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Summary. We discuss several examples of synchronous dynamical phenomena in cou-
pled cell networks that are unexpected from symmetry considerations, but are natural
using a theory developed by Stewart, Golubitsky, and Pivato. In particular we demon-
strate patterns of synchrony in networks with small numbers of cells and in lattices
(and periodic arrays) of cells that cannot readily be explained by conventional symmetry
considerations. We also show that different types of dynamics can coexist robustly in
single solutions of systems of coupled identical cells. The examples include a three-cell
system exhibiting equilibria, periodic, and quasiperiodic states in different cells; peri-
odic 2n × 2n arrays of cells that generate 2n different patterns of synchrony from one
symmetry-generated solution; and systems exhibiting multirhythms (periodic solutions
with rationally related periods in different cells). Our theoretical results include the ob-
servation that reduced equations on a center manifold of a skew product system inherit
a skew product form.

1. Introduction

In this paper we describe examples of surprising kinds of synchrony and dynamics that
occur robustly in coupled cell networks as consequences of the network architecture. We
focus mostly, though not entirely, on features of the network architecture that go beyond
the symmetry of the network.

Such behavior will arise in real networks with the appropriate architecture if a model
using coupled differential equations is accurate enough. On the other hand, exotic be-
havior may occur in models because of apparently harmless modeling assumptions. In
the absence of any obvious symmetry or other “nongeneric” features of the network, the
role of these assumptions in generating the observed dynamics can easily be overlooked.
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For either reason, it is useful to have some understanding of how network architecture
affects typical dynamics. This paper illustrates a selection of these exotic dynamical
phenomena and goes some way toward explaining them.

We define a cell to be a finite-dimensional system of differential equations on a phase
space Rk . A coupled cell network C consists of N cells whose equations are coupled.
The phase space of C is P = Rk1 × · · · × RkN . A coupled cell system has the form

ẋi = fi (x), 1 ≤ i ≤ N ,

where xi ∈ Rki and fi : P → Rki . The architecture of a coupled cell system is a graph
that indicates which cells are coupled, which cells have the same phase space, and which
couplings are identical. A formal theory of coupled cell networks is developed in [13],
[12]. General internal dynamics and coupling are permitted in this theory. A theory of
weak coupling in the presence of symmetry is discussed in Ashwin and Swift [2] and
Brown et al. [3].

A coupled cell system is homogeneous if all cells have the same internal dynamics and
receive identical inputs from the same number of cells. In the diagram of a homogeneous
network we depict all cells using the same symbol (such as a square or circle), and all
edges using the same style of arrow. For example, the networks in Figures 1a and 1b are
homogeneous, whereas the network in Figure 8 is not. Most networks considered in this
paper are homogeneous.

Robust polysynchrony and balanced relations. A polysynchronous subspace is a sub-
space of the phase space P of a coupled cell network, in which cell coordinates xi are
equal on specified (disjoint) subsets of cells. A polysynchronous subspace is robustly
polysynchronous if it is flow-invariant for every coupled cell system with the given
network architecture. For example, the diagonal x1 = · · · = xN is always robustly
polysynchronous in a homogeneous cell network. Fixed-point subspaces of the group of
network symmetries are well-known to be flow-invariant [11], [9] and provide one way,
though not the only way, to obtain robustly polysynchronous subspaces.

In fact, all robustly polysynchronous subspaces can be characterized combinatorially.
Suppose that the cells in a network of identical cells are colored (where the colors
represent the classes of an equivalence relation). Following [13], [12] we say that the
coloring is balanced if each cell of a given color receives inputs from cells with the same
set of colors, including multiplicity. For example, the coloring of the 12-cell ring shown
in Figure 1c is balanced, because each black cell receives inputs from two black cells and
two white cells, and each white cell receives inputs from two black cells and two white
cells. However, the same coloring of the ring in Figure 1a is not balanced: Some black
cells receive inputs from two black cells, while others receive inputs from one black cell
and one white cell. It is proved in [13, Theorem 6.5] that a polysynchronous subspace is
robustly polysynchronous if and only if the cell network coloring given by coloring cells
that are equal with the same color is balanced. In fact, the general case of inhomogeneous
networks is treated in that theorem, with the same result. Balanced equivalence relations
are shown to lead to robustly polysynchronous subspaces by verifying that the differential
equations associated with each cell of a given color are identical when restricted to the
polysynchronous subspace. The converse requires more effort.



Some Curious Phenomena in Coupled Cell Networks 209

Balanced relations and quotient networks. In Section 5 of [13] it is shown that the
restriction of every coupled cell system to a robust polysynchronous subspace is itself
a coupled cell system corresponding to a “quotient network.” This statement is further
refined in [12] to the following construction. Given a balanced coloring, form the quotient
network whose cells are enumerated by the colors in the balanced relation, and whose
arrows are the projections of arrows in the original network to the quotient network.
More precisely, the number of arrows from color 1 to color 2 (the colors represent cells
in the quotient) is the number of arrows from cells of color 1 in the original network
to one cell of color 2 in that network. The three-color balanced relation in Figure 6a
whose quotient network is shown in Figure 7 provides a good example. A principal
theorem in [12] states that every coupled cell system on a quotient network lifts to a
coupled cell system on the original network. It follows that generic or typical behavior
in the quotient network lifts to generic behavior in the polysynchronous subspace. We
will use this result to prove that certain codimension-one bifurcations on the quotient
network (namely those that yield desired pattern of synchrony) imply codimension-one
bifurcations in the original network (to those same patterns).

Structure of the paper. As mentioned, polysynchronous subspaces are often gener-
ated by symmetry groups (since fixed-point subspaces of symmetry groups are flow-
invariant)—but not always. We begin by considering specific network architectures,
motivated by the intriguing patterns of synchrony that they display, despite a lack of
symmetry. In Section 2 we show that a 12-cell ring with nearest and next nearest neigh-
bor identical couplings can exhibit patterns of synchrony that cannot be predicted by
symmetry. Similarly, square arrays of cells with periodic boundary conditions and near-
est neighbor coupling can lead to a huge number of synchronous solutions (in which the
pattern of synchrony can have random features). This example is discussed in Section 3.

Multirhythms (time-periodic solutions where the frequencies exhibited in each cell
are rationally related) can result from certain types of network architecture. Section 4
focuses on coupled rings and the symmetry group of the network to prove the existence
of multirhythm solutions. The tool we use is the H /K Theorem [4], [9].

Certain network architectures can force solutions that exhibit different dynamical
characteristics in different cells. We analyze a three-cell feed-forward network in Sec-
tions 5 and 6 that illustrates this point. We first show the existence of synchrony-breaking
bifurcations in codimension one that have nilpotent normal forms. The nilpotency is a
straightforward consequence of a feed-forward network. In ordinary Hopf bifurcation it
is well known that the amplitude of the bifurcating branch of periodic solutions grows at

the rate of λ
1
2 , where λ is the deviation of the bifurcation parameter from criticality. We

show that in a three-cell feed-forward network, codimension-one Hopf bifurcation can
lead to stable periodic solutions that are in equilibrium in cell 1 and periodic in cells 2
and 3 with the same period. The amplitude of the solution in cell 2 grows at the expected

rate of λ
1
2 , whereas the amplitude of the solution in cell 3 grows at the unexpected rate

of λ
1
6 . Section 6 shows that a secondary bifurcation can lead to solutions that are in

equilibrium in cell 1, periodic in cell 2, and quasiperiodic in cell 3.
In the final two sections we point to curious features of coupled cell systems that

do not currently have adequate explanations. Section 7 gives an example of a network
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that is in no sense feed-forward, but which nevertheless leads naturally to nilpotent lin-
earizations in codimension-one synchrony-breaking bifurcations. Neither the dynamical
consequences of these nilpotent linearizations nor the network architectural reasons for
their existence are yet understood. Section 8 presents results from simulation of a system
of two unidirectional rings coupled through a “buffer cell,” where solutions appear to
be rotating waves in each ring with a well-defined frequency for each ring—but with
incommensurate frequencies in the two rings. Actually, appearances are deceptive, but
experimental observations may give that impression.

The main point of this paper is to present diverse examples that illustrate the impli-
cations of network architecture for the nonlinear dynamics of coupled cell systems.

We use the following notation for certain standard finite groups: Zn is the cyclic group
of order n (and the symmetry group of a directed ring of n cells); Dn is the dihedral
group of order 2n (and the symmetry group of a birectional ring of n cells); and Sn is the
permutation group on n symbols of order n! (and the symmetry group of an all-to-all
coupled n cell system).

2. Patterns in Rings

Our first example is a bidirectional ring of 12 cells with nearest neighbor and next nearest
neighbor identical coupling. See Figure 1b. More generally, let G N be a bidirectional
ring of N cells with nearest neighbor and next nearest neighbor coupling. That is, label
the cells by elements of ZN and couple cell i to cells i − 2, i − 1, i + 1, i + 2, with all
arrows identical. The system of differential equations corresponding to this graph has
the form

ẋi = f (xi , xi+1, xi+2, xi−1, xi−2 ), (2.1)

for 0 ≤ i ≤ N − 1, where the overline indicates that f is invariant under permutation
of the last four arguments. We take N ≥ 5 to avoid multiple arrows.

It is well known that fixed-point subspaces are flow-invariant in symmetric sys-
tems [11], [9]. We will shortly prove the plausible fact that that both rings in Figures 1a
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Fig. 1. Twelve-cell bidirectional rings: (a) nearest neighbor coupling; (b) nearest and next nearest
neighbor coupling; (c) a balanced equivalence relation on G12.
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and 1b have the same symmetry group D12. This implies that they both have several
robustly polysynchronous subspaces that are forced by symmetry. However, we show
that the 12-cell ring with next nearest neighbor coupling supports a robust pattern of
synchrony that is not determined by the D12 symmetry group, namely, the one shown in
Figure 1c. In contrast, the 12-cell ring with nearest neighbor coupling does not support
this pattern robustly. The distinction arises because the symmetry groupoids [13] are
different in the two networks, and the ring G12 with next nearest neighbor coupling has
a balanced equivalence relation that is not balanced for the ring with nearest neighbor
coupling.

The automorphism group of a directed graph consists of all permutations of the cells
that preserve arrows (and any labels for cell type or arrow type). It is trivial to prove
that the automorphism group of the nearest neighbor ring is the obvious group D12. In
Lemma 2.1 below we prove that when N ≥ 7 the same is true for the automorphism
group Aut(G N ). This result is presumably well known, but we have not found an explicit
statement in the literature.

We now continue with the example. The subspace

W = {(x, x, x, y, y, y, x, x, x, y, y, y)}

is robustly polysynchronous in the network of Figure 1b but not in Figure 1a. This is
because the coloring of the ring with both nearest and next nearest neighbor coupling
pictured in Figure 1c is balanced, whereas the corresponding coloring when next nearest
neighbor couplings are deleted is not balanced. Now [13, Theorem 6.5] implies that the
space W is robustly polysynchronous in Figure 1c only.

This pattern of synchrony has a striking structure, but it does not arise from the fixed-
point space of a subgroup of D12. In fact, the subgroup H of D12 that fixes a generic
point in W (that is, fixes the pattern) has order 4 and is generated by two reflections in
orthogonal diameters of the ring. However, the fixed-point subspace of this subgroup

Fix(H) = {(x1, x2, x1, y1, y2, y1, x1, x2, x1, y1, y2, y1)}

has dimension 4, not 2. In particular, in that fixed-point subspace, the central cell in each
block of three does not have the same color as its two neighbors.

We can think of the 12-cell ring as the “double cover” of the corresponding 6-cell
ring. Indeed, there is a quotient map from G12 to G6 in which cells i, i + 6 map to cell
i for i = 0, . . . , 5. The corresponding pattern in G6 corresponds to the polydiagonal
{(x, x, x, y, y, y)}. However, the exceptional nature of Aut(G6) (see Lemma 2.1) implies
that this space is the fixed-point space of a subgroup of Aut(G6).

There are many similar examples. In G10 the subspace

{(x, x, y, x, y, x, x, y, x, y)}

corresponds to a balanced equivalence relation that is not balanced on a nearest-neighbor
ring; this pattern does not arise from the fixed-point space of a subgroup of D10 (although
the corresponding pattern (x, x, y, x, y) does arise in that manner in the quotient network
G5). The same goes for the pattern (x, x, x, y, y, x, x, x, y, y). With more than two
colors, numerous examples can be devised.
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Stable equilibria can exist in any polysynchronous subspace. Suppose that a coupled
network of N identical cells has a robust polysynchronous subspace V . We remark here
that there exists an asymptotically stable equilibrium in V for some admissible coupled
cell network. To simplify the discussion assume that the internal dynamics in each cell
is one-dimensional. Let X0 be any point in V . For each input equivalence class of cells
i1, . . . , is choose a function g: R→ R such that g(xij ) = 0 and g′(xij ) < 0. Let f be
the vector field formed with each of the coordinate functions equal to the appropriate g.
(Note that f is uncoupled.) Then f is admissible (see results in [13]), f (X0) = 0, and
X0 is asymptotically stable.

Existence of polysynchronous equilibria in W by primary bifurcation. The cell
equations (2.1) restricted to W in the network in Figure 1b have the form

ẋ = f (x, y, y, x, x ),

ẏ = f (y, x, x, y, y ),

where the overline indicates that f is invariant under permutations in the last four
variables. Using this form we show that equilibria lying in W can arise from a fully
synchronous equilibrium by a primary steady-state bifurcation. This calculation can be
performed on the flow-invariant subspace W .

For simplicity assume that the phase space for each cell is one-dimensional. Let J be
the Jacobian of the cell system at a synchronous equilibrium restricted to W . Then

J =
[

A + 2B 2B
2B A + 2B

]
,

where A is the linearized internal dynamics and B is the linearized coupling. Then the
eigenvalues of J are A+ 4B and A with eigenvectors (1, 1)t and (1,−1)t , respectively.
Suppose that the eigenvalue A moves through 0 with nonzero speed as a parameter is
varied. Then, because the eigenvector has unequal components, the branch of bifurcating
equilibria will have unequal coordinates in W and correspond to the desired pattern.

Computation of Aut(G N ).

Lemma 2.1. Let G N , N ≥ 5 be a bidirectional ring of N cells with nearest neighbor
and next nearest neighbor coupling. Then its automorphism group is

(a) Aut(G N ) = DN if N ≥ 7.
(b) Aut(G5) = S5.
(c) Aut(G6) = 〈D6, (03), (14)〉 (is of order 48).

Proof. Suppose for a contradiction that Aut(G N ) contains a permutation σ �∈ DN . By
composing σ with a suitable element of DN we may assume, without loss of generality,
that σ(0) = 0 and σ(1) = 1. Let K be a sequence of consecutive elements of ZN

(in cyclic order) that contains 0, 1 and is maximal subject to σ(k) = k for all k ∈ K .
Composing with a suitable rotation in DN we may assume that

K = {0, 1, . . . , k}.
We claim that when N ≥ 7 we must have K = ZN , in which case σ = id ∈ DN , a

contradiction. Specifically, we prove by induction on |K | that if k < N − 1 then K is
not maximal.
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We know that K contains 0, 1. Suppose that |K | = 2; so K = {0, 1}. The only cells
that connect to both 0 and 1 are −1, 2 and these are distinct since N ≥ 5. Therefore
σ(2) = −1 and σ(−1) = 2. Now cell 3 connects to both cells 1 and 2, and so σ(3)
connects to both cells−1 and 1. When N ≥ 7 the only such cell is cell 0, and so σ(3) = 0
contrary to σ being a bijection.

Next, suppose that |K | = 3. Cell 3 connects to cells 1 and 2, and so σ(3) also connects
to cells 1 and 2. When N ≥ 7 the only such cells are 0 and 3. Since σ is a bijection,
we must have σ(3) = 3, contradicting maximality of K . The same argument, applied
to cell k + 1, works when |K | ≥ 4 and K = {0, 1, . . . , k}. The assumption N ≥ 7 is
needed in the proof because extra connections exist for small rings with N = 5, 6. We
now analyze these two cases, for completeness.

When N = 5 the graph G5 is the complete graph on 5 nodes, so its automorphism
group is the full symmetric group S5. When N = 6 the proof strategy permits an extra
automorphism (0 3), together with its conjugates (1 4) and (2 5) by D6, and products
of these (but nothing else). These three transpositions generate a group Z2 × Z2 × Z2.
Now, the product (1 3)(1 4)(2 5) is the rotation i �→ i + 6, which lies in D6, and so the
group 〈D6, (0 3), (1 4), (2 5)〉 has order 48 and the generator (2 5) is redundant.

3. Periodic Arrays

The notion of a balanced equivalence relation or coloring applies to the architecture of
lattice dynamical systems, and is a powerful tool for determining patterns of synchrony
not suggested by the group-symmetry approach. An investigation of admissible patterns
in square arrays of coupled cells with Neumann boundary conditions (and their stability)
is given from a symmetry viewpoint in Gillis and Golubitsky [7]. We consider here square
arrays with nearest neighbor coupling and periodic boundary conditions; however, many
of the results from [7] are relevant. In related work, Chow et al. [5], [6] consider lattice
arrays with nearest and next nearest neighbor coupling.

Consider an m ×m array of cells, with bidirectional nearest neighbor coupling (hor-
izontal and vertical coupling only) and periodic boundary conditions, as pictured in
Figure 2. The symmetry group of such an array is the semidirect product � = D4+̇Z2

m .
(This product is semidirect since some of the elements of D4 and Z2

m do not commute.)
We show that balanced coloring predicts the existence of equilibria with patterns of

synchrony that have a certain kind of spatial randomness whenever a certain kind of
regularly patterned equilibrium exists. We discuss both 2-color and 3-color balanced
relations. The implications of balanced relations are not limited to dynamics consisting
solely of equilibria. We also show that solutions in which there are time-periodic cells,
some of which are half-a-period out of phase and some of which oscillate at twice the
frequency, can occur naturally in periodic arrays.

Two-Color Balanced Relations

Equilibria. Periodic patterned states may be found in 4n × 4n periodic lattices with
two colors, as Figure 3 shows. Figure 3a is a 4-periodic balanced coloring with two
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Fig. 2. An m × m periodic array of cells.

colors: black and white. It is balanced because each cell receives two white and two
black inputs. We note that this very regular pattern does not result from symmetry. To
verify this point, observe that the isotropy subgroup 	 of the pattern is generated by
horizontal and vertical translations by 4 cells (the pattern is 4-periodic), by translation
along the main northwest-southeast diagonals (the pattern has constant colors along
diagonals), and by reflection across the main northeast-southwest diagonal. However,
Fix(	) consists of 4-periodic patterns that have constant color along northwest-southeast
diagonals; that is, the patterns in Fix(	) are generically four-color patterns.

Figure 3c is another balanced coloring that results from the previous pattern by in-
terchanging black and white along one northeast-southwest diagonal. More precisely, to
generate the new equilibria, choose any diagonal that slopes upward to the right, such as
the one shown in Figure 3b. For cells on this diagonal, change black to white and white
to black. This new pattern of colors also gives rise to a balanced relation, Figure 3c. As
before, the relation is balanced because every cell is coupled to two black cells and to
two white cells.

(a) (b) (c)

Fig. 3. Two-coloring polysynchronous subspaces of a 4n × 4n periodic array: (a) basic pattern;
(b) specified diagonal; (c) new pattern.
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(a) (b) (c)

Fig. 4. Polysynchronous subspaces of a two-color 64× 64 periodic array: (a) the regular pattern;
(b) dislocation pattern obtained by interchanging each 6th diagonal; (c) interchanges on a random
selection of 25 diagonals.

The equations governing black xB and white xW cells in Figure 3a, where xB(t) and
xW (t) are functions of time, are

ẋB = f (xB, xW , xW , xB, xB ),

ẋW = f (xW , xB, xB, xW , xW ),
(3.1)

since f (x1, x2, x3, x4, x5 ) is invariant under permutation of the last four variables; that is,
all couplings are identical. In Figure 3c the equations for the black cells all have the same
form. Thus at each xB site the same differential equation governs the behavior of the xB

cells in both Figure 3a and Figure 3c. The same is true for white cells in both figures.
Hence solutions of the coupled system are taken to solutions by the parity swap. Wang
and Golubitsky [14] enumerate all two-color patterns of synchrony for square arrays.

It is well known that symmetry operations preserve stability of equilibria. However,
parity swapping is not a symmetry operation and thus need not preserve the stability of
solutions. Stability is preserved in the two-dimensional polysynchronous subspaces, but
not in transverse directions.

Parity swapping along diagonals can lead to 16n different equilibria. To see this,
note that there are 4n diagonals in a 4n × 4n array and two different equilibria are
associated with each diagonal, thus yielding 24n = 16n equilibria. Parity swaps can
generate “random” spatial patterns in the sense that along any selected vertical column
there is a polysynchronous subspace that corresponds to an arbitrary sequence of black
and white cells. In Figure 4 we illustrate the symmetric pattern on a 64×64 grid of cells
and two different types of black and white interchanges on multiple diagonals.

Primary bifurcation to patterned equilibria. By (3.1) the restriction of the full cou-
pled cell system to the two-color polysynchronous subspace is itself a two-cell system
corresponding to the symmetric quotient network of Figure 5.

For simplicity, suppose that the phase space for each cell is one-dimensional. The
fully synchronous subspace xB = xW is flow-invariant, so the Jacobian of (3.1) at a
synchronous state has an eigenvector in the direction (1, 1)t (where t is the transpose).
By symmetry it also has one in the direction (1,−1)t . It is straightforward to arrange
that the eigenvalue associated with the symmetry-breaking eigendirection moves through
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Fig. 5. Quotient network for the
two-color balanced relations in
Figures 3 and 4.

zero with nonzero speed. Therefore a pitchfork bifurcation to the patterned solutions of
Figure 3 will occur as a result of this codimension-one bifurcation.

Periodic states. Consider again the quotient network in Figure 5. The key observation
about quotient networks is that coupled cell systems in the quotient network lift to
coupled cell systems on the original network [12]. Moreover, this quotient network
supports periodic solutions in which the left cell is half-a-period out of phase with the
right cell. This solution can arise from Hopf bifurcation with two-dimensional internal
dynamics [13]. Such a periodic solution lifts to any of the seemingly random two-
colorings of the lattice, giving rise to periodic solutions in which black cells are half-a-
period out of phase with white cells.

Three-Color Balanced Relations

Equilibria. There is a three-color balanced relation on a 2n × 2n grid associated with
the periodic symmetric pattern Figure 6a, so this pattern of synchrony corresponds to a
robustly polysynchronous subspace. We first show that the existence of an equilibrium
with this pattern of synchrony forces the coexistence of 2n different equilibria with
patterns of synchrony that have a certain kind of randomness. Then we show that the
symmetric equilibrium (and hence all of these equilibria) occurs naturally in primary
bifurcations in such coupled cell arrays.

New equilibria by parity swap on a diagonal. Again we may choose any diagonal
that slopes upward to the right and alternates black and white cells, and interchange
black and white. This new pattern is also a balanced relation, Figure 6c. In both patterns,

(a) (b) (c)

Fig. 6. Three-color polysynchronous subspaces of a 2n × 2n periodic array.
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every black cell is coupled to four gray ones, every white cell is coupled to four gray
ones, and every gray cell is coupled to two black and two white cells; so the relation is
balanced. There are n diagonals that alternate black and white, and there are two choices
of color on each diagonal, so there are 2n different equilibria associated with this pattern
of synchrony.

The differential equations governing black xB , white xW , and gray xG cells in Figure 6
satisfy

ẋB = f (xB, xG, xG, xG, xG ),

ẋW = f (xW , xG, xG, xG, xG ),

ẋG = f (xG, xB, xW , xB, xW ),

(3.2)

since f (x1, x2, x3, x4, x5 ) is invariant under permutation of the last four variables. These
equations are the same for both figures. Hence solutions of the coupled system are taken
to solutions by the parity swap.

The three-color pattern is determined by symmetry. We begin by determining the
isotropy subgroup	 ⊂ � of the symmetric patternP illustrated in Figure 6a. The pattern
P consists of 2× 2 blocks repeated periodically, so	 contains Z2

n , generated by the cell
translations (l,m) �→ (l + 2,m) and (l,m) �→ (l,m+ 2). Moreover, reflection ρ across
the main diagonal, where ρ(l,m) = (m, l), is a symmetry of P . Indeed,

	 = Z2(ρ)+̇Z2
n.

Since generic points in Fix(	) consists of states that have pattern P , the pattern in
Figure 6a is determined by the subgroup 	.

Primary bifurcation to the symmetric pattern. We now show that the pattern P may
arise as a primary bifurcation from a fully synchronous equilibrium (where all cells
are in the same state). For simplicity we assume that the phase space for each cell is
one-dimensional. Denote the restriction (3.2) of the 4n2-dimensional coupled system
to the three-dimensional polysynchronous subspace Fix(	) by Ẋ = F(X). A fully
synchronous equilibrium satisfies xB = xW = xG , which without loss of generality we
may assume to be (0, 0, 0). Denote the linearization (DF)0 by L . A straightforward
calculation shows that

L =
 α 0 4β

0 α 4β
2β 2β α

 = α I4 + 2β

0 0 2
0 0 2
1 1 0

,
where α is the linearized internal dynamics of the cell and β is the linear coupling
between cells. It is equally straightforward to check that the eigenvalues of L are α+4β
with eigenvector (1, 1, 1)t ; α− 4β with eigenvector (1, 1,−1)t ; and α with eigenvector
(1,−1, 0)t .

It might seem surprising that the 3 × 3 matrix L always has real eigenvalues. This
can be understood in several different ways. First, by direct calculation, as we have
just done. Second, by observing that the one-dimensional subspace xB = xW = xG

(this is Fix(�)) and the two-dimensional subspace xB = xW (this is Fix(ρ⊥), where
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Fig. 7. Quotient network for the three-color bal-
anced relations in Figure 6.

ρ⊥(l,m) = (2n+1−m, 2n+1− l)) are flow-invariant. Hence, L must leave these sub-
spaces invariant and have real eigenvalues. Third, we recall from [12] that the restriction
of a coupled cell system to a robust polysynchronous subspace is a coupled cell system
on the associated quotient network. In this case the three-color balanced coloring leads
to the quotient network in Figure 7. Then the flow-invariant subspaces correspond to bal-
anced colorings in the quotient network instead of to fixed-point subspaces of subgroups
of the symmetry group � of the lattice. The multiarrows in Figure 7 reflect the fact that
each gray cell receives two white and two black inputs, and each black and each white
cell receives four gray inputs.

Returning to the bifurcation analysis, if (3.2) depends on a parameter λ and if α(λ)
moves through 0 with nonzero speed, then a branch of equilibria will appear as generic
points in Fix(	) (since the corresponding eigenvector is (1,−1, 0)t ), and these equilibria
will have pattern P in the original lattice. The bifurcation also breaks the Z2 symmetry
ρ and therefore must be generically of pitchfork type.

Periodic states. The quotient system in Figure 7, with two-dimensional internal dynam-
ics, supports Hopf bifurcation to a periodic solution in which the center cell has twice
the frequency of the end cells and the end cells are half-a-period out of phase. Such a
periodic solution lifts to a periodic solution on the lattice with corresponding dynamics
(gray cells at twice the frequency of white and black cells, which are half-a-period out
of phase with each other).

Remark 3.1. Chow et al. [5], [6] study lattice dynamics and call solution patterns
mosaic patterns. For a class of lattice differential equations with nearest neighbor and next
nearest neighbor coupling, conditions for existence and stability of mosaic patterns have
been obtained [5, Theorems 3.1, 3.2]. These conditions are specific to the particular site
map of the lattice differential equation considered and phrased in terms of the parameters
of the site map and the coupling strengths. Although there is some relation between the
mosaic patterns and our three-color patterns of synchrony (indeed, some of the patterns
are identical), the results are quite different. Our results are model-independent, discuss
nonequilibrium patterned states, do not allow next nearest neighbor coupling, and do not
include a stability analysis; the results of Chow et al. are model-specific, apply only to
equilibria, do allow longer range coupling, and do discuss stability.

4. Multirhythms

In this section we consider the phenomenon of multirhythms—hyperbolic periodic so-
lutions whose projections in different cells have fundamental periods that are rationally,



Some Curious Phenomena in Coupled Cell Networks 219

but not integrally, related. Our results in this section are based upon symmetry arguments
and go against the grain of the rest of the paper, but for completeness we have included
them here. Similar phenomena can occur in any network (possibly asymmetric) that pos-
sesses a balanced equivalence relation whose quotient network is the same as the ones
discussed here. (An example of a nonsymmetric network with a symmetric quotient is
given in [13, Figure 6].) We will use the H /K theorem [4], [9] to show that multirhythms
may be generated by cyclic symmetry of the coupled cell network.

Coupled cell dynamics can lead to situations where different cells are forced by
symmetry to oscillate at different frequencies [8], [11], [1]. In bidirectional rings, it
is well known that certain cells can be forced by symmetry to oscillate at twice the
frequency of other cells—but the range of possibilities is much greater. In general, the
ratio of frequencies between cells of solutions whose existence is forced by symmetry
need only be rational; when the ratio is a noninteger rational number, we call the periodic
solution a multirhythm. We use the network pictured in Figure 8 as a first example, and
our exposition follows that in [10]. We then show that for each rational number r there
is a coupled cell network that can exhibit multirhythms with frequency ratio r .

In symmetric systems with finite symmetry group �, the H /K theorem gives nec-
essary and sufficient conditions for the existence of periodic solutions with prescribed
spatiotemporal symmetries in some �-equivariant vector field.

Let X (t) be a periodic solution of a �-equivariant system of ODE. Define

K = {γ ∈ � : γ X (t) = X (t) ∀t},
H = {γ ∈ � : γ {X (t)} = {X (t)}}. (4.1)

The subgroup K is the group of spatial symmetries of X (t) and the subgroup H of
spatiotemporal symmetries consists of those symmetries that preserve the trajectory of
X (t). Suppose that h ∈ H . Then by uniqueness of solutions h X (t) = X (t+ θ) for some
phase shift θ ∈ S1. The pair (h, θ) is also called a spatiotemporal symmetry of X (t).

Let

L K =
⋃

γ∈H\K
Fix(γ ). (4.2)

Theorem 4.1 (H /K Theorem [4], [9]). Let � be a finite group acting on Rn. There is a
periodic solution to some �-equivariant system of ODE on Rn with spatial symmetries
K and spatiotemporal symmetries H if and only if

(a) H /K is cyclic.
(b) K is an isotropy subgroup.
(c) dim Fix(K ) ≥ 2. If dim Fix(K ) = 2, then either H = K or H = N (K ).
(d) H fixes a connected component of Fix(K ) – L K .

Moreover, when these conditions hold, there exists a smooth �-equivariant vector field
with an asymptotically stable limit cycle with the desired symmetries.

A Three-Cell Ring Coupled to a Two-Cell Ring. We start with an illustrative example
of a multirhythm. Consider the five-cell network consisting of a unidirectional ring of
three cells and a bidirectional ring of two cells pictured in Figure 8. The cells in the
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1 2

4 5

3

Fig. 8. Five-cell system made
of a ring of three and a ring of
two.

three-cell ring are assumed to be different from those in the two-cell ring. Hence the
differential equations are assumed to be unrelated, so the general system of differential
equations associated with this network has the form

ẋ1 = f (x1, x2, x3, y1, y2 ),

ẋ2 = f (x2, x3, x1, y1, y2 ),

ẋ3 = f (x3, x1, x2, y1, y2 ),

ẏ1 = g(y1, y2, x1, x2, x3 ),

ẏ2 = g(y2, y1, x1, x2, x3 ).

(4.3)

Here the bars indicate that f is symmetric in the yj and g is symmetric in the xj , that is,

f (x1, x2, x3, y1, y2) = f (x1, x2, x3, y2, y1),

g(y1, y2, x1, x2, x3) = g(y1, y2, x2, x1, x3) = g(y1, y2, x2, x3, x1).

Inspection of either the network architecture in Figure 8 or the cell system in (4.3)
shows that these equations have symmetry group

� = Z3(ρ)× Z2(κ) ∼= Z6,

where ρ = (1 2 3) and κ = (4 5) are cell permutations.
We will use the H /K theorem (Theorem 4.1) to show that systems of differential

equations of the form (4.3) can produce multirhythms. Observe that (4.3) is the general
Z6-equivariant vector field on the five-cell state space. In particular, we look for a periodic
solution

X (t) = (x1(t), x2(t), x3(t), y1(t), y2(t))

to (4.3) with symmetry (H, K ) = (Z6, 1). Without loss of generality we may assume
that X (t) is a 1-periodic solution. First, we show that such a solution is a multirhythm,
then we show that the H /K theorem implies that such a solution exists, and finally we
discuss how one might find a system with such a solution (it cannot arise as a primary
branch through an equivariant Hopf bifurcation).
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Solution symmetry is equivalent to multirhythms. By assumption on (H, K ) the
periodic solution X (t) has the spatiotemporal symmetry

τ = ((1 2 3)(4 5), 1
6 ).

Therefore X (t) has the symmetries

τ 2 = ((1 2 3), 1
3 ), τ 3 = ((4 5), 1

2 ).

The τ 2 symmetry forces the xj to be a discrete rotating wave. The τ 3 symmetry forces
the yi to be a half-period out of phase with each other. Thus

X (t) = (x(t), x(t + 1
3 ), x(t + 2

3 ), y(t), y(t + 1
2 )).

This solution is a multirhythm, because three times the frequency of y is equal to twice
the frequency of x . (In detail: τ 3 symmetry implies that x(t) = x(t+ 1

2 ), and τ 2 symmetry
implies that y(t) = y(t + 1

3 ). So the period of x(t) is 1
2 and the period of y(t) is 1

3 , and
so the ratio of the periods is 3/2, a multirhythm.)

H /K Theorem implies existence of multirhythms. We now give the existence proof.
The phase space of (4.3) is P = (Rk)3 × (Rl)2. Since every Z6-equivariant vector field
on P is of the form (4.3), Theorem 4.1 states that a periodic solution X (t) with the
desired spatiotemporal symmetry exists in the family (4.3) if the pair (Z6, 1) satisfies
(a)–(d). It is straightforward to check that (a)–(c) are satisfied. We claim that (d) is also
valid when l ≥ 2. To verify this point, observe that

L1 = {(x, x, x, y1, y2)} ∪ {(x1, x2, x3, y, y)},

and hence codim(L1) = min{2k, l} > 1. In particular, P \ L1 is connected, and so under
the assumption l ≥ 2, condition (d) is automatically satisfied. Note that (d) fails when
l = 1.

Multirhythms are secondary states the five-cell network. We now know that the
required periodic solution exists. However, there is a difficulty in actually finding that
solution, since no such solution is supported by a primary Hopf bifurcation in this coupled
cell system. Specifically, the equivariant Hopf theorem [11], [9] implies that a periodic
solution with (Z6, 1) symmetry can appear from a Hopf bifurcation in a �-equivariant
system only if some subgroup of � has a two-dimensional irreducible representation in
P whose effective action is the standard action of Z6 on R2. It is straightforward to verify
that the action of � = Z3 × Z2 on P has no such irreducible representation.

There does, however, exist a more complicated bifurcation scenario that contains
such a representation: primary Hopf bifurcation to a Z3 discrete rotating wave, followed
by a secondary Hopf bifurcation using the nontrivial Z2 representation. We present a
numerical example of a 3:2 resonant solution arising by such a scenario. Let x1, x2, x3 ∈
R be the state variables for the ring of three cells and let y1 = (y1

1 , y1
2), y2 = (y2

1 , y2
2) ∈
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Fig. 9. Integration of (4.3): (a) cells 1-2-3 out of phase by one-third period; (b) cells 4-5 out of
phase by one-half period.

R2 be the state variables for the ring of two cells. Consider the system of ODE

ẋ1 =−x1 − x3
1 + 2(x1 − x2)+ D(y1 + y2)+ 3((y1

2)
2 + (y2

2)
2),

ẋ2 =−x2 − x3
2 + 2(x2 − x3)+ D(y1 + y2)+ 3((y1

2)
2 + (y2

2)
2),

ẋ3 =−x3 − x3
3 + 2(x3 − x1)+ D(y1 + y2)+ 3((y1

2)
2 + (y2

2)
2),

ẏ1 = B1 y1 − |y1|2 y1 + B2 y2 + 0.4(x2
1 + x2

2 + x2
3)C,

ẏ2 = B1 y2 − |y2|2 y2 + B2 y1 + 0.4(x2
1 + x2

2 + x2
3)C,

(4.4)

where

B1 =
(− 1

2 1
−1 − 1

2

)
, B2 =

(−1 −1
1 −1

)
, D = (0.20,−0.11), C =

(
0.10
0.22

)
.

Starting at the initial condition,

x0
1 = 1.78, x0

2 = −0.85, x0
3 = −0.08,

y0
1 = (−0.16, 0.79), y0

2 = (0.32,−0.47).

We obtain the numerical solution shown in Figures 9 and 10. Additional examples of
multirhythms are presented in [9].

A p-Cell Ring Coupled to a q-Cell Ring. We end this section by generalizing the
previous example to a class of networks that shows that all possible multirhythms can
occur as rotating waves in a network composed of two coupled rings. Suppose that p
and q are coprime with p > q. Consider a network consisting of unidirectional rings
of size p and q , where each cell in one ring is coupled equally to all cells in the other
ring, as illustrated in Figure 8 for (p, q) = (3, 2). This network, whose phase space is
P = (Rk)p × (Rl)q , has symmetry group Zpq

∼= Zp × Zq .
Assume that either q > 2 or l > 1. Then periodic solutions with H = Zpq and K = 1

can exist (for suitable choices of the vector field) by the H /K theorem, since the form
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Fig. 10. Integration of (4.3): (a) time series of cells 1 and 4 indicating that triple the frequency of
cell 4 equals double the frequency of cell 1; (b) plot of cell 1 versus cell 4 showing a closed curve
that indicates a time-periodic solution.

of the coupled cell system is the general Zpq -equivariant vector field. We may assume
that such a solution has period 1. As in the (p, q) = (3, 2) case, symmetry implies that
the solution is a discrete rotating wave in each ring. The p ring output has frequency 1/q
and the q ring output has frequency 1/p, which yields the frequency ratio p/q .

5. Three-Cell Feed-Forward Network: Periodic

We now discuss the linearizations of coupled cell systems about synchronous equilibria,
showing that the normal forms can have unusual features. In this section we consider the
three-cell feed-forward network illustrated in Figure 11. We observe that one-parameter
synchrony-breaking leads naturally to nilpotent normal forms in these networks and to
solutions that are equilibria in cell 1 and periodic in cells 2 and 3. Surprisingly, for a
large class of bifurcations in these coupled cell systems, the amplitude growth of the
periodic signal in cell 3 is to the power 1

6 rather than the expected 1
2 power of amplitude

growth with respect to the bifurcation parameter in Hopf bifurcation.
This network has a feature that is not present in the previous networks—the first cell

is coupled (externally) to itself [12], though in fact this point is not crucial. The coupled

1 2 3

Fig. 11. Three-cell linear feed-forward network.
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cell systems corresponding to this three-cell network have the form

ẋ1 = f (x1, x1),

ẋ2 = f (x2, x1),

ẋ3 = f (x3, x2).

(5.1)

A special codimension-one synchrony-breaking Hopf bifurcation. We assume that
the feed-forward coupled cell system (5.1) is in normal form in the sense of (5.3) below.
We then prove that the generic one-parameter nilpotent Hopf bifurcation of the type
governed by (5.2) leads to a periodic motion in cell 3 with period identical to that of
cell 2.

We begin by assuming that the internal dynamics for each cell is two-dimensional
and that (0, 0, λ) is a stable equilibrium for

ẋ1 = f (x1, x1, λ).

The Jacobian at the equilibrium (0, 0, 0) for (5.1) has the formA + B 0 0
B A 0
0 B A

, (5.2)

where A = Du f (0, 0, λ) is the linearized internal cell dynamics and B = Dv f (0, 0, λ)
is the linearized coupling. We assume, as above, that A+B has eigenvalues with negative
real part. Next we assume that there is a Hopf bifurcation for cell 2 at λ = 0; that is, A
has purely imaginary eigenvalues at λ = 0. It follows from (5.2) that purely imaginary
eigenvalues of A have multiplicity two as eigenvalues of the Jacobian. It is straightforward
to arrange for the equation

ẋ2 = f (x2, 0, λ)

to have a unique stable limit cycle when λ > 0. With these assumptions cell 1 has an
asymptotically stable equilibrium at the origin and cell 2 has a small amplitude stable
limit cycle.

Next we assume that f is in “normal form” for Hopf bifurcation in the following
sense. We can identify the two-dimensional phase space of each cell with C; then the
S1-equivariance of normal form implies

f (eiθu, eiθ v) = eiθ f (u, v). (5.3)

More specifically,

f (u, v, λ) = a(|v|2, vu, |u|2, λ)u + b(|v|2, vu, |u|2, λ)v, (5.4)

where a and b are complex-valued functions. Note that this is not the normal form for
the nilpotent Hopf bifurcation that occurs in the feed-forward system; it is a special
assumption.
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Proposition 5.1. Suppose that (5.1) has two-dimensional internal dynamics f of the
form (5.4). Suppose that a synchrony-breaking Hopf bifurcation occurs in cell 2 as the
bifurcation parameter λ is varied through 0; that is,

Re(a(0))= 0,

Re(aλ(0)) > 0.
(5.5)

In addition, make the stability assumptions

Re(b(0)) < 0,

Re(a3(0)) < 0.
(5.6)

Then there is a unique supercritical branch of asymptotically stable periodic solutions
emanating from this bifurcation with the first cell being in equilibrium and the periods
of cells 2 and 3 being equal. The amplitude of the periodic state in cell 2 grows as λ

1
2 ;

the amplitude of cell 3 grows as λ
1
6 .

Proof. By (5.4) the origin in the first cell equation

ẋ1 = f (x1, x1)

is linearly stable if Re(b(0) + a(0)) < 0, which follows from (5.5) and (5.6). Thus we
can assume x1 = 0.

The cell 2 equation

ẋ2 = f (x2, 0) = a(0, 0, |x2|2)x2

has a Hopf bifurcation at the origin, since Re(a(0)) = 0, and a branch of periodic
solutions emanates from this bifurcation, since Re(aλ(0)) > 0. The branch of periodic
solutions produced by Hopf bifurcation in the cell 2 equation is supercritical and stable,
since Re(a3(0)) < 0.

Under these assumptions (see (5.2)), the center subspace at this bifurcation is the four-
dimensional subspace {(0, x2, x3)}, the purely imaginary eigenvalues are each double,
and the linearization is nilpotent (since b(0) �= 0). Moreover, the skew product nature
of (5.1) guarantees that this subspace is flow-invariant and hence a center manifold. The
vector field on this center manifold is

ẋ2 = a(0, 0, |x2|2, λ)x2, (5.7)

ẋ3 = b(|x2|2, x2x3, |x3|2, λ)x2 + a(|x2|2, x2x3, |x3|2, λ)x3, (5.8)

where λ is the Hopf bifurcation parameter.
Since (5.7) is in normal form, the periodic solutions that emanate from this bifurcation

have circles |x2| = r as trajectories. The constant r(λ) is found by solving

Re(a(0, 0, r2, λ)) = 0,

and r(λ) is of order
√
λ. Setω(λ) = Im(a(0, 0, r2(λ), λ)). Then the bifurcating periodic
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solution is

x2(t) = r(λ)eiω(λ)t , (5.9)

where ω(0) = Im(a(0)).
Using the feed-forward skew product character of the equations, we can insert (5.9)

into (5.8) to analyze x3. To investigate x3(t) when λ > 0, we write

x3 = 1

r
x2 y,

which defines y(t) implicitly. Now |x2|2 = r2, x2x3 = r y, and |x3|2 = |y|2.
We now derive the differential equation (5.10) for y. Using (5.7), compute

ẋ3 = 1

r
(ẋ2 y + x2 ẏ) = 1

r
(cx2 y + x2 ẏ),

where c(|x2|2, λ) = a(0, 0, |x2|2, λ). Note that on substitution of (5.9) c = iω(λ). On
the other hand, (5.8) implies

ẋ3 = bx2 + 1

r
ax2 y.

Equating the two expressions for ẋ3 and dividing by x2/r , we obtain

ẏ = rb(r2, r ȳ, |y|2, λ)+ (a(r2, r ȳ, |y|2, λ)− iω(λ))y ≡ g(y, λ). (5.10)

If (5.10) has a stable equilibrium (as a function of λ) in a neighborhood of the origin,
then cell 3 will be periodic with the same frequency as cell 2.

Next we show that the amplitude of the periodic state in cell 3 grows as λ
1
6 , and we

verify the stability statement. Indeed, we show that there exists a unique branch of stable
equilibria to (5.10) emanating from y = 0 at λ = 0. To do this, rescale g = 0 in (5.10)
by setting s = λ 1

6 and y = su to obtain

s3b̃(s6ρ2, s4ρū, s2|u|2, s6)+ ã(s6ρ2, s4ρū, s2|u|2, s6)su = 0, (5.11)

where r(λ) = s3ρ(s6), b̃ = ρb, and ã = a − iω. Note that b̃(0) �= 0 and ã(0) = 0.
We use the implicit function theorem to show that there is a unique branch of zeros of

(5.11) as a function u of s2. Dividing by s, expanding in powers of s2, and then dividing
again by s2, we obtain

h(u, s) = b̃(0)+ ã3(0)|u|2u +O(s2) = 0.

We make the genericity hypothesis that

a3(0) = ã3(0) �= 0. (5.12)

There is a unique u0 ∈ C for which

b̃(0)+ a3(0)|u0|2u0 = 0,

and this implies that u0 �= 0. Thus h(u0, 0) = 0. Next calculate at s = 0

(dh)w = a3(0)(2|u|2w + u2w̄). (5.13)
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Therefore at u0 we have

(dh)w = a3(0)(2|u0|2w + u2
0w̄),

and thus

det(dh) = 3|a3(0)|2|u0|4 > 0.

The implicit function theorem now implies that there is a unique branch of equilibria at
which

y0(λ) = su(s2) = λ 1
6 u0 +O(

√
λ), (5.14)

since s3 = √λ.
Note that

tr(dh) = 4 Re(a3(0))|u0|2 +O(s2).

Since Re(a3(0)) < 0, the branch of equilibria of (5.10) is asymptotically stable.

A simple example of a function f : C2 × R → C that satisfies the hypotheses of
Proposition 5.1 is

f (u, v, λ) = (i + λ)u − |u|2u − v. (5.15)

The resulting periodic solution is shown in Figure 12.

Comments on a general synchrony-breaking Hopf theorem. We conjecture that the
results of Proposition 5.1 are valid generally, and not just for coupled cell systems in
the “normal form” (5.4). Several steps are needed to reduce the feed-forward system to
a vector field on a four-dimensional center manifold that has structure similar to that of
(5.4). In the next subsection we present a partial result in this direction, namely, that the
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Fig. 12. Time series from three-cell network with f as in (5.15) and λ = 0.1: (a) first coordinate
time series of individual cells; (b) superimposed time series from all three cells. Note that

√
λ =

0.32 and λ1/6 = 0.68, and that these values are the approximate amplitudes of the periodic states
in cells 2 and 3 respectively.
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vector field on the center manifold can always be assumed to have skew product form.
We are not able to show that the vector field can be reduced by normal form techniques
to the form (5.4); so we cannot obtain an analogue of equation (5.10), which is central
to the proof of Proposition 5.1.

Center manifold reduction and skew products. The next lemma shows that the skew
product form of (5.1) implies a skew product form for a corresponding center manifold
reduction. Consider the skew product vector field

(a) ẋ = F(x),

(b) ẏ = G(x, y),
(5.16)

where x ∈ Rk , y ∈ R�, F : Rk → Rk , and G : Rk × R�→ R�.
Suppose that (x0, y0) is an equilibrium of (5.16) with center subspace Ec ⊂ Rk×R�.

Then x0 is an equilibrium of (5.16a); suppose that the center subspace at this equilibrium
is Ec

x ⊂ Rk . Let

π : Rk × R�→ Rk

be the projection. Then π(Ec) = Ec
x . More precisely, the linearization L of (5.16) at

(x0, y0) has the form

L =
[
(dx F)x0 0

* (dyG)(x0,y0)

]
,

and so the critical eigenvalues of L are those of the matrices (dx F)x0 and (dyG)(x0,y0).
We can write

Ec = EF ⊕ EG,

where EF is spanned by the generalized eigenvectors of L corresponding to critical
eigenvalues of (dx F)x0 , EG is the center subspace of (dyG)(x0,y0), and π |EF : EF → Ec

x
is an isomorphism.

Lemma 5.2. Let N be a center manifold for (5.16a) at x0. Then,

(a) There exists a center manifoldM for (5.16) at (x0, y0) such that N = π(M).
(b) The center manifold vector field onM may be pulled back to Ec

x ⊕ EG so that it is
in skew product form.

Proof. The flow ψt of the skew product system (5.16) has the form

ψt (x, y) = (ψ x
t (x), ψ

y
t (x, y)),

and so π◦ψt = ψ x
t .

(a) Note that π−1(N ) = N × R� is a flow-invariant submanifold for (5.16). LetM
be a center manifold for (5.16) in π−1(N ) at (x0, y0). Since π |M(EF ) = Ec

x , this map
is a submersion. Therefore locally π(M) = N .

(b) Consider the submersion π |M :M→ N . The manifoldM is a bundle over N
with bundle map π |M. Thus π |M commutes with the flows on the center manifoldsM
and N . Hence dπ |M is constant on theM center manifold vector field V restricted to
a fiber. Locally, V can be put in skew product form.
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Fig. 13. Time series from three-cell network in Figure 11 using (6.1): (a) first coordinate time
series of individual cells; (b) superimposed time series from all three cells.

6. Feed-Forward Networks: Quasiperiodic States

Feed-forward networks illustrate another strange feature of network dynamics: the oc-
currence of very different states in different cells. We show by numerical example that
there are coupled cell systems in the three-cell feed-forward network with solutions that
exhibit different forms of dynamic behavior in each of the three cells. In particular, there
are solutions x(t) = (x1(t), x2(t), x3(t)) where x1(t) is an equilibrium, x2(t) is time
periodic, and x3(t) is quasiperiodic. The time series from such a cell system is presented
in Figure 13. The specific function f used in this simulation is

f (u, v) = (i + λ− |u|2)u − v − 1√
λ
|v|2v +

(
1+√2i

λ
− 1

)
|v|2u, (6.1)

where u, v ∈ C, λ is a parameter, and we take λ = 0.3.
We now discuss how to find a function f like the one in (6.1) so that the ODE (5.1)

exhibits the desired dynamics. As in Section 5 we assume that f is in “normal form”
(5.3), and we assume that the Hopf bifurcation in the cell 2 equation is also in standard
form, that is,

f (x2, 0, λ) = a(0, 0, |x2|2, λ)x2 = (i + λ− |x2|2)x2. (6.2)

Then we analyze the equation

ẋ3 = f (x3, x2).

By (6.2),

x2 =
√
λeit .

Next, we write

x3 = yx2,
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and derive the following equation for y:

ẏ = rb(r2, r ȳ, |y|2, λ)+ (a(r2, r ȳ, |y|2, λ)− i)y, (6.3)

where a(0) = i , r2 = λ, and (to ensure stability of the origin in cell 1) b(0) = −1.
The final step is to guarantee that (6.3) has a stable periodic solution (with irrational

frequency). Then x3(t) will exhibit two-frequency quasiperiodic motion. The periodic
solution y in (6.3) is found by varying a second parameter so that the sign of Re(a3(0))
changes. This leads to a Hopf bifurcation in the y equation and (depending on higher
order terms) to stable quasiperiodic motion in cell 3. The example that began this section
was constructed using this approach. We have not resolved whether generically in two-
parameter systems quasiperiodic states or phase-locked states or both can be expected
in cell 3. This is a question of resonance tongues.

A feed-forward network with four cells. It is natural to consider the dynamics of an
n-cell feed-forward network of the form

ẋ1 = f (x1, x1),

ẋ2 = f (x2, x1),
...

ẋn = f (xn, xn−1),

(6.4)

with the function f as in Section 5, specifically in (6.1).
Numerical investigations suggest that each added cell contributes to the complexity

of the dynamics. For example, when n = 4, x1 is an equilibrium, x2 is periodic, x3 is
two-frequency quasiperiodic, and x4 is again two-frequency, but in a more complicated
and curious way. See Figure 14.
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Fig. 14. Time series for first coordinate in each cell of a four-cell feed-
forward network using (6.1).
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Fig. 15. Stroboscopic map for (6.4) based on the time series in Figure 14. The positions of cell 3
(a) and cell 4 (b) are plotted after each period of cell 2.

To check that cells 3 and 4 display two-frequency quasiperiodicity, we sample x3 and
x4 at each period of cell 2. The results of this stroboscopic map are shown in Figure 15
where the sampled orbits of x3 trace out a circle and the sampled orbits of x4 trace out a
circle that winds three times around the origin. It is perhaps surprising that the dynamics
of cell 4 is quasiperiodic with one period given by the period in cell 2. Further analysis
is needed to determine whether this phenomenon is genuine (rather than a numerical
artifact), and if so, whether it is robust or typical. Again, the issue of resonance tongues
is an important one.

7. Nilpotent Normal Forms

In Section 5 we observed that synchrony-breaking bifurcations in feed-forward chains
lead naturally to nilpotent normal forms in codimension-one bifurcations; see (5.2).
Perhaps surprisingly, synchrony-breaking can lead to nilpotent normal forms for a variety
of network architectures, including ones that are not feed-forward. An example is the
five-cell ring in Figure 16. (A similar five-cell network is considered in [13].)

Since the five-cell system consists of identical cells, the k-dimensional diagonal sub-
space

D = {x ∈ (Rk)5 : x1 = x2 = x3 = x4 = x5}
is flow-invariant. This five-cell system has a true symmetry

τ = (1 3)(2 4),

and so the 3k-dimensional subspace

Fix(τ ) = {x ∈ (Rk)5 : x1 = x3; x2 = x4}
is also flow-invariant. Note that coloring cells 1 to 4 one color and cell 5 another is a
balanced relation. Therefore, the 2k-dimensional subspace

W = {x ∈ (Rk)5 : x1 = x2 = x3 = x4}
is flow-invariant.
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1
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Fig. 16. Five-cell ring that
leads to nilpotent normal
forms in synchrony-breaking
bifurcations.

Let X0 = (x0, x0, x0, x0, x0) be a synchronous equilibrium. Let A be the k× k matrix
obtained by linearizing the internal dynamics at x0, and let B be the k × k matrix of
linearized couplings at X0. Then the Jacobian matrix at X0 has the form

J =


A B 0 0 B
0 A B 0 B
0 0 A B B
B 0 0 A B
B 0 B 0 A

.

The subspaces

D ⊂ W ⊂ Fix(τ )

are therefore invariant subspaces for J . Moreover, the 2k-dimensional subspace

U = {x ∈ (Rk)5 : x3 = −x1; x4 = −x2; x5 = 0}

is J -invariant.
To simplify notation, let k = 1. Using these invariant subspaces, we choose a basis

for R5 that puts J in normal form. Let

e1 =


1
1
1
1
1

, e2 =


1
1
1
1
−2

, e3 = 3

2


1
−1

1
−1

0

, e4 =


1
0
−1

0
0

, e5 =


0
1
0
−1

0

,
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so that

Je1 = (A + 2B)e1,

Je2 = (A − B)e2,

Je3 = (A − B)e3 + Be1 − Be2,

Je4 = Ae4 − Be5,

Je5 = Be4 + Ae5.

In this basis J has the form
A + 2B 0 B 0 0

0 A − B −B 0 0
0 0 A − B 0 0
0 0 0 A B
0 0 0 −B A

.
Thus the 5k eigenvalues of J consist of the eigenvalues of the k × k matrix A − B
repeated twice, the eigenvalues of the k × k matrix A + 2B, and the eigenvalues of the
k × k matrix A + i B and their complex conjugates. Moreover, generically the double
eigenvalues associated with the matrix A−B have geometric multiplicity 1, that is, those
eigenvalues correspond to a nilpotent Jordan form. It follows that it is possible to find
a 1:1 resonant Hopf bifurcation with a nilpotent normal form occurring generically in
codimension one. For example, let

B = −I2 and A = B +
[

0 −1
1 0

]
.

8. Coupled Rings

Finally we present simulation results in which two rings of cells, coupled asymmetrically
through a “buffer” cell, appear to exhibit rotating wave states with incommensurate
frequencies. Close inspection suggests that these states lie on thin tori, not closed loops, so
they are presumably quasiperiodic. (They cannot be precisely periodic with the apparent
“short” period.)

Specifically, we work with a network consisting of two unidirectional rings of identical
cells of three and five cells respectively. Because just one cell from each ring is coupled to
the buffer cell, this network has no symmetry; see Figure 17. The results of simulations
are shown in Figure 18. Figure 18a indicates a solution that appears to be a periodic
rotating wave in either ring, with distinct periods. Note the more complicated dynamics
that is visible in the buffer cell. Figure 18b plots the time series of a cell in the left ring
versus a cell in the right ring. This view shows that the solution in the nine-dimensional
phase space is either periodic of long period, or quasiperiodic.

The simulation is performed with the same one-dimensional internal dynamics in
each cell, including the buffer cell, and with linear coupling. The internal dynamics is
given by

g(u) = u − 1
10 u2 − u3.
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Fig. 17. Unidirectional three- and five-cell rings connected by a buffer cell.
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Fig. 18. Simulation based on the network in Figure 17 using the differential equations in (8.1):
(a) time series from the nine cells; (b) x1 versus y1.

The differential equations with coupling are

ẋ j = g(xj )+ 0.75(xj − xj+1)+ 0.2 b, j = 1, . . . , 3,

ḃ= g(b)+ 0.1(x1 + y5),

ẏj = g(yj )+ 0.75(yj − yj+1)+ 0.2 b, j = 1, . . . , 5,

(8.1)

where the indexing assumes that x4 = x1 and y6 = y1. We remark that solutions of the
type that we describe here occur frequently in simulations in cell systems where each
cell has one-dimensional internal dynamics.

9. Conclusions

This paper presents a collection of curious examples of coupled cell networks, revealing
the typical presence of behavior that would not be expected in a generic dynamical
system. It traces this “exotic” behavior to various features of the network architecture—
sometimes in full rigor and sometimes only through numerical evidence.
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The implications of these examples are of two kinds. The first, perhaps rather nega-
tive, implication is that apparently harmless modeling assumptions about networks can
introduce special dynamical features that may not be fully representative of alternative
models that have just as much scientific validity. It makes sense to be aware of the
pitfalls here. The second, more positive, implication is that networks make available
many interesting kinds of dynamical behavior, in a generic manner, that would not occur
in a typical unconstrained dynamical system. Nature, especially in evolutionary guise,
can build on such behavior and exploit it. In short, the “generic” dynamics of networks
differs in important respects from that of comparably complex dynamical systems, even
when the effects of symmetry are taken into account. Some of these differences are now
understood, and many relate to the groupoid “symmetries” of the network. Others re-
main puzzling and must be explained in different ways. The classical theory of nonlinear
dynamical systems remains a vital part of the toolkit required to understand network
dynamics, but it must be wielded with caution.
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