowles 1986
p- 299}, and n-body dynamics [Griffiths 1985 p. 132]. However, few attempts
have been made to formalize the concept of a coupled cell system and
develop a general, abstract theory. We begin that process in this paper.
An N-cell coupled cell system is often written in the form

dz; s
ﬁ = fi(:z:i,/\) + hij(:x:j,:z:,-) z; € Rk';’l, =1,... ,N (1.1)
di

G

where f; is the internal dynamics of the ith cell, h;; is the coupling from
cell j to cell £, and A is a vector of parameters. In these models the total
coupling at cell 7 is just the sum of coupling confributions from those cells j
that are actually connected o cell ¢ (symbolized here as j — ). See [Kopell
and Ermentrout, 1986, 1988, 1990; Rand, Cohen and Holmes, 1988] This
structure represents a rather special case of the general concept introduced
in Section 3, but it serves as motivation.

In a coupled cell system we émphasize the comparative dynamics of all
cells, as opposed to the dynamics of the whole system, and it is this com-
ment that distinguishes the study of coupled cell systems from the study
of systems of ordinary differential equations. Of course, the two points of
view are infimately related, buf they are not the same.

In particular, from the coupled-cell viewpoint the output signal from each
cell is assumed to have its own significance. For example, in the context
of time-periodic solutions two cells are often described as being ‘a half-
period out of phase’. In rings of cells, solutions may be described as forming
‘discrete rofating waves’. Two cells %, j can be described as ‘synchronous’ —
that is, satisfying the condition z;(t) = z;(t)—even when the trajectory
z(t) is chaotic. For these reasons, we must consider a coupled cell system
to be a system of ODE, equipped with a distinguished set of projections
whose images are the individual cells. If we view each cell as representing
a point in space, then coupled cell systems are discrete-space continuous-
time systems. They therefore represent a fascinating compromise between
ODE and PDE, without the technical complications typically associated
with the latter.

We are infrigued by the structure implicit in coupled cell systems that
permits patterned solutions to exist robustly, and ask: What sfructure in
coupled cell systems allows specific cells fo have identical time series, def-
inite phase relations, or other identifiable spatio-temporal patterns? One
answer is symmetry, and that is the one that we focus on here. In coupled
cell systems symmetries appear naturally as permutations of the cells, and
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1. Patterns of Oscillation in Coupled Cell Systems 5

exist only when (subsets of) the cells are identical.

2 Model Cell Systems

As motivation for the concept of a coupled cell system we now infro-
duce four coupled cell models, each having a different symmetry group:
speciation, animal gaits, coupled pendula, and coupled hypercolumns in
the visual cortex. Each example has an eight-cell version and it is curi-
ous to note that the symmetry groups corresponding to these four models
(Ss, 21 x Z3,Dg,Dy) are all different. We refurn to these examples once
we have developed appropriate general techniques for their analysis.

We nofe that there are no first principle derivations for the form of the
coupled cell systems (in particular, the infernal dynamics of each cell) in
three of the four examples —speciation, animal gaits, and hypercolumns in
the visual cortex — though the coupled cell form that we abstracted in (1.1)
is used by a number of authors. Our chief point is that the kind of states
that coupled cell models can produce depends crucially on the symmetries
of the system.

2.1 Speciation (Sy)

Our first example arises in a model of speciation— the formation of new
species — in evolutionary biology {Cohen and Stewart, 2000]. Examples in-
clude ‘Darwin’s finches’ in The Galdpagos Islands, where what was inifially
a single species of finch has diversified info 14 species over a period of about
5 million years. In fact, evolutionary changes in Darwin’s finches can be ob-
served today, over periods of just a few years [Ridley, 1996]. Speciation is
usually discussed in terms of genotype— genetics. In contrast, we shall fo-
cus on the phenotype—the organism’s form and behavior —because the
dynamics of evolution is driven by natural selection, which acts on pheno-
types. The principal role of genes is to make it possible for the phenotype
to change. (For recent support for this approach, see [Pennisi, 2000], [Run-
dle, Nagel, Boughman, and Schluter, 2000], and [Huey, Gilchrist, Carlson,
Berrigan, and Serra, 2000].)

Until recently, most explanations of speciation have invoked geographi-
cal or environmental discontinuities or non-uniformities. For example, the
mechanism known as ‘allopatry’ involves an initial species being split into
two geographically isolated groups —say by one group moving to new fer-
ritory, later isolated from the original ferritory by floods or other geograph-
ical changes. Once separated, the two groups can evolve independently. See
[Mayr 1963, 1970] for details.

Such theories are based on the belief that disconfinuous or non-uniform
effects must have discontinuous or non-uniform causes. The conventional
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wisdom was that if the organisms of two nascent species are not isolated,
they will be able to interbreed, and ‘gene-flow’ will maintain them as a
single species. Therefore gene-flow must be disrupted in some way, and the
obvious possibility is geographical isolation.

However, it is now recognized that discontinuous or non-uniform effects
can have continuous or uniform causes. Indeed, these are the phenomena
addressed in bifurcation theory and symmetry-breaking. Towards the end
of the 1990s evolutionary biologists increasingly began to consider mech-
anisms for ‘sympatric’ speciation. Here, organisms remain intermingled
throughout the process of speciation. In sympafric speciation, gene-flow is
disrupfed by more subfle mechanisms than geographical isolation, in par-
ficular natural selection, which eliminates ‘hybrid’ offspring arising from
matings beftween members of the two different speciating groups before the
hybrids become breeding adults.

[Cohen and Stewart, 2000] developed a context in which sympatric speci-
ation is explicitly represented as a form of spontaneous symmetry-breaking
in a coupled cell system with all-to-all coupling (Sy symmetry). [Cohen,
Stewart, and Elmhirst 2000] made numerical studies of such models. Since
individual organisms can die or breed, their numbers can change, so it is
unsatisfactory to model the system with a fixed number of immortal or-
ganisms. The cells of the system are therefore taken to be coarse-grained
clusters of related organisms in phenotypic space; these clusters act as
carriers for phenotypes. [Cohen and Stewart, 2000] refer to these cells as
‘PODs’ —Placeholders for Organism Dynamics.

The mofivation behind the model is that a single species is invariant
under all permutations of its organisms, whereas a mixture of species is
invariant only under the smaller group of permutations that preserve each
species. The appropriate symmetry group is therefore the symmetric group
Sy of all permutations on IV symbols, where NV is the number of PODs in
the model. (This number is a modelling choice, rather than being deter-
mined by biological considerations: typically something in the range 10-100
seems reasonable.) The model also assumes that the relevant phenotypes
can be described by continuous characters, such as beak length for birds,
and may therefore be inappropriate for characters that are determined by
a single gene or a small gene-complex.

The model demonstrates that sympatric speciation can occur in a popula-
tion where all organisms can potentially interbreed, and in an environment
that is uniform at any instant but may change as time passes. A speciation
event (bifurcation) is triggered if environmental changes render the uni-
form state (a single species) unstable, so that the symmetry of the uniform
state breaks. Such an instabilify occurs if the organisms can survive more
effectively by adopting different strategies, rather than by all adopting the
same strategy (subject to genetic feasibility).

Consider a system of N PODs. The state of POD j is described by a vec-
tor z; belonging to phenotypic space R", where 1 £ j  N. A point in phe-
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1. Patterns of Oscillation in Coupled Cell Systems 7

notypic space represents a phenotype. Each entry «} in z; = (z},... ,z})
represents a phenofypic character. Throughout the following discussion, for
simplicity, we focus on the case r = I, so each cell is I-dimensional.

Let a = (a1,-..,as) represent environmental influences (climate, food
resources, other organisms, ... ). Assume that on the appropriate time
scale changes in phenotype can be described by a dynamical system

dz..
Ti_tl=f3($1,...,xN;01,--- ) 8s) (21)

for suitable functions f; : RM xR®* - RV,

The key observation is that the system should have Sy-symmetry. Intu-
itively, this just means that the dynamical equations should treat all cells
in the same way. Thus we assume that F' = (fi,... , fn) is S y-equivariant.
Figure 2.1 shows typical time-series of phenotypic variables (for a choice of
¥ that we do not specify here): the split into two species is evident.
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FiGURE 2.1. Bifurcation to two species in model with N = 25 PODs. Time series
of all PODs are superimposed. (Left) one species; (right) two species (one with
9 PODs and one with 16 PODs).

2.2 Quadrupedal Gaits (Z; x Zy)

Quadrupedal gaits provide excellent examples of periodic states with spatio-
temporal symmetries. In the pace, trof, and bound a four-legged animal
partitions its legs into two pairs—the legs in each pair move in synchrony
while legs in different pairs move with a half-period phase shift. The two
pairs in a bound consist of the forelegs and the hind legs; the fwo pairs in
a pace consist of the left legs and the right legs; and the two pairs in a troi
consist of the the two diagonal pairs of legs. The quadruped walk has a
more complicated cadence: each leg moves independently with a quarter-
period phase shift in the order left hind, left fore, right hind, and right fore.
As in the pace, the left legs move and then the right legs move—but the
left legs and the right legs do not move in unison.
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[Collins and Stewart, 1993b, 1994] pointed out that each of these gaits
can be distinguished by symmetry in the following sense. Spatio-temporal
symmeftries are permutations of the legs coupled with phase shifts (trans-
lations of time). So interchanging the two fore legs and the two hind legs
of a bounding animal does not change the gait, while interchanging the
two left legs and the two right legs leads to a half-period phase shift. In a
walk permuting the legs in the order left hind to left fore to right hind to
right fore leads to a quarter-period phase shift. We list the spafio-femporal
symmetries of each of these gaits in Table 1.1.

Gait Symmetries (leg permutation, phase shift)
pace | ((13)(24),0) ((12)(34),3) ((14)(23),35)
trot | ((13)(24), -»;;) ((12)(34),5) ((14)(23),0)
bound | ((13)(24),3) ((12)(34),0) ((14)(23),3)
walk | ((1324),3) ((12)(34),3) ((1423).})

TABLE 1.1. Gaif symmetries: 1 = left hind leg; 2 = right hind leg; 3 = left
foreleg; 4 = right foreleg.

Biologists often assume that animal nervous systems contain a variety
of ‘central pattern generators (CPGs) —each (partially) directing a specific
function. For example, locomofor CPGs are suppose to control the rhythms
associated to standard quadrupedal gaits. Locomofor CPGs are themselves
often modelled by a coupled cell system where each cell is a cluster of
neurons that is responsible for directing motion in a single leg. It is usually
assumed that the various clusters are identical and coupled. The simplest
such model consists of four cells— one for each leg.

[Golubitsky, Stewart, Buono, and Collins 1999, 2001] argue that, because
of the spatio-temporal symmetries present in the gaifs walk, frof, and pace,
this four-cluster structure cannot be an appropriate model for quadrupedal
gaits. The reason is that with four cells, symmetry forces the trot and pace
gaits to correspond to conjugate solutions in the model — that is, these two
solutions must exist simultaneously and be stable simultaneously. But many
animals pace but do not trot (a camel for instance) and many animals trot
but do not pace (a squirrel for instance). Although gait selection could in
principle be accomplished by using different initial conditions, this option
is not especially attractive and we seek something more robust.

These authors then show that there is a unique eight-cell model that can
produce walk, trot, and pace, while avoiding the conjugacy problem. In this
model the motion of each leg is directed by the output from two cells: see
Figure 2.2. For purposes of visualization we may assume that only the first
four cells send signals to the animal’s four legs. Suppose that x;(%) is the
time series associated to the jth cell. Then the gait ‘pace’ corresponds to
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1. Patterns of Oscillation in Coupled Cell Systems 9

a solution where
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FiGURE 2.2. Eight-cell network for quadruped locomofor central pattern genera-
tor. The signals from cells I and § are sent fo the left hind leg and the signals from
cells 3 and 7 are sent fo the left foreleg. Similar statements hold for the right side
of the network. Ipsilateral coupling is indicated by solid lines and contralateral
coupling is indicafed by dashed lines.

Observe that this network consists of two unidirectional rings of four cells
each. The coupling within a single ring is called ipsilateral and the coupling
between rings is called contralateral. In the figure, different types of lines
are used fo represent each type of coupling. The symmetry group of the
network is generated by two elements: the transposition x that interchanges
the left and right rings, and the four-cycle w that permutes the cells in
each ring simultaneously. Thus, the symmetry group of this network is
I' = Z4(w) X Z2(x). Finally, this network can be generalized to a CPG
model for myriapods with IV pairs of legs by coupling two directed rings
with 2V cells each leading to a network with 4V cells. The symmeftry group
of this network is Zon(w) X Z2(k).

2.3 Rings of Pendula Coupled by Torsion Springs
(Dw)

This example is one of the simplest nonlinear Hamiltonian coupled cell
systems: it is perhaps best thought of as a chain of nonlinear oscillators
with periodic boundary conditions, but we will think of it as a ring to keep
the number of cells finite. Consider a ring of NV identical simple pendula,
coupled in nearest-neighbor fashion by torsion springs (Fig 2.3). The elastic
force exerted by such a spring is proportional to the difference between the
angular positions of its endpoints.

We can represent this as a coupled cell system, where each cell corre-
sponds fo a pendulum. There is a frivial equilibrium in which each pendu-
lum is stationary and hangs vertically downwards. The problem we address
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10 M. Golubitsky and I. Stewart

FIGURE 2.3. Ring of identical pendula coupled by torsion springs (bold lines).
Each pendulum swings in a vertical plane through the center of a regular N-gon
(here N = 6).

here is the existence of small-amplitude time-periodic oscillations near that
equilibrium. In §4 we classify possible spatio-temporal symmetries of pe-
riodic states of this system. In §5.4.1 we use symmetry methods and the
coupled cell viewpoint to prove that generically (that is, for almost all values
of the gravitational constant) there exist at least [38-1] distinct families
of small-amplitude time-periodic oscillations, each parametrized by energy.
The existence of these families of solutions depends on the fact that the
coupled cell system has exfra structure, namely, there is an internal cell
symmetry due €¢o the mechanical nature of the Hamilfonian system. See
§4.3.1.

2.4 Coupled Hypercolumns (D;)

Neurons in the primary visual cortex VI are known to be sensitive to the
orientation of contours in the visual field. As discussed in [Bressloff, Cowan,
Golubitsky, Thomas, and Wiener, 2001], the pattern of interconnection of
fthese neurons has interesting symmetry properties, and these symmetries
seem to be responsible in part for the fypes of geometric patterns that are
reported in visual hallucinations. Using microelectrodes, voltage-sensitive
dyes, and optical imaging, scientists have accumulated information about
the distribution of orientation selective cells in VI, and about their pattern
of inferconnection. These studies can be interpreted fo suggest that ap-
proximately every millimeter there is an iso-orientation patch with a given
orienfation preference and that a set of orienfation patches covering the
orientation domain [0,7) (for each eye) occurs (in humans) in a millime-
ter square slab of V1. This slab was called a hypercolumn by [Hubel and
Wiesel, 1974].
Thus there seem to be af least two length scales:

(a) Local: cells less than a millimeter apart tend to make inhibitory con-
nections with most of their neighbors in a roughly isofropic fashion,
and
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1. Patterns of Oscillation in Coupled Cell Systems 11

(b) Lateral: cells make excitatory contact only every millimeter or so
along their axons with cells in similar iso-orientation patches.

The experimental description of the local and lateral connections in VI
is illustrated in Figure 2.4. The neurons in each hypercolumn are all-to-
all coupled while the connections between hypercolumns couple only those
neurons that are sensitive to the same confour orienfation. Moreover, if two
hypercolumns lie in a direction ¢ from each other in VI, then only those
neurons sensitive to contours oriented at angle ¢ are connected. Except for
boundaries these connections are the same at every hypercolumn in V1.

| ® |
local conncctions @ @
7~

/\\

lateral connections
[ |
XPRo
_ QO O
hypercolumn @ \@

FiGure 2.4. Illustration of isotropic local and anisotropic lateral connection pat-
terns.

The simplest discrete model for orientation tuning in hypercolumns is a
model system of four hypercolumns arranged in a square, as suggested by
Nancy Kopell and shown in Figure 2.5 (left). In this model the jth hyper-
column consists of two cells: one Hj is sensitive fo horizontal contours and
the other V; is sensitive fo vertical contours. As suggested by Figure 2.4,
the connections between hypercolumns are restricted to connecting those
cells that have like sensitivity —and then only when the cells are aligned
along the line of their orientation preference. The resulf is shown in Fig-
ure 2.5 (left). This network has D4 symmetry, since it is the same network
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12 M. Golubitsky and I. Stewart

as the octagonal one shown in Figure 2.5 (right), where the D; symmetry
is fransparent.

©=Q)
RN
W= W= @/ N

©
| I
OF=O N
O=0

FIGURE 2.5. (Left) Schematic eight-cell network for orientation tuning model.
(Right) Equivalent network.

tt

3 A Formal Definifion of a Coupled Cell
System

With these examples in mind, we give a formal definition of a coupled cell

system that is infimaftely related to its symmetries. Later we discuss the

solution types that are consistent with and forced by symmetry. We also

specialize the notion of a coupled cell system to the Hamiltonian context.
Let N = {I,... ,N} and let P; be a manifold for j € N.

3.1 Definition. A coupled cell system is a dynamical system

dz

= =F) (3.1)

defined on the space
P= P1 X oo X PN

where the P; are the cells of the system and the projections m; : P — P;
are the cell projections. Let z(t) be a trajectory of (3.1). Then the jth cell
trajectory is z;(t) = m;(z(2)).

Abstractly, this completes the definition, but we need to be able to do two
things: interpret a coupled cell system in ferms of its individual cells and
how they are coupled, and decompose the dynamical system into different
levels of coupling. That is, we need to set up links befween the abstract
concept and the infuitive one employed in areas of application.

The basic idea is that F can be decomposed as a sum of terms, which
correspond to various types of coupling. A formal definition is postponed
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1. Patterns of Oscillation in Coupled Cell Systems 13

to §6 to avoid complicating a relatively simple idea with technicalifies: we
summarize the basic ideas here.

The vector field F can be written (in an essentially unique way) as a sum
of terms that depend on none of the z;, on just one of them, on just two of
them, and so on. Let ®; be the terms that depend on exactly k of the z;.
Each ®; can be further decomposed according to which z; actually occur
(that is, the value of ®%(z) is not independent of z;). The constant part of
Fis ®9. We can write &1 = f1+- -+ fy where f; depends only on z;. Then
the ith component of f; defines the internal dynamics of cell . In a similar
manner (the details require a little care) we can define the coupling from
cell i to cell 7. When the system has ‘point to point’ coupling, as in (1.1),
this takes care of the whole of F, but in general there might be ‘three-cell’
coupling terms involving three different z;, and so on. Such terms can also
be given a canonical meaning.

Associated with a coupled cell system is a ‘decorated direcfed graph’
(more generally a labelled oriented simplicial complex) whose nodes corre-
spond fo the NV cells of the system and whose edges (or higher-dimensional
simplices) correspond to various types of coupling. An edge from node j to
node i exists if and only if F; contains terms that depend only on z; and
z;, and so on. The resulting graph (or complex) provides a schematic de-
scription of which cells influence which— but not of what these influences
actually are.

The key ingredient for this paper is symmetry. Suppose that a group
I' ¢ Sy permutes the nodes in A. Nodes are said to be identical (or to
have the same type) if they lie in the same I'-orbit. Edges are said to be
identical (or to have the same type) if they lie in the same I™-orbit, where
T is now acting on pairs (i,7) with ¢ # j. In practice we draw nodes of
the same fype with the same kind of symbol (circle, box...) and we draw
edges of the same type with the same kind of arrow (single head, fwo heads,
double shaft...).

Our four examples give four different examples of cell complexes: an IV
node simplex, two rings of four nodes each, a ring of N nodes, and a ring
of eight nodes (with D4 symmetry). Note that the animal gaits model in
Figure 2.2 and the coupled hypercolumn model in Figure 2.5(right) each
have two different fypes of arrows in their definitions: the first case distin-
guishes between ipsilateral and contralateral coupling and the second case
distinguishes between local and lateral coupling.

A symmefry v € I acts on the phase space S by

'y(:z:l,... ,:BN) = (x-y"l(l)a--- ,:z:.,-x(N)). (3.2)

3.2 Definition. The coupled cell system is symmetric under I if F is
I'-equivariant. By extension we also say that the coupled cell system is I'-
equivariant.

The equivariance assumption implies that the internal dynamics of nodes
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14 M. Golubitsky and 1. Stewart

of the same type are identical. Similarly, coupling terms corresponding
to edges of the same type are identical, and the same goes for multi-cell
coupling terms. In particular:

3.3 Definition. A cell complez has identical cells if I’ acts transitively
on the nodes.

Each of the systems in our four examples consists of identical cells.

3.1 Coupled Cell Systems with Additional Structure

There are three types of additional structure that are routinely placed on
coupled cell systems of differential equations; in general, these structures
change the kind of dynamics that one can expect from the coupled cell sys-
tem. These structures are: restrictions on the type of coupling, Hamiltonian
cells, and internal symmetries.

The cell system system (1.1) is restricted because the coupling at each
node ¢ is just the sum of couplings from all nodes connected o i —we
call this poini-io-poini coupling. Other types of special coupling include
diffusive, synaptic, nearest neighbor, dead cells stay dead, and linear. For
example, the coupled pendula, animal gaits CPG, and simple hypercolumn
models are all assumed to have nearest neighbor coupling, while the specia-
tion model is an example of ali-to-all coupling. Note that in the gaits model
and the hypercolumn model, the couplings between nearest neighbor cells
are not identical; indeed, generally we assume that couplings are identical
only when that feature is forced by symmetry.

In some models the internal cell dynamics is restricted by extra structure.
For example, Hamiltonian coupled cell systems are coupled cell systems
where each cell is assumed to be Hamiltonian. In these models we assume
that the permutation group of the cell complex acts symplectically, that is,
the symplectic structure on the phase spaces of any two cells related by a
permutation symmetry are identical. Coupled pendula provide an example
of a Hamiltonian coupled cell system.

Another way that the internal cell dynamics may be restricted is through
the existence of symmetry —in this case we refer to the permutation sym-
metries of the cells as global symmetries and the symmetries within each
cell as locul symmetries. As we shall see, the coupled pendula model has a
transpositional Z, symmetry related to the fact that it models a mechanical
system; the total symmetry group of this coupled cell system is Dy x Zs.
See [Dionne, Golubitsky, and Stewart, 1996] and [Dias, 1998] for a more
detailed discussion of coupled cell systems with internal symmetries.

3.2 Symmetry and Modelling

Many times coupled cell systems are used as models in a schematic sense:
the exact form that model equations may have is unknown. Xll that is
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1. Patterns of Oscillation in Coupled Cell Systems 15

known is which cells have equal influences on other cells. The examples
on speciation, animal gaits, and hypercolumns all fall info this category.
In these cases, it is the symmetry of the coupled cell system that is the
imporfant modelling assumption, not the detailed equations for the cells.
For example, in the animal gaits locomotor CPG model, the cells them-
selves may represent individual neurons or, as is more likely, collections of
neurons. Should the internal dynamics of each cell be modelled by a single
Hodgkin-Huxley system, or for simplicity by Morris-Lecar or Fitzhugh-
Nagumo equations, or more realistically by a collection of Hodgkin-Huxley
systems? Should the cell coupling be modelled by nearest-neighbor point-
to-point coupling or more realistically by couplings that include dependence
on all cells? In many cases, such issues are secondary because there is no
well-established physical or biological reason to make any particular choice.
In this sense, the most important modelling assumption for the locomotor
CPG model is the symmetry assumption; that is, the coupled cell system
has ' = Zy x Z4 symmetry. In these circumstances, the only a prior:
assumption on the form of the coupled cell system that we should make is
I'-equivariance. That is, we need to study I'-symmetric coupled cell systems
defined on the state space (R*)8. We begin this process in Section 4.

4 Spatio-Temporal Patterns in Coupled Cell
Systems

We begin this section by reviewing the definitions of spatial symmetries of
equilibria and of spatio-temporal symmetries of time-periodic solutions of
I-equivariant systems of ODE.

Suppose that

& = f(z) (41)

is a system of differential equations with z € R" and symmetry group
I'. The symmetry group of an equilibrium zg of (4.1) is just the isofropy
subgroup of zp, that is, the spatial symmetries v € I" that fix zo.

For example, suppose I' = Sy, where Sy acts on RY by permuting
coordinates. It is a straightforward exercise to show that up fo conjugacy
the isofropy subgroups of this action of Sy all have the form

Sp, X -+ X Sp, (4.2)

where n; + - -- + ng = N. Thus, in the speciation model (2.1), equilibria
correspond to decomposition of the population info k species, where k < .
See Figure 2.1 for an example where N = 25. The equilibrium on the left
represents one species and has isotropy subgroup Sss, while the one on the
right represents two species and has isotropy subgroup Sg % Si¢.
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16 M. Golubitsky and I. Stewart

The symmeftries of the time-periodic solutions are more complicated to
describe than are the symmetries of equilibria. To begin, suppose that z(t)
is a T-periodic solution of (4.1). and that v € I'. We discuss the ways in
which v can be a symmetry of z(2); the main tool is the uniqueness theorem
for solutions to the initial value problem for (4.1).

We know that yz(t) is another T-periodic solution of (4.1). Should the
two trajectories intersect, then the common point of intersection would be
the same initial point for the two solutions. Uniqueness of solutions implies
that the trajectories of yz(t) and z(t) would be identical. So either the two
trajectories are identical or they do not intersect.

Suppose that the two trajectories are identical. Then uniqueness of so-
lutions implies that there exists § € S' = [0, T] such that yz(t) = z(t — 6),
or

v(t +0) = (). (4.3)

We call (v,8) € T x S! a spatio-temporal symmetry of the solution z(t).
A spatio-temporal symmetry of z(t) for which § = 0 is called a spatial
symmelry, since it fixes the point z(t) at every moment of time. The group
of all spatio-temporal symmetries of z(%) is denoted

Te@ CT x 8L

Next we show how the symmetry group Z.(; can be identified with a

pair of subgroups H and K of I" and a homomorphism from H into S with
kernel K. Define

K={yeTl:yz(l)=z() Vi}
H={yel:+{z(t)} ={=z(1)}}.

The subgroup K C Iy is the group of spatial symmetries of x(t) and
the subgroup H consists of those symmetries that preserve the frajectory
of z(t) —in short, the spatial parts of spatio-temporal symmetries of z(2).
Indeed, the groups H C I' and X;(;) C T' x S! are isomorphic; the iso-
morphism is just the restriction to ¥,(;) of the projection of I' x S! onto
I.

(4.4)

4.1 A Classification Theorem for Spatio-Temporal
Symmetries

There are three sfraightforward algebraic restrictions placed on the pair

and K defined in (4.4) in order for them fo correspond fo symmetries of a

periodic solution. Recall that the fized-point subspace of a subgroup X C I
is

Fix(Z)={z€R":0z=2 Voe€ZX}
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1. Patterns of Oscillation in Coupled Cell Systems 17

and that fixed-point subspaces are flow invariant, that is, f : Fix(Z) —
Fix(X).

4.1 Lemma. Let z(t) be a periodic solution of (4.1) and let H and K be
the subgroups of I' defined in (4.4). Then

(a) K is a normal subgroup of H and H/K is either cyclic or S*.
(b) K is an isotropy subgroup for the I'-action.
(c¢) dimFix(K) = 2.

Proof. For each v € H there is a unique § € S’ such that (v, f) is a
spatio-temporal symmetry of z(t). Uniqueness of solutions implies that the
mapping © : H — S! defined by ©(7) = 6 is a group homomorphism. By
definition, the kernel of this homomorphism is K —thus verifying (a).

Let 2o = z(0) and suppose that oxg = z¢. Then oz(t) is another (peri-
odic) solution with initial condition zy. If follows that oz (t) = z(I) and that
o € K. Therefore, the isofropy subgroup of z¢ is in K. Conversely, by defi-
nition, 0 € K fixes o —and (b) is valid. Also by definition z(t) C Fix(K);
so (c) must be valid. |

4.2 Definition. When H/K = Z,, the periodic solution xz(t) is called
either a standing wave or (usually for m > 3) a discrete rotating wave;
and when H/K = S' it is called a rotating wave.

In fact, the pair H and K must satisfy two restrictions in addition to
those listed in Lemma 4.1. We discuss one of those in detail here. Let T’
be a finite group acting on R"™ and let z(t) be a periodic solution of a
I-equivariant system of ODE. Define

Lg = | Fix(y) nFix(K)
1€K

Since K is an isotropy subgroup (Lemma 4.1(a)), Lg is the union of proper
subspaces of Fix(K'). More precisely, suppose that Fix(y) D Fix(K). Then
the isotropy subgroup of every point in Fix(K) contains both K and v ¢ K.
Therefore, the isotropy subgroup of any point in Fix(X) is larger than K,
and K is not an isofropy subgroup.

We claim that

H fixes a connected component of Fix(K)~ L. (4.5)

To verify (4.5) we first show that any d in the normalizer N(X) permutes
connected components of R" ~Lg. Observe that

§(Fix(y) NFix(K)) = Fix(676 1) N Fix(6K6~1) = Fix(6v6 1) N Fix(K)

Moreover, §v6~! g K. (If it were, then v would be in 6~1K§ = K, which
it is not.) Therefore § : Ly — Lg. Since ¢ is invertible, § : R*~Lyx —
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18 M. Golubitsky and I. Stewart

R"™~Lg and § permutes the connected components of R” ~ L. Since H/K
is cyclic, we can choose an element h € H that projects onto a generator of
H/K. We now show that h (and hence H) must fix one of the connected
components of R"~ L. Suppose that the trajectory of z(¢) intersects the
flow-invariant subspace Fix(7) NFix(K). Flow-invariance of Fix(v) implies
that v is a spatial symmetry of the solution z(t), and by definition v € K.
Therefore the trajectory of z(t) does not intersect Lg. Since h is a spatio-
temporal symmetry of z(t), it preserves the trajectory of z(Z). Therefore,
h must map the connected component of R®~Lg that confains the tra-
jectory of z(1) into itself, thus verifying (4.5).

The main theorem of this section is a characterization of the possible
spatio-temporal symmetries of periodic solutions.

4.3 Theorem (Buono and Golubitsky, 2001). [ Let I' be a finite group
acting on R™. There is u periodic solution to some I'-equivariant system of
ODE on R™ with spatial symmetries K and spatio-temporal symmetries H
if and only if

(a) H/K is cyclic.
(b) K is an isotropy subgroup.

(c) dimFix(K) = 2. If dimFix(K) = 2, then either H = K or H =
N(K). '

(d) H fizes a connected component of R*~ L.

Moreover, when these conditions hold, there erists a smooth I'-equivariant

vector field with an asymplotically stable limit cycle with the desired sym-
melries.

4.4 Corollary. For pairs (H,K) satisfying conditions (a)-(d) of Theo-
rem 4.3, the property of having periodic solutions with spatial symmetries
K and spatio-temporal symmetries H is robust in I'-equivariant systems of
ODE on R".

The case when the internal dynamics of a coupled cell system is k > 2
motivates the following corollary fo Theorem 4.3.

4.5 Corollary. Let I" be a finite group acting on V and suppose that
W = V* for some k S 2. Then there is a hyperbolic periodic solution to
some I'-equivariant system of ODE on R™ with spatial symmetries K and
spatio-temporal symmetries H if and only if

(a) H/K is cyclic.
(b) K is an isotropy subgroup.
(c) If dimFix(K) = 2, then either H = K or H = N(K).
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1. Patterns of Oscillation in Coupled Cell Systems 19

A Two-Cell Coupled Cell Example

Our first example of a coupled cell system is the simplest possible one — the
two-cell system pictured in Figure 4.1.

@ @
FIGURE 4.1. A two-cell coupled cell system.

The corresponding system of ODEs is

I1 = f(z1,22)

Iz = f(x2,21) (4.6)

where 1,z € R*. The symmetry group for the two-cell system is Zz(x)
where x(z1,22) = (z2,21). According to symmetry there are three possi-
ble types of periodic solufions in this cell system and they correspond fo:
(HyK) = (Zg,Zz), (HiK) = (Z2:1)a and (H’K) = (1?1)' Suppose that
z(t) = (z1(t), z2(2)) is a I-periodic solution to (4.6).

e If z(t) corresponds to (H,K) = (Z2,Z2), then it is a synchronous
solution where z2(t) = z1(t).

o If z(t) corresponds to (H,K) = (Z2,1), then it is an out of phase
solution where z5(t) = 71 (t + §).

e If z(t) corresponds to (H, K) = (I, 1), then z(%) is asymmetric —but
then (z2(t),z;(1)) is also a I-periodic solution.

It follows from Corollary 4.5 that there are stable limit cycles with each
of these symmetry fypes when k¥ > 2—indeed it is not too difficult to
find examples of each type of periodic solution. When k& = I Theorem 4.3
precludes the existence of both synchronous and out of phase periodic so-
lutions. Note that Fix(Z3) = {(z1,71)}. So synchronous solutions cannot
exist since dim Fix(Z2) = I and out of phase solutions cannot exist since x
does not fix a connected component of R2 ~Ly = R?~Fix(k). Asymmetric
periodic solutions can exist when k& = 1.

Three Cells in a Line

Consider the three-cell coupled cell system pictured in Figure 4.2.
The corresponding system of ODEs is

&1 = f(z1, 22, 23)
&3 = g(z1, T2, T3) 4.7
&3 = f(z3,T2,71)
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20 M. Golubitsky and I. Stewart

FIGURE 4.2. Three cells in a line.

where z1,z2,73 € RF and g(z3,72,21) = g(%1,Z2,23). The symmetry
group for this three-cell system is still Z(k) where x(z1, 2, 23) = (3, 2Z2,21)
and there are still three types of possible periodic solutions: synchronous,
out of phase, and asymmetric. Suppose that z(t) = (z1(t),z2(2),z3()) is a
1-periodic solution to (4.7). Then

e If z(t) is a synchronous solution, then z3(1) = z1().

e If z(t) is an out of phase solution, then z3(t) = z; (t + 3) and x5 () =
z3 (t + %). That is, the second cell oscillates with twice the frequency
of the other cells.

e If z(%) is asymmetric, then (z3(2), z2(1), z1()) is a 1-periodic solution.

Again it follows from Corollary 4.5 that there are stable limit cycles with
each of these symmetry types when k£ > 2. When k& = 1 Theorem 4.3
precludes the existence of the out of phase periodic solutions.

4.2 Examples of Spatio-Temporal Symmetries

We now present two examples where spatio-temporal symmetries have im-
portant interpretations for the associated periodic solutions.

4.2.1 Animal Gaits

[Golubitsky, Buono, Collins and Stewart, 1998, 1999] argue that the eight-
cell double-ring network pictured in Figure 2.2 is the simplest network
that will produce periodic solutions having the rhythms of the quadruped
gaits walk, trot, and pace. The symmetry group of this network is I' =
Z4(w) x Zy(k).

We call a symmetry type (H, K) of a periodic solution primary when H =
T. If the cell system consists of identical cells (that is, I’ acts transitively on
the cells), then the signals emanating from each cell in a primary periodic
solution are identical up to a phase shift. In this generalized sense signals
sent from each cell in a primary periodic solufions are synchronous. It is a
straightforward exercise to classify the primary periodic solution types in
the network pictured in Figure 2.2; the results are listed in Table 1.2. Note
that primary periodic solutions in this network also include models of the
bound, the pronk, and an unusual gaif called the jump (which has been
seen in bucking broncos—as well as in gerbils and rats).

Version Sep 4, 2001.......... Edited by wgm : Typeset on 2 October 2001 - 23h54



1. Patterns of Oscillation in Coupled Cell Systems 21

I'/K | Spatio-Temporal | Phase Diagram | Gait

r 1 — 8 g pronk
o L
<w> Z (%,3) 0 3 pace
2
1
< KW > Zo (%,3) (2) g trot
0 0
<Kk w?:>| Z (w,3) 11 bound
¥ 4 .
<w?> | Za | @hH h | (T3 FL) | went
1 1 i
<K> Z,4 (w, 7) ‘6 ‘6 jump®

TABLE 1.2. Symmefries of primary periodic solutions in a I' = Z4 x Z2 model.

4.2.2 Multirhythms

Coupled cell dynamics can lead fo situations where different cells are forced
by symmeftry to oscillate at different frequencies [Golubitsky and Stewart,
1986; Golubitsky, Stewart, and Schaeffer, 1988; Armbruster and Chossat,
1999]. As we have seen, certain cells can be forced to oscillate at twice
the frequency of other cells—but the range of possibilifies is much more
complicated.

The basic principle is simple (though combinatorial bells and whistles
can be added). Let v be an m-cycle that is a spatio-temporal symmetry
of a coupled cell system having corresponding phase shift % Suppose, in
addition, that + cyclicly permutes cells 1,... ,m and fixes cell m + 1. Then
cell m + 1 must oscillate m times as quickly as cell I —with one caveat
that we will return to in a moment. A simple example of a four-cell system
that illustrates this point is given in Figure 4.3. In this coupled cell system
a ponies on a merry-go-round solution (Z3, I) will force cell 4 to oscillate
at three times the frequencies of the other three cells.

\¢/
®

FiGURE 4.3. Unidirectional ring of three cells with a center cell.

We now return to the caveat: suppose two different cycles with nontrivial
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22 M. Golubitsky and 1. Stewart

temporal symmetries exist. Then, they can force two different frequency
relations between the cells— and it is quite curious how these two frequency
restrictions are resolved info one relation, as we now show.

Consider a five-cell system consisting of two rings —one with three cells
and one with two cells—as shown in Figure 4.4. The symmetry group of
this system is I' = Z3 x Zy = Zg. Note that the internal dynamics of cells 4
and 5 do not have to be the same as that of cells 1, 2, and 3 (indeed, they
do not even have to have the same dimensions).

_—

\®/

fEN T
-

FiGure 4.4. Five cell system made of a ring of three and a ring of two.

Suppose that a I-periodic solution

X () = (21(8), 22(t), 3 (), 91(2), 22(2))

to this coupled cell system exists. Suppose that this solution has two spatio-
temporal symmetries ((I 2 3), 1) and (4 5),1). The first symmetry forces
the z; to be in ponies form with (nominally) the frequency of the y; equal to
three fimes the frequency of the x;. The second symmeftry forces the y; to
be a half period out-of-phase and the z; to oscillate at twice the frequency
of the y;. This apparent nonsense is resolved as follows. The product of the
two symmefries is

7=((123)(45),3),

explicitly exhibiting the isomorphism Z3 x Zs = Zg. Thus X () actually
has the form

X(t) = (@), z(+ 3),z(¢ + 3),y(), ¥ + 3))-

where three times the frequency of z is twice the frequency of y.

Does such a solution actually exist? Corollary 4.5 states that it does—at
least if all nonlinearities consistent with Zg symmetry are permitted to be
present. The difficulty is to find a solution corresponding to the pair (Zg, I)
in the coupled cell system context.

The difficulty is compounded by the follo®ing fact that no such solution
is supported by a primary Hopf bifurcation in this coupled-cell system.
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1. Patterns of Oscillation in Coupled Cell Systems 23

The reason is that in Hopf bifurcation the available representations of the
symmetry group Z¢ = Z3 X Zy are sums of irreducible components of the
permutation representation on R%*, where k is the dimension of the state
space of a single cell. However, there does exist a more complicated bifurca-
tion scenario that contains such a representation: primary Hopf bifurcation
to a Z3 discrete rotating wave, followed by a secondary Hopf bifurcation
using the nontrivial Z» representation. We therefore seek a 3:2 resonant
~ solution arising from such a scenario. Let 21, 3,23 € R be the state vari-
ables for the ring of three cells and let y1 = (¥},43), 12 = (¥%,42) € R? be
the state variables for the ring of two cells. Consider the system of ODE
&1 = —z1 — 2§ + 2(21 — 22) + D(y1 + v2) + 3((v2)* + (33)°)
&y = —23 — T3 + 2(T2 — 73) + D(y1 +32) + 3((13)° + (43)°)
i3 = —z3 — 3 + 2(z3 — z1) + D(y1 +v2) + 3((13)° + (3)°)  (49)
i = Bin1 — [/’ + Bayz + 0.4(z% + 23 + 23)C
W2 = B1yz — |y2*y2 + Bay1 + 0.4(z% + 23 + 23)C
where
-1 1 -1 -1 0.10
— 2 = = — =
By = (—1 _%) , By = ( 1 -1) ,D=(020 -0.11),C (0.22 .
Starting at the initial condition
=178, z3=-085 z3=-0.08,
y? = (~0.16,0.79), 3 = (0.32,-0.47)
We obtain Figures 4.5 and 4.6.

cote 43

TR

T A A -

g 0 3 3 ] o » "

FiGURE 4.5. Infegration of (1.8). (Left) Cells I-2-3 out of phase by one-third
period; (right) cells 4-5 out of phase by one-half period.

4.3 Spatio-Temporal Symmetries in Hamiltonian
Systems

We now discuss the Hamiltonian version of Theorem 4.3. We begin by
developing a theory of Hamiltonian coupled cell systems, by analogy with
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e ot 1 vs cod 8

. » n ) ) = £} s " .5 LR O 5
. d

FIGURE 4.6. Infegration of (1.8). (Left) Time series of cells I and 4 indicating
that triple the frequency of cell 4 equals double the frequency of cell I; (right)
Plot of cell 1 versus cell 4 showing a closed curve that indicates a time-periodic
solution.

the dissipative case (the one described so far). We use standard concepts
from Hamilfonian dynamics without further comment: see [Abraham and
Marsden, 1978] and [Arrowsmith and Place, 1990]. In Hamiltonian systems
the phase space is a symplectic manifold, and for the purposes of local
bifurcation theory it can be assumed to be a symplectic vector space P =
R?® with coordinates (¢,p) = (g1, .. ,qn;PLs- - - ,Pr) where q is position
and p is velocity. The dynamics is determined by a Hamiltonian

H:P-R

and we shall assume that H € C*. Hamillon’s Equations for the dynamics
are:

., _OH OH

Because of the form of these equations, H = 0, so the Hamiltonian is
conserved by the flow. The level sets of H, given by H = ¢ for constant c,
are called energy levels.

Let I' € O(2n) be a finite group and let Q be the symplectic 2-form on
R?". The group I" acts symplectically if y*Q = Q for all v € I'. We recall
that fixed-point subspaces of symplectic actions are symplectic, hence even-
dimensional.

4.6 Theorem. Let I' be a finite group acting symplectically on R2".
There is a periodic solution to some I'-equivariant Hamiltonian system of
ODE on R?" with sputial symmetries K and spatio-temporul symmetries
H if and only if

(a) H/K is cyclic.

(b) K is an isotropy subgroup.
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1. Patterns of Oscillation in Coupled Cell Systems 25

(c) dimFix(K) > 2. If dimFix(K) = 2, then either H = K or H =
N(K).

Moreover, when these conditions hold, there exists a smooth I'-equivariant
Hamillonian vector field having an elliptic periodic solution with the desired
symmetries.

The proof of this theorem is virtually identical to that of Theorem 4.3.
As before, conditions (a)-(c) are necessary conditions. Note that condition
(d) of Theorem 4.3 is superfluous in the Hamiltonian setting, since the
symplectic structure implies that the codimension of Fix(y) N Fix(X) in
Fix(K) is at least two; hence the complement of Ly is always connected.

Conversely, choose the closed curve C with the desired symmetry prop-
erties, as in the proof of Theorem 4.3. See [Buono and Golubitsky, 2001].
Then choose a nonnegative Hamiltonian in a small neighborhood of C whose
zero set is C. Extend the Hamiltonian to be I'-invariant on all of R?" in a
way analogous €o the construction of the vector field in the proof of The-
orem 4.3. We can also assume that the Hamiltonian is chosen so that C is
the trajectory of an elliptic periodic solution.

4.3.1 Coupled Pendula

In this subsection we discuss the spatio-temporal symmetries of periodic
solutions to the ring of N identical simple pendula infroduced in §2.3.
Denote the position of pendulum j (taken modulo V) by ¢; and its angular
velocity by p; = ¢;. Let the mass of each pendulum bob be m, normalize
the length to I, let gravity be g, and let the modulus of elasticity for each
spring be a. Choose units so that m = I, g = 1. Then the Hamiltonian is

o
H(g,p) = 1p} —cosg; + 5((gi-1 - %) + (gi+1 — ¢5)%) (4.10)
The equations of motion are

45 =pj

. . 4.11)
pj = —sing; + a(gj—1 — 2¢5 + gj+1)- (

Note that the coupling is this model is assumed fo be nearest neighbor and
diffusive.

In the pendulum system the symmetry group of the Hamiltonian is not
Dy but Dy x Z; where the extra symmetry is an internal one given by
(¢,p) — (—q,—p). More precisely, the action of this group on RY @ RV
with coordinates (g, p) is:

o(qo,--- ,qN-1;P0,--- »PN-1) = (q1,-.- ,qN-1,90;P1,- - - ,PN~1,P0)
p(qo, ... ,qN-13P0;--- ,PN-1) = (@N-1,--+ , 90} PN—1,-- - ,P0)

7(g0,--- AN-1;P0,--- ,PN-1) = (=G0 -+ , —qN—1; —P0s- -+ » —PN-1)
(4.12)
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26 M. Golubitsky and 1. Stewart

Here Dy = (0,p) and Zs = (7). Let ' = Dy x Z,.

Next we ask: what kinds of periodic solufion does Theorem 4.6 sug-
gest may exist in the Hamiltonian system (4.11)? Theorem 4.6 states that
we need to determine, up to conjugacy, all. isofropy subgroups K having
dimFix(K) = 2 and all subgroups H for which H/K is cyclic. In general,
this is a combinatorially difficult problem, but the enumeration simplifies
when IV is prime — which we now assume.

Note that the only isofropy subgroup that contains 7 is I' itself. There-
fore, possible isotropy subgroups of I" have one of two possible forms:

K=Lx1 and K =(LxI)Uu(M~L)x{r}), (4.13)

where L C M C Dy and L has index two in M. When N is an odd
prime there are only four subgroups of Dy up to conjugacy: 1, Z2(p), Zy,
and Dy. It follows from (4.13) that there are just two additional possible
isotropy subgroups: Zz(pr) (from 1 C Zz(p)) and Dy (from Zy C Dy).
Of the seven possibilities only five

I Zy(p) Zp(pr) Dy T

are isofropy subgroups and they have fixed-point subspace dimension 2N,
N+1,N -1, 2, and 0, respectively. So K =T is not possible. Finally, we
enumerate the pairs K C H for which H/K is cyclic. There are 13 such
pairs:

1c1 Z2(p) C Z2(p) Zx(pr) C Z2(p7) Dy CcDn
1CZ2(p) Z2(p) C Z2(p) X Za() Z2(p7) CZ2(p) X Z2(7) DN CT
1C Z2(p7) Z2(p) CDn Zy(pr) C Dn

1C Z(7)

1CZn

When N is not prime the number of isofropy subgroups increases substan-
tially with the number of prime factors.

There is, however, another issue that needs to be discussed. In the models
for speciation, animal gaits, and the visual cortex, specific equations for the
internal dynamics and the coupling are not known; indeed, in a very real
sense, they may never be known. In the coupled pendulum model, the
Hamiltonian for the internal dynamics and the coupling are derivable from
first principles. Therefore, for such systems, it is useful to have techniques
that prove the existence of periodic solutions in the given model equation
not just in all possible model systems having the same symmetries. In
dissipative systems one method for finding periodic solutions of a given
type in a fixed model is Hopf bifurcation. In Hamiltonian systems, the
analogous method for finding periodic solutions is the Weinstein-Moser
theorem. We present the equivariant versions of these techniques in the
next chapfer. Using this approach we will be able fo prove that three of
the 13 possibilifies do appear in the Hamiltonian system (4.11). See §5.4.1
for further information.
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5 Spontaneous Symmetry-Breaking

In Section 4 we discussed the symmetry types of stationary and periodic
solutions that one can expect to find in equivariant systems of differential
equations. We can apply these theorems only to the class of all equivariant
systems—not to an individual system. Bifurcation theory is the traditional
method by which solutions of a given symmetry type are proved to exist in
a particular model system. Usually we start with a group-invariant equilib-
rium and ask what states bifurcate from that equilibrium as a parameter is
varied. In general, almost anything can happen; but, generically, only rather
specific types of bifurcations are possible. That comment follows from the
well-developed theory of spontaneous symmetry-breaking and leads to a set
of solutions that are ‘likely to occur’ in specific models. It is important
to emphasize that the ‘likely’ solutions do not include all possible solu-
tions. In this section we review some of equivariant bifurcation theory. See
[Golubitsky, Stewart, and Schaeffer, 1988] for additional detail.

Let f : R® x R — R" be I'-equivariant where I' C O(n) is finite, that is,

flyz, A) =vf(z, A).
Consider the I'-invariant system of ODE

z= f(z,\)

where ) is a bifurcation parameter. Suppose that £ = 0 is a trivial group
invariant equilibrium, that is,

f(0,A) =0.

Suppose, in addition, that there is a bifurcation at A = 0; that is, there are
eigenvalues of the linearization

L = (dzf)(0,0)

on the imaginary axis. By definition steady-state bifurcation occurs when
L has a zero eigenvalue and Hopf bifurcation occurs when L has a complex
conjugate pair of purely imaginary eigenvalues. Typically, either steady-
state or Hopf bifurcation occurs —but not both—unless additional pa-
rameters are available in the model equations. For the moment we assume
that only one parameter is present.

5.1 Linear Theory

It is easy to check that ker L is a I'-invariant subspace of R™. It is proved in
[Golubitsky, Stewart, and Schaeffer, 1988] that typically, at a steady-state
bifurcation, the subspace ker L C R"™ is an absolutely irreducible represen-
tation of I". Recall that a real representation is absolutely irreducible if the
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only linear maps that commute with I" are scalar multiples of the iden-

tity map. It is also shown that typically at a Hopf bifurcation the center
subspace C of L is I'-simple: either

(a) C =V @&V where V is an absolutely irreducible representation of T",
or

(b) C itself is irreducible but not absolutely irreducible.

One consequence of these two results is that there is a type of steady-
state bifurcation for each absolutely irreducible representation of I' and
there is a type of Hopf bifurcation for each irreducible representation of I".
Likely solutions are found by determining the new solutions that occur by
symmetry-breaking bifurcation from each of these type of bifurcations.

5.2 Nonlinear Theory

There are two steps in analyzing symmetry-breaking bifurcations. First, ei-
ther a Liapunov-Schmidt or center manifold reduction is used to reduce the

question of finding new solutions to one of finding solutions to [-invariant
systems of ODE

¥=g9(,)

where y € C and g : C xR — C is I'equivariant with respect to the action

of ' on C. These reductions can be performed to preserve symmetry and
so that

9(0,)) = 0.

The second step—analyzing the bifurcations of the implicitly defined
system g—is generally quite difficult. There are, however, two theorems
that simplify the search for generically occurring solutions — the Equivari-
ant Branching Lemma and the Equivariant Hopf Theorem.

The symmetry group of an equilibrium £ C TI' is always an isotropy
subgroup. An isotropy subgroup is azial if

dim Fb{ker L(E) =1.

5.1 Theorem (Equivariant Branching Lemma). Generically, for each az-
ial subgroup & C T, there is a unique branch of equilibria having symmetry
subgroup L.

At a generic Hopf bifurcation A = (d,g)(0,0) has one purely imaginary
pair of complex conjugate eigenvalues each of multiplicity m where dim C =
2m. It follows that e*4 induces an action of S! on C that commutes with
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the action of T'; hence there is a naturally defined action of I" x S' on C.
An isotropy subgroup £ ¢ T' x S! is C-azial if

dim Fixg(Z) = 2

If a periodic solution has symmetry subgroup £ C I'" x S!, then, as in
Section 4, we can define K = SNT and H =II(T) where1: T'x 8! - T
is projection.

5.2 Theorem (Equivariant Hopf Theorem). Generically, for each aial
subgroup ¥ C ' x 8, there is a unique branch of periodic solutions having
symmetry subgroup L.

The next two sections are devoted to applications of these bifurcation
results to coupled cell systems. We then discuss genericity issues involv-
ing coupled cell systems and end the chapter with a discussion of the
equivariant Moser-Weinstein theorem — the Hamiltonian analogue of the
equivariant Hopf theorem.

5.2.1 Sy Steady-State Bifurcations and Speciation Revisited

In Section 1 we introduced a coupled cell model of speciation and exhibited
a numerical simulation in which a single species splits into two. A number
of general phenomena are associated with such models, independently of
many details of the equations, and we now describe some of these. Specific
models with a well-defined biological interpretation, such as simulations of
speciation in bird populations, have been studied by [Elmhirst, 2000] and
related to the general considerations stemming from symmetry.

Recall that the model deals with a set of N PODs (coarse-grained clumps
of organisms) whose phenotypes are represented by = = (z1,...,ZN) €
RY. (To include more phenotypic variables, let the z; be vectors in some
R*. The discussion generalizes to this case.) We normalize all phenotypic
variables to be zero prior to bifurcation: that is, we define them as devia-
tions from the mean.

The subspaces

Vo = R(L1,...,1)

w = {(xla-“:xN)3$1+°'-+xN=O} (51)

are Sy-invariant and S y-irreducible, and
RV=vyeoW

A symmetry-breaking bifurcation of equilibria occurs when the kernel of
the linearization is V3, and we can carry out a Liapunov-Schmidt reduction
onto this space. Consider the restriction of the action of Sy to V;. Here,
the isotropy subgroups are the same as for the action of Sy on RY, but the
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dimension of Fix(X) is reduced by 1. In particular dim Fix(X) = 1 when ¥
is the isotropy group of a block {p, N — p}, where p < %

The coupled cell system is modelled by an Sy-equivariant ODE

(L&=fj(:c1,...,$1v;a1,...,0,5) (5'2)

t

We can find symmetry-breaking equilibria by applying the Equivariant
Branching Lemma. If there is a steady-state bifurcation with kernel V; then
there exist branches of solutions for all axial isotropy subgroups. From §4 it
is easy to check that the axial subgroups of Sy in this representation are, up
to conjugacy, those of the form S, x S, where p+¢ = N and 1 < p < [N/2].
So there exist branches of solutions with these isotropy subgroups. Such
solutions lie in fixed-point spaces of the form (x, ... ,u;v,...,v), with ex-
actly two distinct values v and v for phenotypic variables. These solution
branches therefore correspond to a split of the population of N identical
PODs into two distinct species consisting of p and ¢ PODs respectively.
One species has the phenotype u and the other species has the phenotype
v . Note that pu + qv = 0 since (%,... ,u;v,... ,v) € V1.

We can also make an interesting universal quantitative prediction: on
the above branches the mean value of the phenotypic variables changes
smoothly during the bifurcation. The reason is that the fixed-point space
of S, x 8, is spanned by all vectors (u,... ,u;v,... ,v) where there are pu's
and q v’s, and the mean phenotype is pu + qgv = 0. Because we are using
normalized phenotypic variables, all z; = 0 prior to bifurcation. Thus the
mean phenotype remains constant throughout the bifurcation. However, we
are working with the Liapunov-Schmidt reduced problem, which involves
a nonlinear change of variables. Therefore the mean varies smoothly in the
original phenotypic variables, and is thus approximately constant.

Some studies reported in the literature are consistent with the above
predictions. For example, a celebrated instance of polymorphism is the
changes in beak size that occur among various species of Darwin’s finches
in the Galdpagos Islands. The prediction of smoothly changing mean is
consistent with observations of these finches. The evolution of the different
finch species in the Galdpagos Islands is thought to have occurred around
five million years ago, and so cannot be observed (although small-scale
evolution remains rapid enough that significant phenotypic changes can be
observed from one year to the next). However, we can observe a surro-
gate for actual evolution: differences in the phenotype of a given species
in allopatric and sympatric populations. The transition in phenotype from
sympatric populations to allopatric ones should be just like the bifurcations
in the speciation model: in particular, we expect to see approximately the
same mean in either situation.

This is the case for the two species Geospiza fortis and G. fuliginosa,
which occur in both sympatric and allopatric populations. G. fortis is al-
lopatric on the island known as Daphne, and G. fuliginosa is allopatric on
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Crossman. The two species are sympatric on a number of islands which
Lack placed in three groups for data analysis: Abingdon, Bindloe, James,
Jervis; Albemarle, Indefatigable; and Charles, Chatham. Fig. 5.1, adapted
from [Lack, 1968], shows the differences in beak size between these species
on the cited groups of islands. The mean beak sizes of both G. fortis and G.

F
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Albemarle, Indefatigable

AL B

Charles, Chatham
I D Geospiza fuliginosa
. Geospiza fortiy
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FIGURE 5.1. Beak sizes in allopatric and sympatric populations of Geospiza in
the Galdpagos Islands.

fuliginosa are approximately 10mm in allopatric populations. In all three
(groups of) sympatric populations, the mean for G. fortis is about 12mm,
while that for G. fuliginosa is about 8mm. These figures are consistent with
the ‘constant mean’ prediction.

5.2.2 Animal Gaits and Multirhythms Revisited

We begin our discussion by recalling that if I' is an abelian group, then
its irreducible representations are either one-dimensional (and absolutely
irreducible, since all linear maps are multiples of the identity) or two-
dimensional (and nonabsolutely irreducible, since I' commutes with SO(2)).
Thus, generically Hopf bifurcation in the presence of an abelian symmetry
group reduces to standard Hopf bifurcation —a single pair of multiplicity
one purely imaginary eigenvalues. Standard Hopf bifurcation, which is just
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a special case of the Equivariant Hopf Theorem, leads to a unique branch
of periodic solutions.

The symmetry group pair K C H of these solutions is simple to de-
termine: K is the kernel of the action of I' on C and H = T (since the
bifurcating periodic solution at any parameter value near 0 is unique up
to phase shift). Thus, when I is abelian, bifurcating solutions are primary
solutions.

Since I' = Z4 x Z; in the animal gaits model, only primary gaits can be
obtained by Hopf bifurcation from a trivial equilibrium. The second ques-
tion that we ask is whether all primary gaits can, in principle, be obtained
by Hopf bifurcation from a trivial equilibrium — and the answer is yes—at
least when the dynamics in each cell is two dimensions or greater. First, for
every subgroup K C I for which I'/K is cyclic, there is an irreducible rep-
resentation of I" with kernel K. Second, suppose that the internal dynamics
of the cell system pictured in Figure 2.2 is one-dimensional. Then the state
space is R® and since Z4 x Z, has eight elements, R® = L%(Z4 x Z). 1t
is a standard theorem from representation theory that every irreducible
representation appears at least once in L%(Z4 X Z3) and hence at least
twice when the internal dynamics in each cell is at least two-dimensional.
It follows that in principle every primary gait can be obtained by Hopf bi-
furcation from a trivial equilibrium. Indeed, [Buono, 1998] shows that each
of the primary gaits listed in Table 1.2 can be obtained by such a Hopf
bifurcation. See also [Buono and Golubitsky, 2001].

The situation is different in the multithythm example. In that case,
see Figure 4.3, the cell system also has an abelian symmetry group T’ =
Z3 x Zy = Zg. The multirhythm periodic solutions have a symmetry group
pair (H, K) = (Zg, 1) but none of the irreducible representations occurring
in the phase space of this cell system has trivial kernel —there are three
different irreducible representations and their kernels are Z», Z3, and Zg.
So the multirhythm periodic solution cannot appear by a generic Hopf bi-
furcation from a trivial equilibrium. Indeed, we found ours by constructing
a succession of two Hopf bifurcations with certain properties.

5.3 Genericity Questions in Coupled Cell Systems

In this subsection we comment on genericity questions concerning bifur-
cations in coupled cell systems. A simple example is instructive. Consider
the two cell system pictured in Figure 4.1. The general system of differ-
ential equations for this cell system is given in (4.6). At a group invariant
equilibrium (z;, 1), the Jacobian of the system is given in block form by

le fzz]
fzz ftl )
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The eigenvalues of this matrix are the eigenvalues of the matrices

foy + fz O fo, = fa,.

Critical eigenvalues of the first matrix lead to bifurcations that preserve
symmetry (the trivial representation of Z,), while critical eigenvalues of
the second matrix lead to symmetry-breaking bifurcations (the nontrivial
representation of Z). Note that when the internal dynamics of each cell
is one-dimensional, the eigenvalues are real—so Hopf bifurcation is not
possible. However, when the internal dynamics of each cell are at least
two-dimensional the eigenvalues of each matrix can be chosen arbitrarily.
Thus, to achieve generic behavior of coupled cells systems, we may need
to consider higher dimensional internal dynamics than is suggested just
by the phase space of the coupled cell system. After all, when the internal
dynamics are one-dimensional, the phase space is two-dimensional and Hopf
bifurcation might have been possible.

A second example is given by a bidirectional ring of four cells with just
nearest neighbor coupling. This coupled cell system has D4 symmetry. Sup-
pose that the internal dynamics is k-dimensional. The differential equation
in the first cell is denoted by

&1 = f(z1,T2,Z4),

where f(z,y,2) = f(z,2,y). The Jacobian of the full 4k-dimensional sys-
tem at a group invariant equilibrium —all coordinates equal —is:

A B 0 B
L_|B 4 B o
“lo B A B
B 0 B A

where A =d;, f and B=4d,,f.
The eigenvalues of this matrix are determined in [Golubitsky, Stewart,

and Schaeffer, 1988, p. 396, and it follows that the eigenvalues of L are the
union of the eigenvalues of

A+2B A-2B A (twice).

There are three irreducible representations of D4 that occur in the ring
system phase space: trivial one-dimensional, a nontrivial one-dimensional,
and the standard two-dimensional. Critical eigenvalues of the three matrices
correspond to bifurcations corresponding to each of these irreducible repre-
sentations. As in the simple example, Hopf bifurcation cannot occur unless
k > 2. We ask the following question: Can a stable symmetry-breaking
D4 Hopf bifurcation occur when the internal dynamics is two-dimensional?
The answer is basically no. Such bifurcations occur when tr(4) = 0. It
follows that the traces of the other two matrices are +2tr(B). If tr(B) # 0,
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then one of these matrices has a positive eigenvalue, and a stable Hopf
bifurcation is not possible. If we need to require that tr(B) = 0, then we
have this bifurcation occurring with stable periodic solutions only in codi-
mension two. In these models generic Hopf bifurcations to stable solutions
can occur either when k > 3 or when next nearest neighbor coupling is also
allowed.

It is clear that the determination of generic bifurcation behavior in cou-
pled cell systems depend to some extent on the dimension of the internal
dynamics allowed in each cell and on the ways in which coupling is re-
stricted in the cell system.

5.4 The Equivariant Moser-Weinstein Theorem

The basic ‘local bifurcation’ existence theorem for periodic orbits in Hamil-
tonian dynamics is the Liapunov Center Theorem. Suppose that H is a
Hamiltonian on P = R?" and let p € P be an equilibrium, so that
(dH)p, = 0. Assume that p is a nondegenerate minimum of X, that is
(dH)|, = 0 and (d*H)|, is positive definite. Let L be the linearization of
the Hamiltonian vector field at p and let the eigenvalues of L be the purely
imaginary pairs {£\;,...,®£A,}. Liapunov proved that if the linearized
flow at an equilibrium has a simple purely imaginary eigenvalue and some
A:i is non-resonant then there exists a smooth 2-dimensional submanifold
of P, which passes through p and intersects every energy level near p in
a periodic orbit, such that the period of that orbit approaches 27/|)\;| for
orbits near p. By ‘non-resonant’ we mean that A; is not an integer multiple
of A; for j #1.

Weinstein [1973] proved that even when there is resonance, there must
exist at least -21-dimV,\ families of periodic solutions on each energy level
near p. The proof was simplified by Moser [1976], and the result has come
to be known as the Weinstein-Moser Theorem. However, Weinstein-Moser
Theorem fails to predict all periodic solutions near equilibrium in the equiv-
ariant case. For instance, in the Hénon-Heiles system (Hénon and Heiles
[1964]) the Weinstein-Moser Theorem predicts at least two (families of) pe-
riodic solutions near equilibrium, but actually there are eight. Even taking
the symmetry into account, there are three group orbits of periodic solu-
tions. The Equivariant Weinstein-Moser Theorem remedies this difficulty
by exploiting the symmetry of the Hamiltonian.

Recall that a symplectic vector space over R is a vector space V over
R equipped with a symplectic form. A symplectic action of a group I' on
a symplectic vector space V is an action that leaves the symplectic form
invariant. The theory of group representations can be extended to sym-
plectic representations [Montaldi, Roberts, and Stewart, 1988]: in particu-
lar any symplectic representation of a compact Lie group is a direct sum
of irreducible symplectic representations, and there exists a unique iso-
typic decomposition. Moreover, the symplectic irreducibles for compact T’
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are precisely what [Golubitsky, Stewart, and Schaeffer, 1988] call I'-simple
representations. These arise generically in symmetric Hopf bifurcation of
dissipative systems.

Suppose that a compact Lie group I' acts symplectically on P, let p € P
be a fixed point for I', and suppose that the Hamiltonian H is I'-invariant.
This symmetry may force some of the ); to be equal, creating unavoidable
resonances.

Let u(t) be a periodic orbit of the flow of H having period T'. Let S be
the circle group, identified with R/27Z, and consider the usual action of
I'xS? on the loop space C*(T) of k-times differentiable T-periodic functions,
as in equivariant Hopf bifurcation. That is, I' x S acts on u = u(t) by

(7, 0).u(t) = yu(t + T0/2r).
Define the symmetry group of u € C*(T) to be
Ty = {(7,0) €T x 8! : yu(t + T9/2m) = u()}.

Recall that when P is a vector space over R and G acts linearly, Fix(X)
is a linear subspace. Analogously, if P is a symplectic vector space over R
and G acts linearly and symplectically, then Fix(Z) is a symplectic linear
subspace.

Let X be the vector field of H, let L be the linearization of X at p.
Define the linearized flow to be the flow generated by the ODE

i+ Lzx=0

on the tangent space V = TpP to P at p. Let A be a non-zero purely
imaginary eigenvalue of L and define the resonance space V) C V to be the
(real part of the) sum of the generalized eigenspaces of L for eigenvalues
k), where k € Z. Assume the following conditions on H:

1. (d®H), is a nondegenerate quadratic form.

2. (d2H),ly, is positive definite.
Condition (1) is equivalent to L being nonsingular, and (2) implies that
L)y, is semisimple (diagonalizable over C).

Clearly L is I'-equivariant, so V) is invariant under the action of I'. It
is also invariant under the linearized flow. Because L|y, is semisimple, the

orbits of the linearized flow are all periodic with period 27/|A| and hence
define an action of S! on V). Explicitly,

0.v =exp (%L) v.

This action commutes with the action of I', so together they define a I' x sl
action on V.
We may now state:
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5.3 Theorem (Equivariant Weinstein-Moser Theorem). Suppose that the
Hamiltonian H satisfies (1) and (2). Then for every isotropy subgroup ¥ of
the I x St-action on V, and for all sufficiently small €, there exist at least
1 dim Fix(X) periodic orbits of X with periods near 2n/|A| and symmetry
group containing X, on the energy surface H(z) = H(p) + €2.

For a proof see [Montaldi, Roberts, and Stewart, 1988]. A rather dif-
ferent approach to an equivariant Liapunov Center Theorem, using the
‘constrained Liapunov-Schmidt procedure’, can be found in [Golubitsky,
Marsden, Stewart, and Dellnitz, 1995].

Because of the symplectic structure, dim Fix(X) is always even. In prac-
tice— though it is more a rule of thumb than a provable theorem — the
‘primary’ isotropy subgroups ¥ are those for which dimFix(X) is small.
The most important isotropy subgroups, and the most tractable, of all are
those for which dimFix(X) attains its minimum value, namely 2. These
are what we have called C-axial subgroups. So the Equivariant Weinstein-
Moser theorem implies that under the usual hypotheses if ¥ is C-axial then
there exists at least one family of periodic solutions with isotropy group
equal to .

The group theory involved in the I' x S!-action is identical to the action
occurring in equivariant Hopf bifurcation. This is a consequence of the
loop space technique employed in both contexts and the classification of
symplectic irreducibles. We can use this relationship to import results from
equivariant Hopf bifurcation into Hamiltonian dynamics. In particular, we
can use the existing analysis of D,, Hopf bifurcation ([Golubitsky, Stewart,
and Schaeffer, 1988], Golubitsky and Stewart, 1986]) to prove the existence
of certain periodic solutions in Hamiltonian systems with D,, symmetry,
such as the coupled pendulum system.

5.4.1 Coupled Pendula Revisited

In this subsection we apply the Equivariant Weinstein-Moser Theorem to
the Hamiltonian system (4.11). The linearization of (4.11) is

0 I
L_MO]

where I is the N x N identity matrix and M is the circulant matrix

—(1+2a) a 0 ... 0 a

a —(1+2a) a 0 ... 0

M= 0 a -(1+2a) a ... 0
a 0 0 o -—(1+2a)
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First, we derive the eigenvectors and eigenvalues of L. Let w = e2™*/V and
define

T
v = [1,w'°,w2",... ,w(N’l)k]

where 0 < &k < N —1. Let

Vk=\/2a(cos2—]1\rjk-—1>—1|

and define u,f = [vg, Zivkvk]T. An easy calculation shows that the uf are
eigenvectors of L with eigenvalues Af = +ivg. The /\f are purely imaginary
since p < 0. Generically (in o) these eigenvalues are non-resonant, and we
henceforth assume that o has been chosen to avoid resonances.

The linearized flow on RN possesses periodic solutions corresponding
to initial conditions Re(uf). The corresponding solutions take the form

2mj
g;(t) = cos (:!:th + TJ) )
2rik
pj(t) = Ly sin (:I:th + L]\‘;—) )

which are discrete rotating waves of period %:—' such that successive pendula

are phase-shifted by 2LN'°

The general solution of the linearized equation is a superposition of such
discrete rotating waves. When nonlinear terms are restored, some of these
solutions persist as periodic solutions of the nonlinear equations— for ex-
ample, the synchronous solutions (k = 0). The question is: which? The
Equivariant Weinstein-Moser Theorem of [Montaldi, Roberts, and Stew-
art, 1987], stated in §5.4, provides a partial answer to this question, as we
now describe.

First, we recall some useful results from representation theory. Assume
that D, = (g, p) where o™ = 1,p? = 1,p"top = o~1. With two excep-
tions (when n is even) the irreducible representations of Dy, over R are
£0,€1y- -+ 1€n/2), defined as follows. & is the trivial representation on R.
When 7 is even, £,/2 is the representation on R in which o acts trivially
and p acts as —1. In all other cases, & is the representation on RZ=C
in which ¢ acts as multiplication by w* = €?>™*/™ and p acts by complex
conjugation z — Z. The exceptional cases when n is even arise because
then D, /Z,, & D, which has four 1-dimensional irreducibles, which pull
back to D,,. Two of these give rise to £o,£n/2, but there are two others. All
of these representations are absolutely irreducible.

The space RN = {q} decomposes into I-irreducibles according to

N
R"=Qo®...0 Q2
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where the action of Dy on Q is isomorphic to & and the action of 7 is
by —1. Similarly R = {p} decomposes into [-irreducibles according to

RY =Py ®...® Py

where the action of Dy on Py is isomorphic to & and the action of 7 is
by —1. The symplectic [-irreducible components of R?" are Qy ® P; with
actions & @ €. Moreover, these are the symplectic isotypic components.
The action of 7 on each component is by —1. The action of S! can be
written in the form

g +ip— e?(q +ip)

Therefore 7 € S! also acts by —1, so (1,7,7) € Dy x Za x S! acts trivially.
There is a homomorphism Dy X Zs X S! — Dy x S! defined by

(6,1,8) — (5,0)
6,7,0) — (5,0+m)

and the action factors through this homomorphism. So in effect we have a
Dy x Sl-action, modulo K = ((1,7,7)). In particular, the isotropy sub-
groups are generated by isotropy subgroups of the Dy x S'-action together
with K. Physically, K represents the usual ‘internal’ symmetry of a simple
pendulum: all periodic oscillations are invariant under reflection together
with a half-period phase shift.

The problem therefore reduces to finding isotropy subgroups (more specif-
ically, C-axial subgroups) of Dy x S! acting by &. To do this we use the
results of [Golubitsky and Stewart, 1986], recorded in [Golubitsky, Stew-
art, and Schaeffer, 1988]. These apply to the standard action of Dy x St.
Here Dy acts as the direct sum of two copies of £;. The representations
with & in place of £; can be reduced to the standard case by use of the
homomorphism a : D, x 8' — D,, x S! sending ¢ — o*: we omit the
details of this reduction.

We next describe how to interpret the symmetries of the solutions given
by the standard action. Denote the state of pendulum j at time ¢ by u;(%),
and let T be the overall period of the system of pendula. Then the standard
representation leads to three conjugacy classes of C-axial subgroups, whose
interpretation is shown in Table 5.4.1.

For illustrative purposes we show the 17 distinct (conjugacy classes of)
C-axial solutions when N = 12, including the solutions arising from non-
standard actions. See Table 5.4.1. Here A, B,C, D are waveforms, A + p
indicates waveform A with a phase shift of £ of the overall period, a prime
indicates a phase shift of half a period, and an asterisk indicates that the
pendulum oscillates with twice the overall frequency of the system. Each
of A, B,C, D must also have an ‘internal’ (1, 7) symmetry.

As well as existence, we can ask about the linearized stabilities of these
solutions. Methods for computing stability, based on Birkhoff normal form,
can be found in [Montaldi, Roberts, and Stewart, 1990].
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Isotropy Waveform Relationships

N = 1 (mod4)

ZN u;j(t) = uo t+%

z5 uj(t) =u_;(t) j#0

Zg" ) uj(t) =u—_j (t+ L) uo(t) twice frequency
N = 2 (mod4)

ZN u;(t) = up (t-}-‘iI

Zg 57] Zg u,(t = u_,(t) = UN/2+j ( +N%:)

ng"”) @ Zg

=unj-; (t+3) 1<5<
uo(t) = UN/2 (t + 2)
uj(t) = u—j (t+ z) = “N/2+.1 (t+ 2)

Ny

39

=unp—;j(t) 1<j<f -1
ug(t) = uny2(t) twice frequency

N =0 (mod4)

ZN uj(t) =1up (t + %)

Z5017; u;(t) = u_;(t) = T unya+; (¢ +N%)
=unp-j(t+%) 1<j<i-1
'u.o(t) = upn/2 (t + )
unya(t) = u_ N/4(t) twice frequency

¥ o Z; uj(t) = w1-5(t) = unyoe; (E+ F)

=unp-jt+2)0<j<d -1

TABLE 1.3. Oscillatory wave patterns in D y-symmetric systems.

6 The Coupling Decomposition

Consider a cell system on N nodes, with symmetry group I' C Sy, where
node i has phase space P; = R¥. The cell system dynamics is determined
by a general I'-equivariant vector field F on P = P, x -+ x Py. However,
in interpretations of such models in applications, it is useful to consider
specific ‘terms’ in the vector field as representing internal dynamics of one
component cell, coupling between two specified cells, multi-cell couplings,
and so on. Moreover, we may wish to determine whether such terms are lin-
ear or absent entirely (the cells are not coupled); and whether the structure
of the system is Hamiltonian.

In order to give such terminology a precise basis, we develop a decompo-
sition of F into vector fields that correspond to various forms of coupling.
Refinements of this decomposition can also be introduced, but here we de-
velop only the main idea. One aim of this decomposition is to provide a
rigorous definition of ‘point-to-point’ coupling. See Definition 6.3.

As motivation, let N =3, all k; = 1, and define F by
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= | O 1 p) 3 3 5 G 7 B 9 10 11
0| A A A A A A A A A A A A
1| A A+l A42 A+3 A4+4 A4S A4+6 A+7 A+8 A+9 A+10 A+411
A B [o] D* c’ B’ A’ 8’ c’ D* c B
A B c c! B’ Al ry 8! c’! fo] B A
2 | A A+2 A+44 A48 A+8 A+10 A A+2 A+4 A+6 A48 A+ 10
A B B’ Al B’ B A B B’ Al B’ B
A B B A* B! B! A* B B A* B’ B’
3| a A+3 A+6 A+9 A A+3 A48 A490 A A+3 A+86 Ato
A B* Al B* A B* A’ B* A B* A’ B*
A* B A" B’ A B A* B’ A" B A" B!
a | a A+4  A+8 A A+4 A48 A A+a A+8 A A+4d A+8
A B B A B A B B A B
A* B B! A" B B! A* B B’ A* B B’
5| A A4+5 A+10 A+3 A+8 A+1 A+6 A+11 A44 A+9 A+2 A+7T
A B c D* c’! B’ A B! c’ 224 c B
A A’ B c c B 'y A B! c' c’ B!
6| A A’ A A’ A A’ A Al A Al A Al

TABLE 1.4. The 17 C-axial solutions for a ring of 12 pendula.

F(zy,79,23) =

2 + 377 + 42172 + 57235 + 6z17323

T3 + 42, 2% + 712273 — 2717573

9+ z1 — Ty + 3x3 + 22 + T2 + 123 + 7273 — 11z3z3T5

Given this explicit formula, we can decompose F directly into terms that
depend on 0, 1, 2, or 3 of the variables:

where

‘Do(xh T2, $3) = |0

®1(z1,T2,23) =

QZ(ml) I3, $3) =

®3(x1,x2,23) =

F=8&+® + P2+ &3

322
T3
|1 — 2 + 323 + 2% + 23
42172 + 52277
2
41:1:1:3
| T1%3 + 223
6z12323
T1Z2%3 — 2712323
—11z3z3z;3

More importantly, we can obtain the same result with a more abstractly
defined decomposition, as follows. Let N' = {1,...,N}. For each i € N
choose a base point b; € P;. In this paper we assume for simplicity that each
P; is a vector space and we let b; = 0. When the P; are manifolds technical
issues concerning uniqueness arise, which we prefer to ignore here. For each

subset S C N define

Fs(z) = F(y)
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where

_) T if 1€8
Yi 0 if i¢gS

Then define the S-coupled part of F to be

TCS

where S\ 7 is the set consisting of elements in S that are not in 7. Finally,

define
= ), &
SCN$|=k

We claim that F is the sum of the ®;, and that these components can
sensibly be interpreted as the k-node coupling terms. First, we need to recall
a standard result from combinatorics:

6.1 Lemma. Let)Y be a finite set. Then
_py = L FY=0

Proof. Let |Y| = m. If m = 0 the result is clear. Otherwise let ¢,,... ,tm,
be indeterminates. Consider the identity

A+t) - A+tm)= Y [t

XCYieX
Now substitute t; = —1 for all 4. [ |
6.2 Proposition. With the above notation:
1. F=®+---+®y
2. Suppose that T C N and |[T| =k > 0. Then a—z—;q)q- =0foralligT.
3. Each ® is I'-equivariant.
Proof. To prove the first statement, observe that

N
$o+---+ PN =Z: Z Z(—l)ls\ﬂFT

k=0 |S|=kTCS

=) (-)EVTIEy

8§ TcCS
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The coefficient of Fr is

3 (1T = Y (M

82T u

where U = N\ 7. By Lemma 6.1 this coefficient is 0 unless U = 0, that is,
unless T = N. Hence

B+ - +dy=Fy=F

as claimed.

The second statement follows immediately from the definition of 5. The
third statement follows since I' permutes the cells, F is I'-equivariant, and
®; is defined as a sum over all subsets S C A/ that contain k elements. W

6.3 Definition. The cell system F has point-to-point coupling if &, =0

for all k > 3. More generally, the coupling degree of F is the largest &k for
which ®; # 0.

There is a Hamiltonian analogue of all this: decompose the Hamiltonian
in the same way. The decomposition of the Hamiltonian induces the above
decomposition on the Hamiltonian vector field.
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