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Abstract

In this paper we investigate numerically the existence of heteroclinic
cycles connecting periodic solutions and equilibria in systems of differ-
ential equations with dihedral D, symmetry. We study these cycles
near steady-state/Hopf and Hopf/Hopf mode interaction points. The
existence of these cycles depends on normal form symmetries and their
construction is based on the lattice of isotropy subgroups. A variety of
interesting forms of intermittency are found and illustrated.

1 INTRODUCTION

In the simplest cases heteroclinic cycles consist of trajectories in a differen-
tial equation that form a ring by connecting sequences of equilibria. Field [4]
and Guckenheimer and Holmes [6] observed that such cycles can be struc-
turally stable in systems with symmetry. When a heteroclinic cycle is also
asymptotically stable, it serves as a model for a certain kind of intermittency,
since nearby trajectories move quickly between the equilibria and stay for a
relatively long time near each equilibria. Aubry et al. [2] use asymptotically
stable heteroclinic cycles to study boundary layer turbulence in channel flow.

- Armbruster, Guckenheimer, and Holmes [1] show that heteroclinic cy-
cles appear in the unfolding of steady-state/steady-state mode interactions
with O(2) symmetry. Melbourne, Chossat, and Golubitsky [8] provide a gen-
eral approach for finding heteroclinic connections in equivariant systems of
ODE:s and use this approach to find heteroclinic cycles specifically for O(2)
symmetric problems. The authors demonstrate that by restricting the vector
field to flow invariant subspaces, it is possible to find heteroclinic cycles. The
basic idea is as follows. Suppose that I' is the symmetry group for a system
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of differential equations and that £ C I' is a subgroup. It is well known that
the fixed-point subspace

Fix()={re€R":0z=2 VoeX}

is a flow invariant subspace [5]. The idea in [8] is to find a sequence of maximal
isotropy subgroups X; and corresponding submaximal isotropy subgroups T
such as is shown schematically in Figure 1. Such configurations of isotropy
subgroups have the possibility of leading to heteroclinic cycles if differential
equations can be found connecting equilibria in Fix(XZ;) to Fix(X;;1) via a
saddle sink connection in Fix(Tj).
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Figure 1: Pattern inside the isotropy lattice that permits, in some cases, the
existence of heteroclinic cycles.

Melbourne et al. [8] also generalize the notion of heteroclinic cycles to
include time periodic solutions as well as equilibria. They do this by aug-
menting the symmetry group of the differential equations with S — the
symmetry group of Poincaré-Birkhoff normal form near points of Hopf bi-
furcation — and using phase-amplitude equations in the analysis. Indeed,
as shown by Melbourne [7], normal form symmetry is sufficient to produce
stable cycling behavior in systems without spatial symmetry.

It is well-known that Hopf bifurcation from an invariant equilibrium
in systems with- O(2) symmetry leads to two types of periodic solutions:
standing waves (solutions invariant under a single reflection for all time)
and rotating waves (solutions whose time evolution is the same as spatial
rotation) [5]. Melbourne et al. [8] prove the existence of structurally stable,
asymptotically stable heteroclinic cycles involving time periodic solutions in
steady-state/Hopf and Hopf/Hopf mode interactions in systems with O(2)
symmetry. More precisely, consider an O(2)-equivariant differential equation
of the form iz

= = F@An), (1.1)

where z € RV, A € R is a distinguished bifurcation parameter and p € R is
an auxiliary parameter. Analysis of the normal form equations at such mode
interactions leads to a variety of heteroclinic cycles.

For example, Figure 2 shows a cycle connecting a stéady-state with a
standing wave. The steady-state/Hopf mode interaction has a six-dimensional
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center manifold, since each critical eigenvalue is doubled by symmetry. Fig-
ure 2 shows the time series from three coordinates: z¢ is a coordinate in the
steady-state mode and z;,z; are coordinates in the Hopf mode.
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Figure 2: Cycle connecting a steady-state with a standing wave in a system
with O(2) x S! symmetry with S! due to normal form.

Figure 3 shows a cycle between two standing waves and two rotating
waves stemming from a Hopf/Hopf mode interaction. Again the critical
eigenvalues are doubled by O(2) symmetry so that the center manifold is
eight-dimensional. The time series for four of these coordinates are shown
in Figure 3 with two coordinates from each mode. In these coordinates a
standing wave in one mode is an oscillation with both coordinates oscillating
equally (with a phase shift) while a rotating wave is an oscillation with one
coordinate active and the other coordinate quiescent. Using this description
we can see that the time series in Figure 3 begins near a standing wave in the
first mode, then transitions to a standing wave in the second mode, then to
a rotating wave in the second mode, followed by a rotating wave in the first
mode. The cycle then repeats forever. In this way the spatial and temporal
structure of the numerical solutions reflect the symmetries of the solutions
visited by the trajectory.

In this paper, we explore numerically the existence of heteroclinic cycles
when O(2) symmetry is replaced by D,, symmetry. Here we show that cycles
corresponding to those in Figures 2 and 3 for systems with O(2) symmetry
also occur in systems with D, symmetry. These cycles are richer in that
they connect equilibria and time periodic solutions with more types of sym-
metry. Moreover, these cycles can appear in rings of coupled cells — though
to prove that statement requires performing the details of center manifold
reductions — where the manifestation of the spatial-temporal symmetries is
quite interesting. This topic will be discussed in detail and with proofs in (3].
In Section 2 we discuss the group actions of D, and norntal form at points
of D, mode interaction. In Section 3 we illustrate our results on D, steady-
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Figure 3: Cycle connecting rotating waves with standing waves in a system
with O(2) x T? symmetry with T? due to normal form.

state/Hopf mode interactions and in Section 4 we illustrate our results on
D, Hopf/Hopf mode interactions.

2 D, MODE INTERACTIONS

Consider a system of ODEs such as (1.1) but assume now that F' is Dy-
equivariant, and that z = 0 is a Dp-symmetric trivial solution, that is,

F(0,)p) =0.

Assume also that the Jacobian (d.F)o0,0 has multiple eigenvalues lying on
the imaginary axis, each of multiplicity two due to symmetry. We consider
two cases: (1) 0, wi and (2) fw;i, £wsi, where w) and ws are incommensu-
rate. The former case is a steady-state/Hopf mode interaction and the later
a nonresonant Hopf/Hopf mode interaction. Moreover, in this paper, we as-
sume that D, acts by its standard action on each of the critical eigenspaces.

After performing a center manifold reduction on (1.1): ‘we arrive at the
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reduced system of ODEs

dz
’EE = g(z, A:I“): (2-1)

where g(0,), 1) = 0. In the steady-state/Hopf case z € C?, and in the
Hopf/Hopf case z € C*. The eigenvalues of (d.g)o,0,0 are those of (dzF)o,0,0
on the imaginary axis. By an appropriate change of coordinates we can
assume that (2.1) is in Poincaré-Birkhoff normal form up to any finite order.
This introduces an extra symmetry, so that in the steady-state/Hopf case g
is D, x S!-equivariant. We can then choose coordinates z = (20,21, 22) such
that the D,, x S'-action on C? takes the following form. Let v =27 /n € Z,,
and @ € 8!, and let & be a fixed element in D, ~ Z,. Then

Yz0,21,22) = (€"20,€"21,677'2))
K’(zlhzlszz) = (20122’21)
8(20,21,22) = (20,€%21,€% ;).

In the Hopf/Hopf case, g is Dy, x T*-equivariant when in normal form. In a
similar way, we choose coordinates z = (z1, 22, 23, z4) such that the D, x T?-
action on C* takes the following form. Let v and & be in D,,, as above, and
let (61,62) € T?. Then
Y(z1,22,23,21) = (€721,67%25,€"23,6772)
(21, 22,23, 24) (22,21, 24,23)
(61,02)(21,22,23,24) = (€12, €912, €223, €92 24).

3 STEADY-STATE/HOPF MODES

Let § = |23] — |z1|%. The Dg x S'-invariant functions are functions of

p =2/ N =|z? + |zl A=4?
A= zgilzg + 232152 B= Zg + 28 C= (2122)3 + (2122)3
D = 23(2122)? + 22 (5122)? E = z§z21%2 + %321 2.

The Dg x S*-equivariant vector field has the form g(z, A, ) = (C(2), P(2)) €
C x C? where

C'(z) = CIZO + 03202152 + Csfg + 0720(2122)2 + 092(3,2122 + an()(zliz)s
and
2 2
_p1| & 2 2 3| %0%2 4 Zp22
ror-r [ er] 2 om0 ]er] 2]

021 —2021
22|221 6 |22|221 7 2322

PS5 l + P8¢ + P

Ll Salm ) Lan (3.1)
8 ZHz2 o | 292123 05| %712
+P° —2§2) +P 22237 ] +P 1 —2322%,
z 2 (5 z )222 '

pu (21{2) 22 pl2§ 122

+ (2122)%21 + —(2122)%21 |
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where ¢/ are real-valued Dg x S!-invariant functions and P7 are complex-
valued Dg X S'-invariant functions depending on two parameters A and u,
and C7 = ¢/ +idc’+!. Additionally, the eigenvalue structure of g leads to
c!(0) = 0 and P!(0) = wi. See [3].

We next search for heteroclinic cycles as solutions of g by considering
the lattice of isotropy subgroups shown in Figure 4. Following [8] the lattice

[ 2% Z, ZxZ | [z, |

\ R

|722(x)x s | [Zonxs

7
e

[xs J[Z200 [ z20 ([ z2en ([ zxsm || Z |

Figure 4: Isotropy lattice of Dg x S! acting on c?

suggests the possible existence of a heteroclinic cycle. This cycle contains a
trajectory that connects a steady state e; (with Za(x) x S! symmetry) with
a standing wave SW; (with Zy(x) x Z5 symmetry) through the invariant
subspace Z(x). The standing wave SW; is then connected with another
steady state e; (with Za(yk) x S' symmetry) through the invariant subspace
Zs(xm, 7). The trajectory then connects the equilibrium e, to a second stand-
ing wave SW2 (with Z2(yx) x Z5 symmetry) through the invariant subspace
Zs(7k). The cycle is completed by a trajectory connecting SW> to the first
steady state e; through Zs(k, 7).

Using the general Dg x S!-equivariant map (3.1), we numerically inte-
grate the system (2.1) with the following coefficients:

d=A-15p—-4N =13 =-9 =05
pl=12\-3p-N pll=4 p’=4 p*=4
¢ =0.8)\+7 gl =8 .

and all other coefficients set to zero. The results are shown in Figure 5. The
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difference between the two standing waves SW1 and SW2 can be visualized
by enlarging the components of z; or z». For instance, Figure 6 depicts
an enlarged region of Re(z;) and shows two standing waves with different
amplitudes.

0.5

L " L L L L L n 1
o 50 100 150 200 250 300 aso 400 450 500

o 50 100 150 200 250 300 350 400 450 500
T

Figure 5: Heteroclinic cycle connecting steady states e; and e; with standing
waves SW; and SW5 in a system with Dg x S* symmetry.

Figure 6: Enlargement of time series z; from Figure 5 showing standing
waves with different amplitudes.

The isotropy lattice for the case n = 5 is shown in Figure 7. Observe
that, in this case, the lattice appears to lack the structure described in Fig-
ure 1. This does not prevent the existence of intermittent behavior in (1.1).

In order to understand what happens to the cycle when the O(2) sym-
metry is broken, we approach the case n = 5 as a Symmetry -breaking per-
turbation from O(2) to D5 symmetry. The general D3 x S'-equivariant map
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Figure 7: Isotropy lattice of D5 x S! acting on C3

is g(z, A, 4) = (C(2), P(2)) € C x C? where
C(z) = Clzo + C32om 22 + C324 + C7(2120)% + C* 2120 + C* (21 2)°

and
2 2
P(z) = P! [ py +P25[ iy ]+P3 [ o= ] +P46[ Ny ]
z22 —222 2p21 —2521

+ps [ 1202 ] 4 pos [ fz2] 2 ]+P7 [ Bz |,

LIz L ~lal = %2
P8g| 9% | 4 po| A% |4 pug| AZH ]+ (3.2)

—28z 2023Z —2923%

I 20(021;’2)222 o 20(2112) 22 o
Pll A e +P126|: “ 4y ]+

I *(79(21;42) z1 (—:zo()zizz) 21
p13 zlfz 22 ] PlY§ 2132 22

| (2122)'21 —(2122)'n

We integrate numerically the general D5 x S!-equivariant map (3.2) with
the following coefficients: .

d=A-15p—-4N =13 =-9 =05 ¢ =08\+7

p'=122-3p-N p*=4 p¥=4 =8 .

and all other coefficients set to zero. The results are shown in Figure 8.
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Figure 8: Trajectory visiting intermittently a steady-state and a standing
wave after the heteroclinic cycle of Figure 2 is broken by a D5 x S!-equivariant
perturbation.

4 HOPF/HOPF MODES

Letdo=1,6 = |22|2 - |Z1|2, and d; = |Z4|2 - IZ3|2; and let v12 = 2172 and
v34 = 23%Z7. The general D, x T*-invariant function is a function of

N =zt +|nP A=8 Anp=0d
Ny =|za? +|za? A2=6% vi=Re(v]y *vd,) 0<i<m,
where
m= n ifnis odd
1 n/2 ifniseven.

The general D,, x T2-equivariant mapping is given by g(z, A, p) =

2 2 22034
22 3 5 —22 7 9 11 21034
Al + (A36; + A%5; + (A7 + A%, + A4,
2 (A% ) 2 ( )|, (V12
24 —24 23V12
21V12V34 T etz
N _— m—1 2 . m—l—i,i .
23U12V34 55 i+l VA T )
) — — _1_' 3
24V12734 vy UiaZ3
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where A7 and Q] are complex-valued D,, x T*-invariant functions of two
parameters A and g, and

@l +iaft! q +ig

. J + jgit! , ql + qu+1
A= % T i =

v+ z'b{:i » @ r{ + zr’“

b + ib? r+ er“

Note that the eigenvalue structure of g leads to a'(0) = b'(0) = 0 and
a%(0) = wyi and b?(0) = wai where w; and w; are incommensurate. See [3].

We look for heteroclinic cycles in the vector field g by inspection of the
isotropy lattice. Let n be odd or n =2 (mod 4) (see [3] for the case n =0
(mod 4)) and define

gn=] < (w,m,m) > if nis even
2 - 1 if n is odd.

and let
Zn(k,1,m) = {(kv,ly,m7) € Z3 : k,l,m € 2},

where v is the generator of Z,,, and
S'(1,0) = {(4,0) € T : 0 € S'} and S'(0,1) = {(0,0) € T? : 6 € S'}.
Part of the isotropy lattice of the action of Dy, x T2 on C* is given in
Figure 9 and the isotropy subgroups are listed in Table 1.

D x
n

7 [ 8| [ 10 2| | 1] | 1] 9

Figure 9: Part of the lattice of isotropy subgroups of D, x T2

The isotropy lattice suggests the possible presence of three heteroclinic
cycles analogous to the ones found in the O(2) symmetric system [8]. How-
ever, in D,, Hopf bifurcation, there are two types of standing waves bifurcat-
ing simultaneously, one with isotropy Z2(x) and one with isotropy Zz(x, ),
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Isotropy Subgroup Isotropy Subgroup
M| 2Z.(1,-1,0) xS*(0,1) (8) Zo(k) x ZS"
) | Z2(x) x 25" x S*(0,1) 9 | Z:(x,,0) x ZS*
(3) | Z2(x,m,0) x Z5" x 8'(0,1) | (10) | Z2(x,0,7) x Z5"
(4) | Z2(x,0,7) x ZS™ x 8*(1,0) | (11) | Za(k,m, =) x ZE"
(5) |  Za(x) x ZE" x S1(1,0) | (12) Zq(1,-1,1)
(6) Z.(1,0,1) x S'(1,0) (13) Z.(1,1,1)

(7) s'(0,1)

Table 1: Isotropy subgroups

see [5]. Note that the standing waves with isotropy (2) and (5) are of type
Z2(k) and that the standing waves with isotropy (3) and (4) are of type
Zy(x, 7). The three possible cycles are the following.

The first is a cycle between rotating waves. A trajectory connects ro-
tating wave (1) to rotating wave (6) through the fixed-point subspace of (12)
and the cycle is completed by a trajectory connecting back to (1) through
the fixed-point subspace of (13).

The second cycle connects the standing wave with isotropy subgroup (2)
with the standing wave with isotropy (4) through the fixed-point subspace of
(10), the standing wave with isotropy (4) with the standing wave (3) through
the fixed-point subspace of (11), then (3) is connected to the standing wave
(5) through the fixed-point subspace of (9) and finally (5) is connected to (2)
through the fixed-point subspace of (8). The proof of existence of the first
two cycles is found in [3].

Finally, according to the lattice, a cycle between rotating waves and
standing waves can also exist in principle. However, the fixed-point subspace
of (7) where the connection between rotating wave (1) and standing wave
(2) should lie does not decouple completely in phase-amplitude coordinates,
therefore the existence of a connection is unlikely.

- We find the cycle joining standing waves by integrating numerically the
general Ds x T2-equivariant map (4.1). We set m =5, and let

al=)-N; -25N; a?=1 a® =25 at =05
a’=2 ¢ =03 ¢g=-02

Bl=XA-2N;—2N, =141 =15 b8 = -0.25
b=-3 rl=-045 r}=015,

and all other coefficients are set to zero. The simulation is shown in Figure 10.
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Figure 10: Cycle joining standing waves in D5 x T*-equivariant system.

Even though a cycle between rotating waves and standing waves is un-
likely in D,, x T2-equivariant system, we can still find intermittent behavior
between rotating waves and standing waves. Figure 11 shows a trajectory
close to the attractor that persists when a D5 x T? perturbation is added
to an O(2) x T? system with a heteroclinic cycle that joins rotating waves
with standing waves as in Figure 3. The simulation in Figure 11 is done by
integrating equation (4.1) with m =5 and

a! =X +0.9i - 0.375N; —3.55N, a®>=0.9 a®=0625 o®=-3.45

a’ =0.125 ®=7 ¢ =0003 g2=0.002
bl = X — 1.75N; — L.667N, =14 =025 b =-0.583
b =3 =6 rl=0008 r?=0.004.

Figure 12 shows the z3 and z4 coordinates of the trajectory of Figure 11
as"it approaches standing wave (5). Figure 13 shows the same coordinates
of Figure 11 as the trajectory gets close to standing wave (4). Note that the
time series in Figure 12 near the periodic solution are in phase while the time
series in Figure 13 near the periodic solution are one half-period out of phase.
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