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Summary.  It is now well known that the number of parameters and symmetries of 
an equation affects the bifurcation structure of that equation. The bifurcation behavior 
of reaction-diffusion equations on certain domains with certain boundary conditions 
is nongeneric in the sense that the bifurcation of steady states in these equations is 
not what would be expected if one considered only the number of parameters in the 
equations and the type of symmetries of the equations. This point was made previously 
in work by Fujii, Mimura, and Nishiura [6] and Armbruster and Dangelmayr [1], 
who considered reaction-diffusion equations on an interval with Neumann boundary 
conditions. 

As was pointed out by Crawford et al. [5], the source of this nongenericity is 
that reaction-diffusion equations are invariant under translations and reflections of 
the domain and, depending on boundary conditions, may naturally and uniquely be 
extended to larger domains with larger symmetry groups. These extra symmetries are 
the source of the nongenericity. In this paper we consider in detail the steady-state 
bifurcations of reaction-diffusion equations defined on the hemisphere with Neumann 
boundary conditions along the equator. Such equations have a natural O(2)-symmetry 
but may be extended to the full sphere where the natural symmetry group is 0(3).  We 
also determine a large class of partial differential equations and domains where this 
kind of extension is possible for both Neumann and Dirichlet boundary conditions. 
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1. Introduction 

Considerable progress has been made in the bifurcation theory of nonlinear dynamical 
systems by starting from typical, or "generic", phenomena and investigating the effect 
of various degeneracies, such as multiple eigenvalues, which lead to more complicated 
phenomena. Symmetry, which is common in many applications, is one constraint that 
can create degeneracies, but it has become clear (see, for example, Golubitsky et 
al. [8]) that symmetry is best thought of as providing a new context in which to 
work. Thus, the "generic" phenomena in symmetric bifurcation theory are the typical 
phenomena with the appropriate symmetry. 

It is not therefore sensible to appeal to genericity as an explanation of observed 
bifurcations unless one knows which context is appropriate. In order to apply the 
general methods of bifurcation theory, it is necessary to define precisely the context 
in which observed bifurcations are expected bifurcations. For example, the typical 
bifurcation of steady states is the saddle-node or limit-point bifurcation pictured in 
Figure l(a). However, should the differential equation have a reflectional symmetry 
p, then steady-state bifurcations from a p-invariant steady state can be a pitchfork 
bifurcation, as pictured in Figure l(b). Indeed, the pitchfork is expected when p acts 
nontrivially on the kernel of the linearized equation, while the limit-point bifurcation 
is expected otherwise. 

General theory has shown that the types of bifurcations that are to be expected 
in systems of differential equations depend crucially on the number of parameters in 
the equations (that is, on the codimension of the bifurcation) and on the symmetries 
present in the system. 

Here we are concerned with bifurcation of solutions of a partial differential equa- 
tion (PDE), such as a reaction-diffusion equation, on a hemispherical domain. The 
natural symmetry of such a problem is circular: rotations and reflections of the do- 
main. However, we will show that the expected bifurcations are governed not by 
circular symmetry but by spherical symmetry--subject to a final restriction back to 
the hemispherical domain. Thus, the problem is subject to more constraints than are 
at first apparent, and which can be understood as "additional" symmetries related to 
an extension of the domain. 

Fig. 1. Bifurcation diagrams for limit-point (a) and pitchfork (b) bifurcations 
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The realization that such a phenomenon can occur goes back to Fujii et al. [6] 
and Armbruster and Dangelmayr [1]. They pointed out that (higher-codimension) bi- 
furcations of steady states of differential equations as common as reaction-diffusion 
equations on an interval behave in a manner that cannot be explained by their codimen- 
sion and their (obvious) symmetries. To be precise, they considered the steady-state 
reaction-diffusion equation 

~ ( u )  =-- u" + F(u ,  A) = 0 (1.1) 

on an interval N = [0, 7r] with Neumann boundary conditions 

u ' ( 0 )  = u' (~-)  -- 0 .  

The only obvious symmetry is reflection about 7r/2, but the bifurcation behavior is 
not the generic behavior subject to this symmetry. 

Crawford et al. [51 further amplified the surprises concerning the bifurcations in 
this equation by pointing out that even the simplest bifurcations are pitchforks, rather 
than the expected limit-point bifurcations. We expand briefly on this surprise. 

The interval [0, 7r] has one nontrivial symmetry, namely, 

x --~ 7 r - x ,  (1.2) 

and both the equations and boundary conditions are invariant with respect to this 
symmetry. Eigenfunctions in the kernel of (1.1) come in two types: even and odd. 

The even eigenfunctions are invariant with respect to (1.2), while the odd ones are 
transformed to their negative by this symmetry. General theory tells us that when the 
eigenfunctions are odd, one expects a pitchfork, but that when the eigenfunctions are 
even, one expects a limit-point bifurcation. However, standard calculations show that 
in both cases the bifurcation is actually of pitchfork type. 

The question is, why? The answer is based on a kind of "hidden symmetry" 
that is present in this equation. On account of the translational invariance of (1.1), 
solutions to the Neumann boundary value problem can be extended to the interval 
M = [-7r,  7r], and the extended solutions now satisfy periodic boundary conditions 
(this point follows from Theorem 3.25, p.266, in [15]). However, reaction-diffusion 
equations on M that satisfy periodic boundary conditions have as symmetries the 
larger group 0(2) generated by translations modulo 2~" as well as the reflection (1.2). 

Summarizing, we see that the original Neumann boundary value problem on the 
smaller domain N with the single nontrivial symmetry (1.2) can be reformulated in 
terms of solutions on the larger domain M for an equation possessing O(2)-invariance. 
The (distinctly nontrivial) effects of this additional symmetry on the bifurcation behav- 
ior of the Neumann boundary value problem was the point of the study by Armbruster 
and Dangelmayr [1]. 

Perhaps surprisingly, these seemingly abstract remarks have direct application to 
equations that are more complicated but have similar structure--such as those equa- 
tions found in the numerical experiments of Cliffe and Mullin on the Couette-Taylor 
experiment and in the existence of modes in both the Faraday experiment and Rayleigh- 
Brnard convection (see [5]). 
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As noted in [5] (see also Gomes [9] and Gomes et al. [10]), the remarks concerning 
the bifurcation behavior of this simple PDE generalize in several ways: 

�9 One can consider boundary conditions other than Neumann (in particular, Dirichlet 
boundary conditions). 

�9 One can consider systems of equations (in particular, systems of equations with a 
mixture of Neumann and Dirichlet boundary conditions on different components). 

�9 One can consider more complicated domains in higher dimensions. 

In this article we focus on the third of these generalizations. First, we consider the 
bifurcation behavior of differential equations on the hemisphere that can be extended 
to the full sphere. On the hemisphere these equations have O(2)-symmetry, while on 
the sphere they have O(3)-symmetry. Second, we present a large class of pairs of 
manifolds N C M where extra symmetries obtained from extensions to the larger 
manifold will change the expected bifurcation behavior on the smaller submanifold. 
The remainder of this introduction is devoted to the discussion of hemispheres. The 
abstract formulation of the extension problem is presented in Section 5. 

Hemispheres 

There is some interest in studying bifurcation problems on a hemispherical domain; 
in particular, there are applications to elastic buckling of hemispherical shells (see 
Bauer, Riess, and Keller [2]). The only obvious symmetry of  a bifurcation problem 
defined on a hemisphere is the group 0(2) of rotations and reflections that preserve the 
boundary. However, for a wide class of boundary value problems on the hemisphere, 
the expected behavior is not what one would predict from the theory of generic 0(2)- 
symmetric bifurcation. This is a subclass of those bifurcation problems that are defined 
on a hemisphere but whose equations extend naturally to the full sphere. The problems 
considered in [2] are examples. We explain here how the existence of an extension can 
change the expected bifurcation structure of solutions on the hemisphere. These results 
are, in fact, much more dramatic than those that we described for reaction-diffusion 
equations on the line. However, for pedagogical purposes, we shall think of the PDE 
as a steady-state reaction-diffusion equation, although the same considerations will 
apply to a larger class of equations (see Section 5 for details). 

We denote the coordinates on R 3 by (x l, x2, x3) and let S denote the unit sphere in 
E3. Let H = {x E S I x3 -> 0} denote the upper hemisphere of S, and let A denote 
the Laplacian on S. Let f : R 2 ~ R be a smooth map. Consider the reaction-diffusion 
equation defined on H by 

Au +f(u, A) = 0, (1.3) 

where u : H ~ •. Assume that (1.3) satisfies Neumann boundary conditions on 
0H = {(Xl, x2, x3) E H I x3 = 0}, that is, 

oqu 
- - ( X 1 ,  X2, 0) = 0 on 8 H .  (1.4) 
3x3 
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Solutions of (1.3) on H that satisfy the boundary conditions (1.4) can be extended 
to solutions of (1.3) on S by defining u on the lower hemisphere by reflection. More 
precisely, let r : S ~ S be the reflection across c~H defined by 

"r(Xl, x2, x3) = (x1, x2, --x3). (1.5) 

In symbols we can now define u on the lower hemisphere by 

u(r(x) )  =- u (x )  Vx  E H.  (1.6) 

We shall say that a function u on S is z-invariant if 

u('c(x)) = u(x)  Vx  E S.  (1.7) 

Note that the extension u that we have defined on S is r-invariant. (In Theorem 5.18, 
we establish the regularity of the extended solution along a l l . )  

Conversely, suppose that u is a r-invariant solution to the reaction-diffusion equa- 
tion (1.3) on S. Then u I H is a solution to the Neumann boundary value problem 
(1.4) on H.  This point is most important. We can now find solutions to the Neumann 
problem on the hemisphere by first finding solutions to the extended problem on S 
that are r-invariant. Indeed, this will be our approach. 

Next, we observe that (1.3) defined on the hemisphere H and satisfying bound- 
ary conditions (1.4) has symmetry group O(2), whereas (1.3) defined on the entire 
sphere S has symmetry group 0(3).  The consequences of this extra symmetry for the 
bifurcation problem on the hemisphere are quite extensive, as we now explain. 

Assume that 

f (0 ,  h ) ~ 0 ;  (1.8) 

that is, equation (1.3) has the trivial group-invariant steady state u = 0. Let V be 
the kernel of the linearization of (1.3). Theory states that the group of symmetries of 
the equation leaves the space V invariant, and that, moreover, generically the action 
of that symmetry group on V is irreducible. (See Proposition XIII, 3.2 in [8].) 

We can now see one of the effects that the existence of this extra symmetry has 
on the expected bifurcations. Let Vs be the kernel of the linearization of (1.3) on the 
full sphere. Then V consists of those eigenfunctions in Vs that are 7-invariant. Now, 
the irreducible representations of 0(2)  are either one- or two-dimensional. Hence, a 
direct application of the general theory would imply that generically we should expect 
dim(V) to be one or two. However, the extension property of (1.3) implies that this 
equation has more structure than was taken into account by the general theory naively 
applied. Indeed, applying the genericity theory to the reaction-diffusion equation on 
the full sphere (where it seems to be applicable), one should expect the action of 
0(3) on Vs to be irreducible. Now there are irreducible representations of 0(3) in 
each odd dimension, namely, the action of 0(3)  on the spherical harmonics of order 
2. It can be checked that the vectors in Vs that are r-invariant form a subspace of 

1 dim (Vs). Thus, the kemel of the linearized equations may dimension approximately 
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be of much higher dimension than would have been expected if one considered the 
bifurcation problem only on the hemisphere. 

Indeed, even though this change of expected dimension of the kernel V is dramatic, 
it is fair to ask whether solutions to the hemisphere problem may now be expected 
that would not have been expected were the extension property not valid. We shall 
show in Sections 2-4 that the answer to this question is yes. We preview our results 
in the remainder of this subsection. As should be expected, the explicit results depend 
on the exact value of e that appears in the solution of the linearized problem on the 
sphere. 

In Section 2 we will recall some general properties of O(3)-symmetric bifurcation 
problems. In particular, we will define the subgroups of 0(3) that are known to support 
branches of steady-state solutions. This section reviews the work of [t2] and [4]. In 
Section 3 we will show how 0(3) symmetry affects the bifurcation to axisymmetric 
solutions on the hemisphere, and in Section 4 we will consider solutions with finite 
isotropy. 

As noted previously, a solution to the O(3)-symmetric equation (1.3) on S restricts 
to the hemisphere if and only if it is invariant under the reflection ~-. Using our 
results from Section 2, we will be able to determine which group orbits of equilibria 
in generic O(3)-equivariant bifurcations have representative solutions with isotropy 
containing ~-. We will find that the isotropy groups associated to certain group orbits 
of equilibria never contain ~-, and so elements of these group orbits can never restrict 
to give solutions of the Neumann boundary value problem on H.  On the other hand, 
some group orbits of equilibria contain multiple equilibria with symmetry ~-. Each of 
these equilibria then restrict to solutions of the Neumann boundary value problem on 
the hemisphere lying on different O(2)-orbits. The realization of this point is one of 
the surprising features resulting from our analysis. 

General O(3)-equivariant bifurcation theory, as described in Section 2, shows that 
generically axisymmetric solutions of order e are to be expected. In Figure 2(a), we 
picture the sphere deformed by an axisymmetric spherical harmonic of order f = 6. 
More specifically, since a spherical harmonic is a real-valued function on the sphere, 
we can picture it by deforming the sphere in the radial direction by an amount equal to 
the value of that spherical harmonic. The precise value of/~ depends on the function 
f in (1.3). Assuming then that ~? = 6, the deformation pictured in Figure 2(a) is, up 
to first order, an accurate picture of the corresponding axisymmetric solution to (1.3). 

In Theorem 3.1, we will prove that this axisymmetric solution can be sliced in two 
different ways to obtain solutions to the original equation posed on the hemisphere. 
Observe that the picture in Figure 2(b) has circular symmetry, while the picture in 
Figure 2(c) has only a reflectional symmetry. 

Similarly, when e = 5, general theory predicts the existence of a solution having 
fivefold symmetry, as shown in Figure 3(a). In Theorem 4.3(a), we show that this 
solution may also be sliced in two distinct ways to obtain solutions to (1.3) on H.  The 
first slice also has fivefold symmetry and is visualized by slicing off the obscured half 
of the deformed sphere in Figure 3(a). The other slice, which has only a reflectional 
symmetry, is shown in Figure 3(b). 

The complete list of restricted solutions will be presented in Theorems 3.1 and 4.3. 
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Fig. 2. (a) Axisymmetric deformation of 
sphere with spherical harmonics of order e = 
6. (b) Restriction to hemisphere with circular 
symmetry and (c) reflectional symmetry. 
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Fig. 3. Deformation of sphere with sector symmetry D~0. Restriction to hemisphere (a) with 
five-fold symmetry and (b) with no symmetry. 

2. Bifurcation from O(3)-Invariant Solutions 

We begin by recalling several facts concerning steady-state bifurcation in the presence 
of 0(3) symmetry. Typically, we expect the kernel of the linearization about an 0(3)- 
invariant equilibrium to be an irreducible representation of 0(3) (see Proposition XIII, 
3.2, in [8]). Moreover, because the natural domains of PDEs are function spaces, we 
expect these irreducible representations to be isomorphic to l,~, the spherical harmonics 
of order 2. There are two irreducible representations of 0(3) in each odd dimension 
depending on whether - I  ~ 0(3) acts trivially or acts as minus the identity on r~. 
There is, however, a natural action on r~, since r~ consists of polynomial mappings 
p : ~3 ~ ~ that are homogeneous of degree 2. For such polynomials, the action of 
- I  is 

p ( - x )  = ( -1)ep(x) .  (2.1) 

Thus, we assume that - I  acts trivially when e is even and acts as minus the identity 
when e is odd. (The other "nonstandard" representations could, of course, be dealt 
with in a similar manner.) 

We use the notation and results of [12] and [8]. The closed subgroups of SO(3) 
a r e  Z m (cyclic group of order m), Dm (dihedral group of order 2m), T (tetrahe- 
dral group), O (octahedral group), I (the icosahedral group), SO(2), and 0(2). Sub- 
groups of 0(3) = SO(3) (~ Z~ are of three types. Type I and type I1 subgroups are 
respectively of the form X and X @ Z~, where X is a subgroup of SO(3). Type III 
subgroups X of 0(3) neither contain nor are contained in SO(3). 

Type II1 subgroups of 0(3) may be characterized by a pair H D K of subgroups 
of SO(3) with K having index two in H. Indeed, we may take K = X f? SO(3) and 
let H be the projection of X into SO(3). In this paper we shall be concerned with 
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four type III subgroups, O(2)- ,  O - ,  D~m and DZ, n, which are defined by the pairs 
0(2) D SO(2), O D T, D2m D Dm and I)m D Zm. It is worth noting that this abstract 
definition of type III subgroups of 0(3) can be given a more concrete realization. In 
particular, the subgroup E corresponding to H D K is just 

K • {/}tO ( H \ K )  • { - I }  (2.2) 

inside 0(3) = SO(3) �9 Z~. 

Remark 2.1. The group of symmetries of the hemisphere is the subgroup of 0(3) that 
leaves H invariant. This subgroup is just 0 ( 2 ) - .  

Chossat, Lauterbach, and Melbourne [4] give a list of those conjugacy classes of 
isotropy subgroups that are known generically to support solutions for O(3)-equivariant 
bifurcation problems. That is, for generic bifurcations, solutions with these isotropy 
groups must exist. Their result is reproduced in Table 1. With the exception of the 

= 5 results for D}, D~, and D~, the isotropy groups displayed in Table 1 are maximal 
and have odd-dimensional fixed-point space (this follows from the computations of 
[12] and [8].) Hence, by degree theory, it follows that there always exist branches 
of solutions with the given isotropy type. This general theory implies that in 0(3)- 
equivariant bifurcation problems there are branches of solutions corresponding to each 
of the subgroups listed in Table 1 and indeed to every subgroup conjugate to one on 
this list. In this paper we consider which of these subgroups supports solutions of the 
hemisphere problem. We classify such solutions up to O(2)- ,  the symmetry group of 
the hemisphere. 

Let r denote the reflection defining the hemisphere (see equation (1.5)). Suppose 
that u is a solution to an O(3)-equivariant bifurcation problem with isotropy ~. It 
follows from Theorem 5.18 that u restricts to a solution to the Neumann problem on 
the hemisphere if and only if r E 2. 

Since the groups O and I contain no orientation-reversing elements we have the 
following lemma. 

Table 1. Isotropy subgroups generically supporting solutions 

even: 
0(2) • Z~ 
OGZ~ 
i03z~ 

odd: 
0(2)- 
O- 
O 
I 

/)4 
D4, D2 D}, z z 

all even/? 
/? = 0,4,6,8, 10, 14 mod 24, /?-> 4 
/? = 0, 6, 10, 12, 16, 18, 20, 22, 24, 26, 28, 32, 34, 38, 44 mod 60, 
/?->6 

all odd/? 
/? = 3, 7, 9, 11, 13, 17 mod 24 
/? = 9, 13, 15, 17, 19, 23 mod 24 
/? = 15, 21, 25, 27, 31, 33, 35, 37, 39, 41, 43, 47, 49, 53, 59 mod 60 
3_<m_</? 
/? = 1,5, 15, 19,21,23 rood 24, /? --> 5 
/ ? = 5  
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Lemma  2.2. The solutions to O(3)-equivariant bifurcation problems with isotropy 
conjugate to 0 or I cannot restrict to solutions of  the Neumann problem on the 
hemisphere. 

Following the terminology of Section 5, we say that an involution o- E 0(3)  is a 
reflection if the fixed point set of o- is two-dimensional. The following elementary 
lemmas will be useful in determining which solutions to the O(3)-equivariant bifur- 
cation problem restrict to solutions of the hemisphere problem. 

Lemma  2.3. An involution o" E 0(3) is a reflection if and only if  o" is conjugate to 
"r. That is, if and only if there exists y ~ 0(3) such that 

- 1  = y'ry 

Proof. Observe that o- # I is an involution if and only if ~r has eigenvalues --- 1 and 
that o- is a reflection if and only if o- has precisely one eigenvalue equal to - 1. Hence, 
if o- is a reflection, o- is conjugate to ~-. [] 

Lemma 2.4. Suppose that o" ~ 0(3) is an involution which is not a reflection and 
not equal to - I .  Then -o-  is a reflection. 

Proof. The result is trivial. [] 

In the next section we will discuss solutions to the hemisphere problem having 
axisymmetric (0(2) or 0 ( 2 ) - )  symmetry. In Section 4 we discuss sector (D2am or 
DZ), octahedral (O-  or O �9 Z~), and icosahedral (I �9 Z~) solutions. 

3. Axisymmetric Solutions 

Axisymmetric solutions are those that have an axis of rotation. That is, they have at 
least SO(2) symmetry. There are two types of isotropy subgroup that contain SO(2): 
0(2) �9 Z~ (when f is even) and O(2)-  (when f is odd). 

Theorem 3.1. Each orbit of axisymmetric solutions to the sphere problem restricts 
to solutions of the hemisphere problem as follows: 

(a) When e is even, an isolated axisymmetric solution with the x3-axis as axis of 
symmetry. 

(b) For all e, a unique circle of solutions with isotropy Z~ (inside O(2)-) .  

Proof. We must determine those subgroups of 0(3) conjugate to either 0(2) • Z~ 
(when e is even) or 0 (2 ) -  (when e is odd) that also contain ~'. 

Recall that SO(2) contains all rotations of the plane orthogonal to the axis of 
symmetry and that these rotations fix the axis of symmetry. Let ~r be any reflection 
with fixed point set containing the axis of symmetry of SO(2). The subgroup 0(2) is 
generated by SO(2) and -o- .  The subgroup 0(2) is generated by SO(2) and ~r. 
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Let E be an isotropy subgroup containing SO(2), and assume that ~- E E. Since ~- 
reverses orientation, r q~ SO(2), but r is in the normalizer of SO(2). Thus ~- maps 
the axis of rotation of SO(2) into itself. It follows that this axis is either 

(a) the x3-axis or 
(b) perpendicular to the x3-axis. 

In case (a), ~- ~ 0 ( 2 ) - ,  and so these solutions do not occur when ~? is odd. If  ~ is 
even, ~- E 0(2) �9 Z~ when -~- E 0(2).  Observe that -~- is just the rotation through 
�9 " in the XlX2-plane, so -~- E SO(2). Consequently, we obtain a solution for the 
hemisphere problem when g is even. 

In case (b), 7 is always in ~ since r is just a reflection in the plane of rotation 
associated with ~ that leaves the axis of rotation fixed. (That is, ~- is in the appropriate 
conjugate of O(2)- . )  Hence, in this case we always obtain solutions. 

We remark that in case (a), ~ n 0 ( 2 ) -  = 0 ( 2 ) - .  In case (b), ~ n 0 ( 2 ) -  is 
the two-element group generated by ~- �9 ~', where 7r is the half-period rotation in the 
appropriate conjugate of SO(2). [] 

4. Solutions with Finite Isotropy 

When the isotropy subgroup inside 0(3) is finite, we adopt a different approach to 
finding those solutions which restrict to the hemisphere. 

Before stating our first result, we recall that a group G is the disjoint union of 
s u b g r o u p s  Gi, i E I,  if G = Ui~iGi and for all i, j E I,  i ~ j ,  Gi n Gj is the 

identity element of G. We write G = (-JiGi. 

L e m m a  4.1. The finite subgroups of 0(3) all have disjoint union decompositions. 
Specifically, we have 

O = 0 3 2 4 0 4 2 3 0 6 2 2 ,  

I = 06250102301522, 

O -  = 0 3 Z 4 0 4 Z 3 0 6 Z 2  , 

Dd m .m .m = U Z2, z2~u z~ 
�9 m 

O~ = Zm U 2 2  

Proof. Proofs of these decompositions may be found in Ihrig and Golubitsky [12] or 
[8, pp.105, 123]. [] 

As an immediate consequence of Lemma 4.1 and Lemma 2.3, we have the fol- 
lowing lemma. 
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Lemma 4.2. With the notation of  Lemma 4.1, 

�9 The reflections in O -  are the order two elements o f  Z 2 and Z 4 . 

�9 The reflections in D~m are the order two elements o f  Z 2 and, in case m is odd, the 
order two element o f  Z~m. 

�9 The reflections in D z are the order two elements o f  Z 2 . 

Theorem 4.3. Suppose that we have an O(3)-orbit o f  solutions to the sphere problem 
with finite isotropy conjugate to Y~. On restriction, we obtain the following 0 ( 2 ) - -  
orbits o f  solutions to the hemisphere problem: 

= D2dm (Sector solutions) 
(a) When m is odd, there is a unique circle o f  solutions with isotropy DZm (inside 

0(2) - ) .  

(b) There are m circles o f  solutions with isotropy Z 2 . 

E = DZm (Sector solutions) 
(c) There are m circles o f  solutions with isotropy Z~.  

E = O-  (Octahedrai solutions) 
(d) There are 6 circles o f  solutions with isotropy Z~.  

E = O �9 Z~ (Octahedral solutions) 
(e) There are 3 circles o f  solutions with isotropy D 4 . 

(f) There are 6 circles o f  solutions with isotropy D~.  

E = I �9 Z~ (Icosahedral solutions) 
(g) There are 15 circles o f  solutions with isotropy Z~.  

Proof. We start by considering sector solutions with E = D2dm �9 It follows from 
Lemma 4.2 that E has m distinct reflections in Z 2 yielding the solutions (b). If  m 
is odd, there is one reflection in Z2m yielding the orbit of solutions described in (a). 
The existence of solutions described in (c) and (d) follows similarly. 

The remaining cases have the form E = A �9 Z~. For these subgroups, reflections 
conjugate to ~- are found by composing the nontrivial involutions in A with - I  (Lemma 
2.4). For example, in O there are three nontrivial involutions in Z4 and six in Z2. 
Consequently, we derive the solutions described in (e) and (f). Similarly, one can 
read off the solutions stemming from icosahedral symmetry from the disjoint union 
decomposition in Lemma 4.1. [] 

5. The General Extension Problem 

(a) The Abstract Formulation 

The hemisphere is only one of a wide class of domains for which similar conclusions 
can be drawn. To describe this class we reformulate the observations concerning (1.1) 
in a more abstract setting and prove the appropriate extension theorems in some detail, 
since the existing literature tends to slide over this point. 
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Let M denote the circle defined by identifying the end points of  [ - z  r, 7r]. The 
symmetry group of  M is 0(2) .  The operator ~ in (1.1) induces a reaction-diffusion 
equation on M,  which we continue to denote by ~ .  Clearly, ~ is O(2)-invariant. Let 
z denote the reflection of  the circle M with fixed points {0, 7r}. The interval [0, 7r] 
determines a submanifold N of M with ON = {0, 7r}. Suppose that u is a solution 
to the Neumann boundary value problem on N. We may extend u to M by defining 
u I z ( N )  = u �9 z.  The resulting function u on M is then a z-invariant solution of  ~' 
on M. Conversely, if u is a z-invariant solution to ~' on M,  then u I N is a solution 
to the Neumann boundary value problem on N. 

In this formulation M is a compact manifold without boundary. Similarly, the 
extension of  H to S is from a manifold with boundary to a manifold without boundary. 
Finally, we note that in these examples the group of  symmetries on M is just the 
group of isometries of M and the group of  symmetries on N is just the subgroup of  
the symmetries on M that maps N into itself. 

We now identify the pairs of  manifolds N C M and the kinds of  differential 
operators ~ that admit the kind of  extension that we have discussed previously for 
the specific examples. This generalization is based on using the group of  isometries 
on M as the basic group of  symmetries. 

From now on we shall assume, unless indicated to the contrary, that maps and 
functions are smooth (that is, CO~ We let M be a smooth, compact, connected, Rie- 
mannian n-dimensional manifold without boundary. We denote the group of  isometries 
of M by ISO(M), and recall from Chapter VI, Theorems 3.3, 3.4 of  [13] the result 
that ISO(M) is a compact Lie group of  dimension --< n(n  + 1)/2. 

Defin i t ion  o f  N 

Denote the identity map of  M by IM. Suppose that f : M --~ M,  and let Fix(f)  = 
{x E M I f ( x )  = x} denote the fixed-point set o f f .  

Definition 5.1. A map or : M -~ M is an involution if o" # IM and 0 -2 ---- IM. 

Recall from Bredon [3, Chapter 6] that the fixed-point set of an involution 0- of  M is 
a smooth compact submanifold of  M without boundary. In general, Fix(o-) may have 
connected components of differing dimensions. If  all the components of  Fix(o-) have 
the same dimension p ,  we shall say that Fix(o-) is a p-dimensional submanifold of  M. 

Definition 5.2. A map z : M --> M is a reflection if 

1. z is an involution. 
2. Fix(z) is an (n - 1)-dimensional submanifold of  M. 

3. M \ Fix(z) has two connected components. 

We note that even if M is an orientable manifold, conditions (1) and (2) of  Definition 
5.2 do not imply condition (3). However, if z is any involution of  M, then M\F ix (z )  
has at most two connected components. 
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Definition 5.3. Let 1 -< p --< n + 1 and suppose that ~'1 . . . . .  ,Cp are reflections of  M. 
We say that {~q . . . . .  ~-p} form an admissible set of  reflections of M if 

1. rirj = "rj'ri, l <- i , j  <- p.  

2. r i # ' r j ,  i # j .  

Let ~ = {~'1 . . . . .  ~-p} be an admissible set of reflections of  M.  Clearly, 3~ generates 
a finite group K of  transformations of M isomorphic to Z p. Averaging any Riemannian 
metric on M over K, we may and shall assume that M is a Riemannian manifold and 
that K is a group of  isometrics of M.  

We are interested in the geometric structure of the action of  K on M. We describe 
the salient features of  this structure in the following lemma. First, however, we need 
some notational conventions. 

Suppose that G is any (Lie) group of transformations of M. Let x E M. Denote 
the G-orbit through x by G �9 x and the isotropy subgroup of  G at x by Gx. Thus, 
G . x  = {gx  Ig  E G } , a n d G x  = { g ~ G l g x  = x}. 

L e m m a  5.4. Let MK = {x E M t Kx = {IM}}. Then 

1. Mx  is an open and dense submanifold o f  M.  

2. MK has 2 p connected components. 

3. K acts transitively on the set o f  connected components Of MK. 

The proof of  this lemma will be given below. First, we examine some of  its 
consequences. 

Choose a connected component N of  MK. Let ON denote the boundary of N.  If  K 
is generated by a single reflection (p = 1), then ON will be a smooth submanifold of 
M of dimension n - 1. If p -> 2, ON may have corners. In the sequel, we sometimes 
refer to N as a fundamental domain for the action of  K on M. 

We shall show below that every isometry on N (for the Riemannian structure 
induced from M) extends uniquely to an isometry on M. Thus, we can think of  the 
group of  isometrics on N as a subgroup of ISO(M). See Lemma 5.13. 

Several examples of  N C S are as follows. Let S denote the unit sphere in N3. 
Let ~'1, ~'2 and ~'3 denote the reflections on S determined by reflection in the (x, y)-, 
(x, z)- and (y, z)-planes respectively. The group generated by ~'1 is isomorphic to Z2 
and has fundamental domain the upper hemisphere. The group generated by ~'1 and 
~'2 is isomorphic to Z22 and has fundamental domain {(x, y, z) E S I z, y >- 0}. The 
group generated by ~'1, ~'2 and ~'3 is isomorphic to Z32 and has an octant of  the sphere 
as fundamental domain. We may similarly generate many examples from the compact 
orientable surfaces of  genus greater than or equal to 1. Finally, we remark that our 
methods also work for the fundamental domains of  irreducible finite reflection groups 
restricted to the unit sphere of  the underlying representation space. 

The operators 

Abstractly, we may think of  a differential operator ~ on M as a mapping on the 
smooth functions on M. That is, let C~(M) denote the space of smooth real-valued 
functions on M. Then 3'  : C~(M) ~ C~(M).  
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In our extension theory we consider only those operators that respect the symmetries 
on M and N. We define these operators as follows. There is a natural action of ISO(M) 
on C~(M) defined by u ~ g(u) where for u E C~(M) and g ~ ISO(M), 

g(u)(x)  = u ( g - l x ) .  (5.1) 

The operator ~' is ISO(M)-invariant if for all u ~ C~(M) and g ~ G we have 

@(g(u)) = g(~'(u)). (5.2) 

The best-known example of an ISO(M)-invariant is the Laplace operator associated 
to the Riemannian structure on M, denoted by A. It follows easily that the semi-linear 
elliptic operator ~ defined by 

~(u)  = Au + f (u ) ,  (5.3) 

where f : N ~ N is smooth, is also ISO(M)-invariant. Of course, this operator is 
the steady-state reaction-diffusion operator that we have discussed previously. 

This example can be generalized as follows. Recall that Au = div grad(u), where 
grad(u) is the gradient vector field of u. More generally, we say that a second order 
differential operator on M is in divergence form if we can write 

~(u) = divA + B, (5.4) 

where A is a vector field on M depending smoothly on x E M,  u, and du (the 
differential of u) and B is a scalar function depending smoothly on x,  u, and du. 

Definition 5.5. A differential operator ~ is said to be a second order quasilinear 
elliptic operator in divergence form if ~ is an elliptic operator in the form (5.4). 

Definition 5.6. Suppose that u is a solution of ~ on N. 

1. We say that u satisfies Neumann boundary conditions (NBC) on N if for every 
~- E ~t and all x E ON n Fix(T), we have 

0u ~(x) = 0, 

where n is the normal direction to Fix(T) at x. 

2. We say that u satisfies Dirichlet boundary conditions (DBC) on N if u =-- 0 on 
aN. 

We prove (see Theorem 5.18) that if the operator ~ is a second order quasilinear 
elliptic operator in divergence form that is also K-invariant, then the following hold. 

1. Every smooth K invariant solution u of ~ on M restricts to a smooth solution of 
the Neumann problem for ~ on N. 

2. Suppose that u is a generalized solution to the Neumann problem for ~ on N 
(satisfying some minimal smoothness properties). Then u extends uniquely to a 
smooth K-invariant solution of @ on M. 
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The situation for Dirichlet boundary conditions is slightly more complicated since 
this extension property depends on the operator having extra symmetries. We now 
describe the necessary modifications. 

Definition 5.7. Given ~- E K,  we define sign(~-) to be - 1  if ~- is the product of an 
odd number of  reflections and + 1 if ~- is either the identity or the product of  an even 
number of reflections. 

If  we identify { -  1, + 1} with Z2, it is clear that sign: K ~ Z 2 is a group homomor- 
phism. 

We define a new action of  K on Ca(M). by 

z(u)(x) = sign(~-)u(~- Ix). (5.5) 

To avoid confusion with the original action of K on C ~(M), we shall write/~ to denote 
K when using the new action of  K on M. Thus, the operator ~ will be K-invariant 
if, for all u E Ca(M) and ~- E K,  we have 

~(g(u))  = sign(g)g(~(u)). (5.6) 

We note that ~ ,  the reaction-diffusion operator (5.3), is/~-invariant if and only if 
f is an odd function of u. 

We also prove (see Theorem 5.19) that if the operator ~/' is a second-order quasi- 
linear elliptic operator in divergence form that is also/~-invariant, then the following 
hold. 

1. Every smooth K-invariant solution of ~ on M restricts to a smooth solution of the 
Dirichlet problem on N. 

2. Suppose that u is a generalized solution to the Dirichlet problem on N (satisfying 
some minimal smoothness properties). Then u extends uniquely to a smooth K- 
invariant solution of ~ on M. 

It is worth noting that, in contrast to the extension from the hemisphere to the 
sphere defined for Neumann boundary conditions by (1.6), the extension for Dirichlet 
boundary conditions is defined by 

u(7"x) = - u ( x )  V x E H. 

Even now, we have not formulated the ideas in their most general setting. For 
example, they apply to fourth order PDEs such as the von K~irm~in plate-buckling 
equations provided appropriate analogues of Neumann and Dirichlet boundary condi- 
tions are employed, and they also apply to equations in several variables with mixed 
Neumann and Dirichlet boundary conditions. However, we do not consider it worth 
elaborating a general theory beyond this point. 

(b) The Proof of  Lemma 5.4 

Some of  the results we describe are surely well known but, as we were unable to 
locate a suitable reference, it seemed worthwhile to provide details of the sometimes 
delicate proofs. 
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We continue with the notation and assumptions of  Section 5(a). In particular, ~ = 
{zl . . . . .  Zp} will be an admissible set of  reflections of M generating the group K m Z p 
of  isometries of  M. 

Lemma 5.8. Let z,/X @ K.  Then 

/X : Fix(r) --> Fix(r). 

Proof. Suppose that x E Fix(r). Since /Xr = r/x, we have /x(x) = /x(r(x)) = 
r ( / x (  x ) ). [] 

We recall that M,; = {x ~ M I Kx = {Im}}. 

Lemma 5.9. MK is an open and dense subset of  M and M K / K  is connected. 

Proof. We refer the reader to Chapter IV, Theorem 3.1, Bredon [3]. []  

Lemma 5.10. The number of connected components of MK is less than or equal to 
2 p . 

Proof. Let M* = M / K  denote the orbit space and ~r : M -+  M* the associated 
orbit map. We give M* the quotient topology and note that since K is compact, 7r 
is a proper map ([3, Chapter I, Theorem 3.3].) Let N be any connected component 
of M~;. Since 7r is proper, it follows easily from Lemma 5.9 that ~r(N) = M x / K .  
Let x* ~ M K / K .  Since 7r-m(x *) is a K-orbit of  points with trivial isotropy, we see 
that ~r-l(x *) contains 2 p distinct points. However, x* lies in the 7r-image of  every 
connected component of  M~ and so MK has at most 2 p connected components. [] 

Lemma 5.11. 

(a) K acts transitively on the set of  connected components of MK. In particular, MK 
has precisely 2 p connected components. 

(b) Given 1 <- i i < "'" < is <- p, 

Fix(~, . . .%) = A Fix(%). 
j = l  

(c) I f  N is a connected component of MK, then 

P 

ON = U ~ N Fix(ri). 
i = 1  

Proof. Let S ~ be a non-empty subset of  ~ .  Let r = r ( ~ )  be the number of  elements 
of  b ~ Let K(S e) denote the group generated by 5 ~ Note that K(S ~ --- Z~. We shall 
prove by induction on r = r(5 ~) that statements (a,b,c) hold for K(Sf), 1 <-- r <-- p.  

First, we remark that the case r = 1 is trivial. Suppose that we have proved the 
result for r < n -< p.  Let ~s C ~ ,  and suppose that p(S o) = n. Let 

5~ = {~ i  . . . . .  ~,~ 
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where 1 -< il < "'" < in  <--- p.  Let 9 ~ be the subset of  ff defined by removing one 
element of  S ~ say % .  Let K '  denote the group generated by 5 ~ and Kn the group 
generated by 5f. Let N '  be a connected component of MK,. We claim N '  N Fix(%) 
0 .  

Suppose the contrary. It follows from Lemma 5.8 and (c) that for all z E K ' ,  
= U n-1 Fix(r 'j).  Since Fix(r/j) is an (n - 1)- z N '  n Fix(%) Q. Hence, Fix&/,) C j= l  

dimensional submanifold of M,  1 -< j --< n - 1, each connected component U of  
Fix(r/,) will be contained in a component of  some Fix(r), z ~ re'. Choosing a slice 
for the action of  Kn at points of  U, we find that/x = zzi ,  is equal to the identity map 
on a non-empty open subset of M. Since /z is an involution and M is connected, it 
follows that/x = IM. That is, z = % ,  contradicting our assumption that % ~ 5?'. 

Let x ~ Fix&/,) n N. Choosing a slice for the action of Kn at x,  we see there 
exist points y ~ N '  such that z i , (y )  ~ N '  and % ( y )  ~ y .  It follows that y and "ri,(y) 

lie in different connected components of  N ' \  Fix(%).  In particular, N ' \  Fix(%) has 
at least two connected components. Hence, MK, \ Fix(%) has at least 2 n connected 
components. However, 

M K, \ Fix(r/. ) C M~., 

and so it follows from Lemma 5.10 that Mx. has exactly 2 n connected components. 
Our inductive assumption (a) on K r implies that K '  acts transitively on the connected 
components of MK,. It follows that each component of  N '  \ F i x ( % )  is a connected 
component of Mx. .  Hence, (b) is true for K . .  Finally, (c) follows trivially from (a) 
and (b) completing the inductive step. [] 

L e m m a  5.12. Let  N be a connected component  o f  M K . Suppose that f o r  some x E ON 

and z E K we have z ( x )  E N .  Then z ( x )  = x .  

Proof.  First, we note that if x E ON and z(x) ~ N,  then, by the K-equivariance of 
z, we must have r (x)  E ON. 

We prove by induction on p.  The result is trivial if p = 1. Now assume that the 
result holds for all groups K '  generated by admissible sets of  fewer than p reflections. 

Let x E ON satisfy the hypotheses of the lemma. By Lemma 5.11(c), we may 
assume 

x E f l  Fix(r/j), 
j = l  

where 1 -< il < "'" < i, --- p,  1 -< s -< p. If  s = p,  the result is trivial. Suppose 
then that s < p.  Either r (x)  = x or we may write r ( x )  = I~i " �9 �9 t zk (x ) ,  where /xi 
are distinct elements of  ~t \ {zi~ . . . . .  % }  and k < p .  Suppose the second condition 
holds. Applying the inductive hypothesis to the group K '  generated by the/xi we see, 
using Lemma 5.11, that if x lies in the closure of  a connected component N '  D N of  
MK, then z(x) ~ N ' .  Afort iori ,  z(x)  ~ N.  Consequently, r (x)  = x,  completing the 
inductive step. [] 

We fix a connected component N of  MK and assume that M comes with a K- 
invariant Riemannian metric. 
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L e m m a  5.13. Every isometry of N extends uniquely to a K-equivariant isometry of 
M. Conversely, every K-equivariant isometry of M permutes the components of Mr. 

Proof. Let f be an isometry of N. We extend f to M by setting 

f I ~-(M) = r . f .  ~-, (~- E K).  

It follows from Lemma 5.12 t h a t f  is well defined and K-equivariant. In order to 
prove t h a t f  is a (smooth) isometry it suffices to show t h a t f  preserves the Riemannian 
distance d ( ,  ) on M (see [11, Chapter I, Theorem 11.1]). Let x, y E M,  and let y be 
a geodesic minimizing distance between x and y. Since the metric on M is assumed 
to be K-invariant,  Fix(z/) is a totally geodesic submanifold of  M,  1 -< i --< p.  Hence, 
if ~- E ~ ,  Either 3/ meets Fix(T) in isolated points or y is wholly contained within 
Fix(T). Let zl . . . . .  zk-1 denote the isolated points of  intersection of y with the fixed- 
point sets of  the ~- E ~ ,  and order the zi so that d(x, zi+l) > d(x, zi), i -> 1. Set 
z0 = x ,  zk = y.  Then 

k 

d(x, y) = ~_~ d(zi, Zi+I). 
i = 0  

Since f I ~'(N) is an isometry for all ~- E K ,  we see that 

k 

d(f(x),  f(y)) <- Z d(f(zi), f(zi+l)) = d(x, y). 
i=O 

We claim we have equality. If  not, we may reverse the argument and contradict 
the fact that y was chosen to be a minimizing geodesic between x and y. Hence 

d(f(x) ,  f(y)) = d(x, y). 
The converse of  the lemma is trivial. [] 

(c) Smoothness of Extended Solutions 

We begin our discussion of elliptic equations with some remarks. 

Remarks 5.14. 

1. We refer the reader to Gilbarg and Trudinger [7] and Ladyzhenskaya and Ural ' tseva 
[14] for the theory of  second order quasilinear elliptic operators. Our viewpoint is 
such that we do not need to be concerned with the (difficult) questions of  existence 
or regularity for such operators. Consequently, in what follows we generally assume 
sufficient regularity of  solutions. The reader whose main interest lies in reaction- 
diffusion equations may prefer to assume that ~ is a reaction-diffusion operator of 
the type described in equation (5.3). 

2. The ellipticity assumption we make on ~ is weak. We do not need to assume 
uniform ellipticity (see [7, Chapter 9, p. 2031, [14, Chapter 4, (2.1)]). Indeed, for 
our applications it suffices that if u is a solution satisfying appropriate regularity 
(see below), then ~ is elliptic with respect to u (see [7, Chapter 9, p. 203]). 
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For the remainder of  the section we shall assume that ~' is a second order quasi- 
linear elliptic differential operator on M which is in divergence form. Since ~' is in 
divergence form, we may define generalized solutions of  ~ (u )  = 0 having derivatives 
of the first order only (see [7], [ 14]). Let C 1,1 (M) denote the space of  C 1 real-valued 
functions on M with Lipschitz continuous derivative. We similarly define C 1,1(~). 

Lemma 5.15. Let u E C I ' I ( M )  be a generalized solution o f  ~ .  Then u ~ Ca(M) .  

Proof. The result follows from the standard "bootstrapping" argument of  nonlinear 
elliptic equations and uses only the ellipticity of  ~ with respect to u. For details see 
[14, Chapter 4, Section 6] or [7, Chapter 8]. [] 

Remark 5.16. I f ~  is of  the form (5.3), it suffices that u ~ Ct (M)  for the conclusion 
of  Lemma 5.15 to hold. 

Definition 5.17. Suppose that u E CI ' I (N)  is a generalized solution of  ~ on N. 

1. We say that u satisfies Neumann boundary conditions (NBC) on N if for every 
~- E ~ and all x E ON A Fix(T), we have 

c~U 
~ ( x )  = 0, 

. 

where n is the normal direction to Fix(r) at x.  

We say that u satisfies Dirichlet boundary conditions (DBC) on N if u --= 0 on 
ON. 

In case (1) (respectively, (2)), we say u is a generalized solution to the Neumann 
problem (respectively, Dirichlet problem) defined by ~ on N. We omit the prefix 
"generalized" if u is of  class at least C 2 and is a classical solution. 

Theorem 5.18. Suppose that the operator ~ is K-invariant.  Then the following hold. 

1. Every smooth K-invariant solution u o f  ~ on M restricts to a smooth solution o f  

the Neumann problem for  ~ on N .  

2. Let u E C 1,1(~) be a generalized solution to the Neumann problem fo r  ~ on N .  

Then 

(a) u is smooth. 

(b) u extends uniquely to a smooth K-invariant solution o f  ~ on M .  

Proof  o f  (1). Suppose that u E C=(M) K . Let ~- be one of  the generators of  K,  and 
let x ~ ON f) Fix(r). It suffices to show that 8 u / O n ( x )  = 0, where n is the normal 
direction to Fix(z) at x. Choosing a slice for the action of  ~- at x (see Bredon [3, 
Chapter 6]), we may choose a local coordinate system (Xl . . . . .  xn) at x such that 

'T(Xl . . . . .  Xm-1, Xn) = (Xl  . . . . .  Xn-1, --Xn) 
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and (0 . . . . .  O, 1) defines the normal direction to Fix(T) at x.  Since u is assumed 
K-invariant, u is T-invariant, so 

u ( x l  . . . . .  x , - 1 .  x , )  = U(Xl . . . . .  x , - 1 ,  - -Xn) .  

It follows that Ou/Oxn(O) = O. 

Proof of (2). Suppose that u E C 1,1(~) is a solution to ~ on N satisfying NBC. We 
may extend u to M by defining 

u ( T x )  = u ( x )  

for all ~- E K and x E N. It follows from Lemma 5.12 that u is well defined on M.  
Obviously, u is C 1 and K-invariant. Moreover, it is easy to check that u E CI ' I (M).  
Since ~ is K-invariant, it follows that u is a generalized solution to ~ on M. By 
Lemma 5.15, u @ C~(M) and so the restriction of  u to N is also smooth. [] 

Next, we wish to give a version of  Theorem 5.18 appropriate for the study of  the 
Dirichlet problem on N. 

Theorem 5.19. Suppose that ~ is I(-invariant. Then the following hold." 

1. Every smooth ~2-invariant solution of ~P on M restricts to a smooth solution of the 
Dirichlet problem on N. 

2. Suppose that u E C 1,1 (~) is a generalized solution to the Dirichlet problem on 
N. Then 

(a) u is smooth. 

(b) u extends to a smooth [(-invariant solution of ~ on M. 

Proof. The proof is similar to that of Theorem 5.18 except that for the proof of  
statement (2) we take the K-invariant extension of u to M. [] 

(d) Multiplicity of  Solutions 

Theorems 5.18, 5.19 hold with minimal assumptions on the symmetry properties of  
the operator ~ .  We now wish to investigate what happens when ~/' satisfies additional 
invariance properties. For simplicity, we concentrate on the Neumann problem and 
assume @ is invariant by ISO(M). However, we may similarly consider the Dirichlet 
problem and/or suppose that ~ has invariance properties with respect to a compact Lie 
subgroup of isometries of M.  We emphasize in what follows that we always assume 
ISO(M) D K. In particular, following Lemma 5.13, we regard ISO(N) as a closed 
subgroup of  ISO(M). 

Theorem 5.20. Let ~ be ISO(M)-invariant. Suppose that u is a smooth solution of 
= 0 with isotropy group "Z. Let 

A~ = {T ~ ISO(M) [ T~T -1 D K}. 



222 M. Field, M. Golubitsky, and I. Stewart 

1. I f  y ~ Au, then ur = 3/(u) I-N is a smooth solution of the Neumann problem for 
on N.  

2. Suppose % q~ E Au. Then uy lies on the ISO(N)-orbit of  c~ if and only if there 
exists h E ISO(N) and o" ~ ~,u such that y = hog .  In particular, if ~ D K, 
then ur lies on the ISO(N)-orbit of u if and only i f 3 / ~  ISO(N) �9 u. 

Proof of(I) .  Since 3,E3/-1 D K and the isotropy group of the solution 3/(u) is yET - l  , 
we see that 3/(u) is a K-invariant solution of ~ .  It follows by Theorem 5.18(1) that 
3/(u) restricts to a smooth solution of the Neumann problem for ~ on N. 

Proof of (2). Suppose that y = h~bo-, where h ~ ISO(N) and ~r ~ E, .  Then 
3/(u) = hq~(u) (since o-(u) = u) and so ur = hu~. Conversely, suppose that 
u r = hur ,  for some h E ISO(N). Then qS-lh-13/ ~ Eu. Hence, there exists 
o- E ~ such that ~b- th - ly  = o-. Thus, y = h~bo-. [] 

We should emphasize the implication of (2) of Theorem 5.20. The statement implies 
that a group orbit of solutions for ~ on M can yield two or more different group orbits 
of solutions for the Neumann problem on N. 
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