Lectures in Applied Mathematics
Volume 24, 1986

THE USE OF SYMMETRY AND BIFURCATION TECHNIQUES
IN STUDYING FLAME STABILITY
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ABSTRACT. We use group theory techniques to study
the mode interaction of Hopf bifurcations with 0(2)
symmetry. The particular mathematical problems we
study are motivated by experimental results on mesh
stabilized porous plug burner flames.

1. INTRODUCTION

In this paper we explore the use of singularity theory and
group theory to analyse the dynamic behavior of mesh-stabiflized
flames on a porous plug burner. The mathematical analysis takes
place on the "normal form equations": a reduced set of equations
that might be obtained by performing a center-manifold reduction
on a set of partial differential equations and boundary condi-
tions that model the experiment, and following this by a change
of coordinates. These normal form equations are not, superfi-
cially, much different from what one finds by using a classical
mode analysis/perturbation theory approach, as has been done
frequently in similar problems. A good example can be found
in Erneux and Matkowsky [1984] which examines a degenerate bifur-
cation with 0(2) symmetry, closely related to the one we will
present. '

There are, however, two important differences. The first
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is that we do not start from a specific model of the physics
and chemistry in the problem. This means, for example,. that
we are not assuming a separation of fluid dynamic from chemical
effects, nor are we invoking large activation energy asymptotics.
Rather, we use some of the experimental observations direCt'Iy
to indicate an appropriate normal 'Fbrm. In this case, the exper-
iments suggest the possible interaction of two (and perhaps
even three) modes; as we shall spell out later. They further
indicate particular symmetry properties of the modes. Recent
experience in unfolding of dynamical systems' suggests .considering
codimension two bifurcations in order to understand global behavior.
We remark that there are several free parameters in the experiment
to justify this. The dynamic unlfolding‘of this mode' interaction
when symmetry does not play a role has been worked out and is.
presented in Guckenheimer and Holmes [1‘983], but the effects
of symmetry have not .previously been considered. The ﬁéthematica]
details of the present analysis will .be presented elsewhere. --
(See Chossat, Golubitsky and Keyfitz [1985] and Chossat [1985].)

The other contribution of the singularity theory‘/group theory .

normal form approach is that it provides a systematic understanding
of the structure of the problem, either as a bifurcation problem
or as a way of establishing the global dynamics. In particular, ..
unfolding theory describes (in a sense to be explained later)
the perturbations that can occur in the neighborhood of a degenerate
(or singular) point. One can use this theory to make a refined .
guess that quasiperiodic solutions or chaos, say, may or may
not be present, and in what sort of region. The theory also
establ ishes which higher order terms will be important in determining
this structure, and which can safely be neglected. This is
a nontrivial contribution in problems where symmetry is present,
because the symmetry may affect ‘the intuitive ordering of terms A
by polynomial degree. '

Let us éontrast briefly this new approach with establ i shed
methods in order to understand why an ‘applied mathematician
might want to learn a theory which, at first, might seem a bit
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overwhelming. Let us suppose that one thing the applied mathe-
matician would like to do in a problem iike this is to uncover
which aspects of the physics are responsible for each phenomenon
observed in the experiments. The physics, as heretofore studied,
enters the models thfough the structure of the underlying equations,
and through the parameters (Lewis number, Reynolds number and
so on) that reflect the relative Importance of different physical
effects. Classical PDE and singulatl perturbati_on theory have
been effective tools for studying these aspeci:s 'of‘ the models.
Symmetries, whether due to gedmetry or to frame indifference,
l'.\ave‘éertalnly been recognized as playing a role in the analysis,
but have generally been :rega'rded as‘ less deep, or less import-
ant.* Often they have been dismissed with an initial statement
about how the variables are to be chosen. The new techniques
allow a more accurate assessment of the importance of symmetry
in physical problems.

Ir. A SUMMARY OF THE EXPERIMENTAL RESULTS

The experiments of Blackshear, Mapp and Gorman [1984]) and
Mapp, Blackshear and Gorman [1985] were performed in a low-
pressure chamber, using a methane-air flame over a circular
porous plug burner. The equivalence ratio, the total flow rate
and the pressure in the chamber were all varied. In addition,
a8 mesh screen whose position could be adjusted was suspended
above the flame. While the parameter region has not yet been
completely mapped out, some observations can be reported.

The "steady-state" or "trivial" solution is a steady, ;:lanar
flame over the entire burner. Owing to edge effects, this “"plane"
flame 1is actually slightly nonplanar at the edges. However,
it has the complete circular symmetry of the burner. We note
that the symmetry group is 0(2), the group of rotations and
reflections in the plane. It is clear that both the burner
and the trivial solution would appear exactly the same if the
observer’s frame were rotated by any angle, or if the experiment
were observed in a vertical mirror. (The reflectional symetry
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would not hold were the flame itself rotating, since then the
mirror irhage would appear to be rotating in the opposite difec-_
tion;' in tﬁat case the group of symmetries would drily be S0(2),
the group of rotations. We _s-hallb see this group sﬁortly.)
This trivial solution fs observed (and hence may be presumed
to be'.stable) for given values of the experimental parameters
when the mesh screen is very élose to the burner. ’

When this solution bécomes unstable, it is typically to
& pulsating mode: a time-periodic solution. The simplest solutions
of this form are blanar pulsating modes: a snapshot of such
a Flame would show it to be planar (except for the edge effects).
It oscillates with a well-defined frequency, either axially
(by' changing its distance from the burner periodically) or_radially
(by periodically changing its extent over the burner)‘. These
flames are called radially or axially pulsating respectively.
Eaéh oscillates with a single well-defined frequency: typically,
the radial pulsations have lower frequency. Because of edge
effects it may appear that the axial pulsations have a component
of radial motion, and conversely, but there is only one period
present, and the two types are distinguished by the magnitude
of the freguency. It may even be the case that they are depen-
dent effects, instances of the same mode. This is currentl'y
being tested by further experiments. The important point here,
for our éppn‘oach. is that the pulsating solution has the same
geometrical symmetry (that is, 0(2) invariance) as the steady-
state solution; howe.ver. the steady-state is time-invariant,
while the pulsating solution has broken this temporal symmetry.

1t will prove critically important, in what follows, to
recognize that the time variable, as well as the spatial ones,
admits symmetry, and, in particular, that there can be solutions
that exhibit mixed spatlal- émgoral symmetries. For example,
a steady, nonplanar flame (whichv is not observed in t'ruis set

of experiments) would break the spatial symmetry, but not the
temporal symmetry, while & nonplanar flame that rotated, in

time, around the burner but did not change its shape would exhibit
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a mixed symmetry. (We conjecture that a flame of this sort
blays’ a role in the analysis of the more complicated patterns
that are found.)

Nonplanar flames are observed, and details of their struc-
ture are being investigated. In recent experiments, a nonplanar
flame has been observed bifurcating from the trivial solution.
It is definitely oscillatory; either one frequency or two may
be present. (In what follows we shall suppose one firequency
is present, and call this state a standing wave.)

A third type of flame, which definitely exhibits a spatial
rotation, has been given the name spiral combustion. In a definite
region of parameter space, what is observed is a hot spot which
rotates partway around the burner and then s extinguished.
This phenomenon is then repeated periodically. Provisionally,
we identify this as a rotating wave state.

The explanation of the phenomena observed that we shall
pursue here is that there is an interaction, or competition,
between two modes: a symmetry preserving, O(2)-invariant, time-
dependent mode represented by the (radially or axially) puisating
flame, and a symmetry breaking, time-dependent, O(2)-invariant
mode represented by the nonplanar and the spiral flame. The
mathematical framework for bifurcation to time-periodic solutions
is Hopf bifurcation: a pair of complex conjugate eigenvales
crosses the imaginary axis away from the origin. Mode inter-
action will be studied by considering a degenerate case in which
more than one eigenvalue pair crosses the imaginary axis for
a particular value of the bifurcation parameter. This situation
would not be observed experimentally unless very special choices
of the experimental conditions were made, but the unfolding
of it will include the observed effects of this mode interaction.
We should comment here that the experimental evidence supports
the existence of two independent frequencies for the two types
of modes. It is characteristic of the presence of the 0(2)
symmetry that the symmetry breaking mode corresponds to a double
purely imaginary eigenvalue and gives rise to two types of solu-
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tions: rotating waves and standing waves. .

Thus we are motivated to consider the interaction of two
Hopf bifurcations, with different symmetry properties. We now
set up the background for this.

I1l1. SYMMETRY AND BIRKHOFF NORMAL FORMS
 Under the assumption that the qualitative behavior observed
fn the experiment is governed by the interaction of a finite
number of modes, we may treat the entire problem as a finite
dimensional one: that is, as a dynamical system, or ODE, rather
than a PDE. If we had modelled the experiment by a system of
PDE with boundary conditions, we would have had to start by .
linearizing about the trivial solution, looking For parameter
values where a pair of eigenvalues crosse_d the imaginary axis, .
and then throwing away all the modes whose eigenvalues had negative
real part, since they decay to zero. The rigorous justification
of this last step is the centér manifold theorem. (There are
some technical restrictions which must be observed in interpreting
any analysis based on normal forms, but they do not concern
us at this stage.)

The center manifold reduction respects the symmetry: that
is, the reduced system of ODE also commutes with the group action.

The act of putting our system of ODE in normal form by change
of coordinates also introduces new symmetries in addition to
the 0(2) symmetries we have just discussed, and these symme- .
tries are crucial to our analysis. As is well-known the perio- .
dicity in Hopf bifurcation induces on the original problem a
circle (or S! or S0(2)) action given by phase shifts. This
purely temporal symmetry exists independent of the spatial 0(2)
symmetry. Suppose now that we consider the double degeneracy
of two Hopf bifurcations occurring at the same parameter value
with eigenvalues twgi and *wji. It can be proved that if
wg and w) are rationally independent, or nonresonant, that
is, if muwg + maw) # 0 for any integers m; and mp, then
there is, in fact, a torus action-of T2 = sl x s! induced on
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the reduced equations in normal form. If the eigenvalues are
resonant, then the induced action is sl instead. If they
are weakly resonant, then the torus action will be valid only
up to some order. The consequence of this group action is that
a change of variables can be found in which the reduced equatidns
are invariant under 'Tz.' This form of the equations is. called
the Birkhoff normal form. It was derived by Takens [1974]
when no 0(2) symmetry is present. The consequences of the phase
shift symmetries for unfolding the singularity can be found
in Guckenheimer and Holmes [1983]. A group theoretic proof
of the existence of the torus symmetry can be found in Chossat,
Golubitsky and Keyfitz (1985]. We shall assume nonresonance
from now on.

what then can we say. about the center manifold reduction
at this point? Group theoretic considerations using 6(2) symmetry,
as spelled out in Golubitsky and Stewart [1985], imply that
generically each O(2)-invariant eigenspace is either two- or
four-dimensional. Furthermore, 0(2) acts trivially on the
two-dimensional and nontrivially on the four-dimensional space.
Letting wg denote the frequency associated with the symmetry
preserving solution (planar pulsations) and ) denote the
frequency of the symmetry breaking solution (nonplanar flames
and spiral combustion), then we see that the case we want to
consider yields a six-dimensional center manifold on which the

linearized part of the vector field, L, is

0 wp 0 0

-wg 0 0 0
0 0 0 wylp
0 0 -—wylp 0o Jd.

(In a slightly wider context, Chossat, Golubitsky and Keyfitz
(1985] consider mode interaction of two nonresohant Hopf bifurca-
tions where each mode may be either symmetry preserving or symmetry
breaking. (See also Chossat [1985].) The three cases have
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‘center manifolds of dimension four, six or eight depending on
whether each mode s symmetry preserving (two-dimensional) or
symmetry breaking (four-dimensfonal). Each of these mode inter-
actions has codimension two (in the world of 0(2) symmetry)
if vectorfield unfoldings are being considered; as bifurcation
theory problems they are all codimension one: one splitting
parameter is required to separate the two bifurcation points.
Because of the symmetry, however, there are many possibilities-

for secondary and tertiary bifurcation. The analysis of these °

possibilities is the heart of our paper.

We now show how these general remarks on éymmetry and reduction
imply the existence of satisfactory coordinates for a simple
normal form.

Write the six-dimensional center manifold as RZ ® C2, and
further identify the first, symmetry preserving, summand with
C. It is shown in Chossat, Golubitsky and Keyfitz [1985] that -
the normal form for the vectorf ield is

2g 0 | 0
(Potiqg){ 0 ) + (Py+iqp)) 2y ) + (patiqp)y 2z ),
0 zp ~22

where pg, P|» P2, Qg 9] and qp are functions of p, N and
A e = Nzgh? , N = 1z;02 + 1z02 , & = 1z302 - 4z 02  and
A = 62, Moreover,

po‘OQOsO)
QO(OvovO)

pl(ofofo) =0
wg» 91(0,0,0) = wy.

When the complex z_i's are written in polar coordinatés, the
normal form actually separates into amplitude and phase equa-

tions:
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ro = -PoT0 vo = -Qp
ry = -(pp+ép2)r| vp = —(q)+é8q2) | - (3.1)
r2 = -(p)-sp2irz v2 = -(qj-dqy) .

(Here and throughout we write the equations as u + X(u) = 0
so that positive eigenvalues denote stability.) . Since each
phase angle just rotates with a nonzero speed, we have actually
reduced the problem to consideration of the three amplitude
variables rqg, ry, rz. This is analogous to the reduction performed
by Takens in the four-dimensional case, without a spatial group
acting. (See Guckenheimer and Holmes ([1983].) In the eight
dimensional case of two symmetry 'breaking Hopf bifurcations,
the phase variasbles cannot be eliminatad at this stage, and
the analysis is more complicated.

Most of the symmetry has disappeared explicitly from the
three amplitude equations on which we will perform the remaining
analysis. In a sense, one could say that the three circle group
actions, 0{2) and the two Sl!’s, have removed three dimensions
by eliminating the dependence of the vector field on the phase
variables. (This is why one phase variable will remain in the
eight-dimensional case.) Note however that the amplitude equations
still commute with the action of Z x D4, where Zp acts
by %I on rg and D4 acts on (ry.rp) as thé symmetries

of the square.

IV. CLASSIFICATION OF SOLUTIONS BY ISOTROPY

The background for the results in this section was estab-
lished by Golubitsky and Stewart [19851, where the notion of
distinguishing periodic solutions by their isotropy subgroups‘
was developed. In the current discussion, we actually work
with steady-state bifurcation in the amplitude equations, and
thus avoid some of the difficulties associated with the dynamics.
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This also means that we cannot rigorously answer the question

of how much of the dynamics we observe translates from the normal

form to the original system. This question is addressed in

Chossat, Golubitsky and Keyfitz [1985].

Our equations are equivariant under the action of G = Zy

x D4. For a compact Lie group G acting on a vector space

V, the isotropy subgroup of a vector v in V is the subgroup

of G which leaves v fixed: ' N
Iy ={oeG:ov=yv]).,

The fixed-point subspace of a subgroup I of G ‘is the subspace

of V consisting of vectors v left fixed by each o ¢ I:
VI=(veV:ov=v for all o e I}.

In the case we are interested in here, the lattice of (con jugacy

classes of) isotropy subgroups is given by (with the notation

explained below):

Z7 x Dy
D 2y x F Zo> x F Primary Branches
~—— 2 2 2 1 Yy bi
\ \
F2 Z; T Fi Secondary Branches

Here we use the notation G = Z x Dg acts on (rgs s 1r2)
as follows. The action of Zp is by *1 on ro- The flip
Fi sends (rj, r2) to (rp, rj) and the flip Fp sends
rz to -rz. Fp and Fp generate the two element groups
Fy and F2, respectively. The group D4 is generated by
Fy and Fa. In the following table we list the isotropy subgroups
along with their fixed-point subspaces and the type of solution
in the original problem. From now on we shall refer to the

isotropy subgroups by “heir number in this table.
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Type L 2 Solution

0 - Zp x D4 {(0,0,0)} Trivial Solution
1 D4 {(rg,0,0)} Invariant Hopf

2 ZaxFp {(0r.0)) Rotating Wave
3 Z2 x F) {(o,r,.r,)} Standing Wave

4 F2 {(rg,r+0)}

5 Zy {(0,ryyr2)]

6 Fi {(rgsrysry)}

7 1 “{(rgerjer2)}

Table 4.1

Recall that there is a phase associated with each nonzero
value of the amplitude variable rj. Thus solutions of typés
l, 2 and 3 are actually periodic, while 4, 5. and 6 are
doubly periodic. Solution 3, the standing wave, corresponds
to an invariant torus with each trajectory on fhe torus being
periodic. We find that cases 5 and ‘7 do not occur in the |
least degenerate (codimension two) case we are considering here.

In our analysis we identify a branch of solutions with each
of the remaining isotropy subgroups. We also determine the
stability of solutions on each branch, at least for the normal
form equations, by finding the signs of the eigenvalues of the
linearized solutions. '

In these reduced amplitude equations, the primary and secondary
bifurcations are both steady-state, although these correspond
to periodic and quasiperiodic solutions in the normal form equations,
as mentioned above. We shall see that there inay also be a Hopf
bifurcation in the reduced equations: It will be a tertiary
bifurcation and will introduce a third, independent frequency
into the dynamics. Characteristic of this analysis is the fact
that this tertiary bifurcation can be inferred directly from
an exchange of stability along a secondary branch of solutions
in the normal form equations. Furthermore this branch should
terminate via a homoclinic bifurcation, in the manner discussed
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in Guckenheimer and Holmes [1983].

V. DETAILS OF THE NORMAL FORM ANALYSIS _

We have chosen a distinguished paraméter fn the analysis,
because the number of possibilities is.so large that a beurca-
tion diagram is a convenient way to summarize them. Also, in
the experiments, we will be looking for transitions as some
parameter (total flow rate or screen height, for example) fis
varied. In the mathematical 'analysis; this parameter will be
denoted by A. From the reduction to the amplitude equations,
and their symmetries, it follows that one can write

Pg = agh + agp + bgN + cgA + B + ... ‘
P2=pP2 + ... ’

where p = roz, N = rlz + rzz. § = rzz - rlz. A = §2 and the

dots represent higher order terms. Using techniques of singular--

ity theory, one can show that if certain nondegeneracy conditions

are satisfied, then the higher order terms can be omitted without'

changing the nature of the bifurcation diagrams or, in some
context, changing the dynamics. These conditions are that all
coefficients in (5.1) be nonzero and that ajbg-agb;. b)-P2:
aga)|-ajeg, aybg-ag(bj-p2) be nonzero. Note that B =0 corresponds
to the multiple eigenvalue: B is the splitting or unfolding
parameter.

Furthér, we can scale some .of the parameters to one. We
choose to take °0"°‘l' cp» and ag to be t].

In fact, we may take ag = -1 and a; = -1, which will
make the trivial solution stable subcritically since positive
efigenvalues imply stability.

Thus we must analyse the bifurcating branches and stability
of

F4F(r) =0

Ry g
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or

ro = -Porg = (-2 + a()l‘[)2 + bo(l‘12+r22) + A+ Blrg
ry = -(-x + 31'02 + bl(r1_2+r22) + pz(rzz—rlz)}t‘l (5.2)
rp = —(-} + ayrg? + by(r 24r?) - pa(ra2-ri2))rp

for all choices ag = ¢1 and all values of the remaining parameters
aj, bgy bys p2 and B. The term 2A is necessary to avoid degeneracy
but does not affect the branches or stability to lowest. order,
so we will ignore it for now.

Notice that the symmetry preserving (rg) branch bifurcates
at A = B, while the symmetry breaking bifurcation is double
(in the sense that two branches always emerge) and remains at
» = 0. The stablility of the b}ifurcating branches at the bifurcation
point is determined by the eigenvalues of df = af/ar, a 3x3
matrix. These eigenvalues are not hard to calculate, especially
if the Zp x D4 symmetry of f isused. (Results of the calculation
are given in Table 5.1.) Details are in Chossat, Golubitsky
and Keyfitz [1985]. Clearly, branch 1 emerges first (that is,
for a lower value of A) precisely when B is negative. Branches
I, 2 and 3 have the properties: 1 s supercritical if ap
> 0; 2 is supercritical if bj-p2 > 0; 3 is supercritical if
by > 0. The signs of the four quantities Bg, ags by-p2 and
b; are all independent; thus there are sixteen possibilities
for the order of bifurcation and the super- or sub-criticality
of the primary branches.

Which branches can be stable? First note that since one
eigenvalue along the trivial solution becomes negative at the
first branch and remains negative along the second, the second
branch can never be stable at the bifurcation point (though
it can gain stability by a secondary bifurcation). If the first
branch is the symmetry-preserving branch 1, stability is exactly
the same as in the nondegenerate Hopf bifurcation: this branch



Bifur- Conditions for (>0) Secondary |Condition for
Equation of Eigenvalues cation| Supercritical [Stability at BiqBifurcation|{Secondary Bi-
Branch{Branch of df Point | Bifurcation ([furcation Point {occurs at furcation (>0)
= 2 ao, : - :.-21—8_- B
1 )\—aoro +B ay (A_B)_aox(z) B ap 30, 8 Al ay-ap ay=—ap . (1)
bl"p2’P29 (b
, _ - Co(b1-py)B B
N Cn DL IR SETE Y S G *“b1-ps-by| Bi-pz-by
bi-p2
bl »—P2 -
s bR B
-p2,b Ay=— —  (3)
3 x=2b1r12 B—(blg? ))\ 0 bl B’ pP2,b1 3 bl“b bl_bo (
A=B+agry? P2 P2,30,
+bor; ? tr=aory? A1 |aibg=ag (by-p3) |ae (b1-p2)-a1by (1), (2)
+(b1-p2)r12 ay-ap and
H bi1-p2)<0
4 (a1-a9)ro2+ |det=ag(b1-p2) a1 (b1-pa)-a1be P2.biop2s opf ap (b1-p2) ‘
~bg- 2 -a1b A -p2)-aib
ibl bo-p2)ry 1bo 2 b1-p2-bo ag (b1-p2)-aibg
)\:B-I-aorozz -P2 2 » ajbp-agby =P2,30,
+2bor1 tr=agryp 2b1r1 )\1 81‘-&0. aob1-albo (1), (3)
6 Hopf and
(a1-ap)ro?+ |det=apbi-aibg _ -p2,b1, P
2(by=bo)r12 As  [ReRrzaibe b 20b1<0
=B . bl-bo

Table 5.1
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is stable when it is supercritical. This happens in four of
the sixteen cases: B < 0 and ag> 0.

If 8 >0 so 2 and 3 bifurcate first, the fol'lowing occurs:?
there are no stable. branches unless both 2 and 3 are supercritl—"
cal; then precisely one is stable. That is. we must have both
bi-p2 > 0 and b} ? 0. Then 2 is stable if pz > 0 and 3
is .stable-if pz ¢ 0. This is the circumstance of the simpier"
case of 0(2)-equivariant Hopf bifurcation (without the presence
of a second mode). This situation was first discovered by Ruelle
[1973] and & number of authors since. (See Golubitsky and .Stewart
[1985] and van Gils [1984].) |

In all other cases, all three primary branches are unstable.

Of the three secondary branches, 5 requires p2 = 0, and
so does -not .occur in the least degenerate case. Branch 4 is
char_acferized by rp = 0 and satisfies pg = pl-rlzpz = 0.
Hence it is given by o

(al-ao)roz + (bl-bo"pz)l‘lz =8 (5.3)
A=B+ aoroz + borlz A (5.4)

From these equations the bifurcation point(s) may be calculated
explicitly. The branch exists unless the coefficients in (5.3)
satisfy sgn(a;-ag) = sgn(b;-bg-p2) = -sgn(B). This branch
is finite (an ellipse), transiting from 1 to 2 or infinite (a
hyperbola), transiting from 1 (r| = 0) or 2 (rg = 0) to infinity
depending on whether or not sgn(aj-ag) = sgn(bj-bg-p2). Further-
more, stability for any solution on the branch holds if P2
ag(by-p2)-ajbg and a0r02+(b1-p2)r12 are all positive. The
third quantity will change sign along a finite branch if ap
and b;-pp have opposite signs. In this case we know that in
the amplitude equations there will be a Hopf bifurcation. (Note: the
second and third quantities just listed are not elgenvalues
but determinant and trace of a 2x2 matrix for the eigenvalues.)
The Hopf. bifurcation will be super- or sub-critical according
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to the sign of a certain fifth-order expression (for example,
the icqg in the normal form), and will give a branch of stable
periodic solutlons in the amplitude equations (determined by
appropriate exchange of stabllities), in some cases terminating
in a homoclinic bifurcation (which could be calculated following
the recipe in Guckenheimer and Holmes (1983]). '

By a similar calculation, type 6 solutions, which satisfy
(5.2) with ry =r, and pg = p; = 0, are given by

(aj-ag)rg? + 2(bj-bg)r;2 = B | (5.5)
A =8+ agrg? + 2bgr,2 (5.6)

and join branches 1 and 3 according to the signs of coefficients
in (5.5). .Stabllity here requires p, < 0, agbj-ajbg > 0 and
aor02+2blr12 > 0. Again a Hopf bifurcation and a homoclinic
bifurcation are possible. Note that (5.3) becomes the same
as (5.5) and (5.4) becomes (5.6) if r; = 0; hence 4 and 6 bifurcate
from 1 as & double branch (but many combinations of sub- and
super-critical and finite and Infinite branches are possible).
Note that (because p, enters with opposite sign in each set
of conditions) at most one branch can be stable anywhere. This
double bif‘urcatioﬁ s again a consequence of 0(2)-equivariant
Hopf bifurcation mentioned above for the primary branches.
Thus only if both branches are super- or sub-critical can even
one be stable at inception, and then stability happens precisely
when | its:alf-' is supercritical, for then it gains or loses stability
at the secondary bifurcation. '

If 4 is stable near its bifurcation from 2, then P2, b1-p2
and ag(bj-pz)-ajbg are all positive, which implies that 2
is supercritical and gains or loses stability at the secondary -
bifurcation. The same Is true of 6 from 3. .

It is clear that there are too many possibilities to docu-
ment. Further study will undoubtedly reveal patterns and simplifi-"
cations. It is worth noting that for any choices of the coef-
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ficients, the bifurcation diagrams could easily be drawn - it
is only the multitude of them which makes the exercise unattrac-
tive. We mention some general principles that may be useful
in analysing the possibilities and then draw some sample bifurcation
diagrams for interesting cases. ’ . . .

(a)- If all three primary branches are supercitical, exactly
one fs stable near the trivial solution. A

(b) Only if a primary branch is supercritical can it ever
be stable. ,

(c) In order for a secondary bifurcation to be stable at
inception, the primary must be supercritical and stable
on one side of the bifurcation goint. ‘

It is possible for finite secondary branches to be stable over
their entire length when all three branches are supercritical
(and not otherwise). For example, Figure 5.1 shows how a secondary
(mixed mode) branch may connect the symmeti'y preserving (pulsating
flame) branch with a symmetry breaking (rotating wave) branch.
The mixed mode In this case would exhibit two distinct frequencies
in its spectrum. Other choices of the coefficients allow the
transition to proceed the other way (from rotating wave to pulsating
flame as A is increased), and alsc the transitions to the
other equivariant branch, the standing waves (nonplanar mode).
The mixed mode solution in this case will have frequencies character-

istic of pulsation and of the nonplanar .sode.

Figure 5.1
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Some caution should be observed in interpreting these diagrams.
Strictly speaking, we have analysed only the normal form equat‘ions,
and, at that, only the amplitude equations. The mixed mode
branch corresponds to an invariant torus in the Birkhoff normal
form, and this torus, when mapped back to the original equations,
may break up because the T2 symmetry that was invoked to reduce
to the Birkhoff normal form does not exist In the original coordin-
ates. Even in the somewhat simpler case of Sl symmetry due
to a periodic solution there is no theorem that says that all
of the dynamics in the normal form equations will be valid in
the original system. The present case is even more complicated
since, for example, the rational dependence of the two frequencies.
in the torus will be extremely sensitive to perturbation. In
fact, it is likely that all of the dynamics in the unfolding
will be very complicated indeed. However, an experiment will.
not distinguish between rational and irrational dependence either,
and a reasonable but difficult problem is to give a mathematical
framework for the entire reduction we have used here. We emphasize
that this difficulty exists in any formal "mode analysis" calcula-
tion, and is not caused by the explicit use of group theoretic
techniques. In fact, this approach may be useful for sharpening
the focus on the problem.

Returning to the possibilities for qualitatively different -
bifurcations in the normal form equations, one can see that
there are many possible ways for mode-jumping to occur when
a finite branch 4 or & is unstable. The case where the invariant
solution Jumps to the rotating wave as ) increases past a critical
value (A;) and jumps back as A decreases beyond a different
value (Xp) fis illustrated in Figure 5.2. For different signs
of the parameters, other possibilities occur.

One case that will not occur in this codimension two probiem
is a transition between the two symmetry breaking modes 2 and
3. Such branches occur only in unfoldings of the degeneracy
p2 = 0. This is the case studied by Erneux and Matkowsky, and
further analysed in Golubitsky and Roberts [1985]).
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Figure 5.3

Finally, Hopf and homoclinic bifurcation to stable tertiary
states will occur for certain choices of the fifth-order terms,
which have been omitted here. A Hopf bifurcation to a stable
tertiary mode may occur in 4 if 4 is'a finite branch which is
stable at one end and not at the other. That is accomplished
by choosing p3 > 0, ajbg < ag(by-p2) < 0 and the usual condi-
tion that (5.3) be an ellipse. One case is f{llustrated in
Figure 5.3, but there are many others. An example of a 'case
involving branch 6, and where also the stable Hopf bifurcation
is subcritical, is shown in Figure 5.4. The tertiary branches
in these two diagrams represent periodic orbits in the amplitude
equations, and hence  3-tori, or quasiperiodic solutions with
three independent frequencies, in the original physical model.
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Two of the three frequencies are close to wyg and w), but
the third varies from zero at the homoclinic point (the infinite
period bifurcation) to a value'determined by the third-order
terms at the bifurcation point.: -

Figure 5.4

VI. CONCLUSIONS AND DIRECTIONS FOR FURTHER STUDY

We have presented a sketch of the normal form calculation
for mode interaction of an 0{(2) symmetry preserving Hopf bifurca-
tion with an 0(2) symmetry breaking Hopf bifurcation. Our motivation
for this study was the thought that such a mode interaction
might be the basis for observed phenomena in a series of flame
stability experiments. In particular, the existence of transitions
from steady-states to radially symmetric pulsating solutions
(identified with type 1) and to nonsymmetric, time dependent
solutions (tentatively identified with type 2 or 3 or both)
under different experimental conditions motivates studyiﬁg whaf
happens when these two transitions are brought together in the
least degenerate way. That gives rise to the codimenéion two
problem studied here.

Let us suppose for a moment that under all experimental
conditions the parameters ag, aj, etc. in equation (5.2) and
all nondegeneracy. conditions retain the same signs. Then the
qualitatively different bifurcation sequences which are observed
will be the pairs obtained by considering both B8 < 0 :ané B'A
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> 0 for a given set of the other parameters. A choice consistent
with‘the hypothesis that spiral combustion is a rotating wavé
fs, for example, 38 > 0, bj-p2 > 0, bj > 0 and P2 > 0, which
means that all primary branches are supercritical and that 2
rather than. 3 is stable. As we saw branch | will be stéble.
at the bifurcation point, when B ¢ 0, and branch 2 will be
stable when g > 0. In" addition, secondary bifurcation from
I will occur if B(al-ao) > 0; since the sign of aj-ag Is
assumed fixed this means that if this term is negative the primary
branch will become unstable and if, in addition, bgal-ao(bl-pz)
> 0 a stable mixed mode will occur, as in Figure 5.1. In fact,
for definiteness. let us assume the other conditfons of Figure
5.1: "that this mixed mode branch is finite and stable over
Its entire length. Then under other experimental conditions
where everything is the same except the sign of ° B8 we find
that ‘there is no secondary bifurcation at all from the stable
primary branch 2: the situation Is as plctured in Figure 6.1.
This pair of predictions can be tested by fUrther experiments;
one of our immediate goals is to test the fdentification of
the branches and the usefulness ‘of the model by examining trans-

itions.

Figure 6.1

It is‘aISO possible that varying experimental conditions
changes the signs of some of the parameters. Then further degen-
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eracies, and a higher codimension problem, may be present.
This will necessarily be the case if both rotating and s;ta'nding'
waves can be observed,.since these correspond to different signs
of p2. At the moment the observations are not precise enough
to answer this. Normal form analysis could be useful in such
a case, since any model will be very complicated.

.If further experiments confirm that mode interaction fis
present, then it will be time to look at PDE models for the

porous plug burner, for example the model considered by Buck- ..

master [1983]. A necessary feature of a successful model will
be that the linearized problem will have purely imaginary eigenvalues
as described in the normal form model. :

Finally, more mathematical analysis Is necessary to put
the normal form analysis in a rigorous setting. It is not yet
understood how the invariant tori (quasiperiodic solutions cor-.
responding to branches 4 or 6) behave in even a finite dimensional .
system of ODE which is not in normal form, let alone in a PDE
model. But even the small amount of work done so far suggests

that this approach may give interesting results and that the . .

use of symmetry techniques may show a way in which some quite .

diverse physical problems have many features in common.
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