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§ 1. Introduction

The aim of this paper is to generalize the Hopf bifurcation theorem (on
‘branching to periodic solutions) to systems of differential equations with symmetry.
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We state our results for ordinary differential equations, though we expect to be
able to apply them to suitable partial differential equations by standard reductions.
Specifically, suppose we have a system of ordinary differential equations

dv
= T/ =0 (1.1)

where u(t)€ R™, A€ R is a bifurcation parameter, and f: R"XR->R" is a
smooth (C*) mapping commuting with the action of a compact Lie group /" on
R™. That is,

fov, &) =9, 2,y I'. (1.2)

Further assume f(0,4) = 0, so that there is a trivial solution.

Let (df),, be the nxn Jacobian matrix of derivatives of f with respect to the
variables v, evaluated at (v, 2). The most important hypothesis of the standard
Hopf theorem is that (df)oo should have a pair of simple purely imaginary
eigenvalues. In the presence of a symmetry group I it is possible to arrange for
eigenvalues of df to be purely imaginary by placing suitable restrictions on the
action of I'. However, in these cases I" often forces these eigenvalues to be multiple.
Hence, the standard Hopf theorem cannot be applied.

While the symmetries complicate the analysis by forcing multiple eigenvalues,
they also potentially simplify it by placing restrictions on the form of the mapping
f; in particular, the terms that can appear in the Taylor expansion. The same is
true in static bifurcation theory (see SATTINGER [1979, 1983]). Often the simplifi-
cation of the Taylor series is sufficient to counterbalance the complication of the
eigenvalues. We exploit such a phenomenon here.

There are two ways in which a group /" admits multiple imaginary eigenvalues
for (df)op that can occur generically in a I-parameter family.

(a) R" = V@ V where I acts absolutely irreducibly on ¥ and by the dia-
gonal action in VO V.

(b) I acts irreducibly but not absolutely irreducibly on R™.

Recall that I" acts absolutely irreducibly on V if the only linear maps on V'
commuting with /" are multiples of the identity. In this paper we consider only
case (a). In § 2 we show that the equivariance condition (1.2) implies that (df )o.
has two eigenvalues each with multiplicity m/2. It is possible for these eigenvalues
to be complex conjugate pairs ¢(%) == ié(%). We consider the case where ¢(0) = 0,
¢(0) = 0. In this case the system (1.1) has an m-dimensional center manifold.
We prove our existence theorem assuming the usual transversality condition on
the eigenvalues that cross the imaginary axis,

o'(0)x=0. (1.3)

One particular example of case (a), the group O(2) acting on R* @ R*, has
been studied in detail by SCHECTER [1976] using methods of RUELLE [1973],
and by BaJsas [1982] using perturbation theory. These authors all emphasize the
role of symmetry. The occurrence of both standing and rotating waves for O(2)
is demonstrated in ERNEUX & HERSCHKOWITZ-KAUFMANN [1977]; the stability
properties of these waves were known to SATTINGER [1980]. Very recently this
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example has been analyzed by SATTINGER [1983], VAN GILs [1984], CHOSSAT &
Iooss [1984], as well as ourselves: see §§ 7, 10. Each of these papers proceeds
from a slightly different point of view and the precise statements of the results
therefore differ slightly.

The O(2) example has been considered in the context of discrete dynamical
systems by RUELLE-[1973], who indicates that the case of ordinary differential -
equations can also be analyzed by his methods (see SCHECTER [1976]). RAND
[1982] and RENARDY [1982] consider the related question of SO(2) acting on
R?, which falls into category (b) above.

Here we stress a general approach to such problems that is 1ndependent of
the symmetry group . Our main contribution is the idea of relating the existence
of certain types of periodic solution to that of 1sotropy subgroups satisfying
certain algebraic criteria.

. Hopf bifurcation from a multiple eigenvalue has been studied, without sym-‘
metry assumption, by CHOW, MALLET-PARET, & YORKE [1978]. Under mild
hypotheses they establish the existence of a branch of periodic solutions to (1.1).
When symmetry is present, our methods yield the existence of many solution
branches, each having prescnbed symmetries.

To explain the general idea in its simplest setting, we now state and prove a
simple Hopf theorem and indicate how this theorem is generalized to our main
result, Theorem 5.1. In order to state the 51mp1e Hopf theorem, we need to intro-
duce several group-theoretic ideas.

An important feature of bifurcations with symmetry is the occurrence of
spontaneous symmetry breaking. The symmetry of a bifurcating branch of solu-
tions decreases to a proper subgroup X of I". This subgroup 2'is called the iso-
tropy subgroup of the solution. More precisely, if I" acts on V and v€V, then

Ev‘={ael’[cu= v} 1.4
| is the isotropy subgroup of v. The ﬁxed—point subspace of a subgroup 2'C I' is
V=={ve V] =y for all c€2}, (L)

it consists of all points in ¥ whose symmetries include X\

Fixed-point subspaces have one important feature, which is the basis of our
analysis here: Suppose f: V- ¥V commutes with I’ ie., Sf(yv) = yf(v) for
veV, yel'; then

CfiVEsVE - - (1.6)

To prove (1.6) observe that if ve V= and o€ 2, then f(v) = f(ov) = of(v).
Hence, ¢ fixes f(v) and f(v) € V= as claimed.

We can now state a very simple generalization of HOPF’s theorem having an
almost trivial proof. Let F act on V@ V= R"™ by the diagonal action.

Theorem 1.1. (The simple Hopf theorem). Suppose X is an isotropy subgroup of A
T such that dim (V @ V)™ = 2. If (1.3) holds, then there is a branch of small
amplitude periodic solutions to (1.1) whose group of symmetries’ is 2.
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Proof. The commutativity of f in (1.1) implies that f maps (V ® V)*xR to
(V @ V). Restricting the system (1.1) to the plane (V'@ V)* yields a 2x2
system of differential equations that satisfy the hypotheses of Hopf’s standard
theorem. Cf. MARSDEN & MCCRACKEN [1976] or HASSARD, KAZARINOFF & WAN
[1981]. Solutions in this plane have the appropriate symmetry. []

Remark. If the trivial solution is stable subcritically, then subcritical branches
are unstable. This follows by exchange of stability in the standard Hopf theorem.
However, supercritical branches may or may not be stable, since directions not
in (V@ V)* will be involved.

The basic observation in this paper is that a further generalization of Hoprr’s
theorem is possible. One of the standard proofs of Hopf bifurcation is obtained
via a Liapunov-Schmidt reduction. This reduction leads to an additional S!
(circle group) symmetry, arising from the dynamic phase-shift symmetry of peri-
odic solutions. (This observation appears also in SATTINGER [1983].) More pre-
cisely, we define the isotropy subgroup of a periodic solution v(t) of (1.1) to be

—q(:) = {(y, 0) € I'x 8" | v(t) = po(t 4 0)}. (1.7)

Thus we now envisage a combination of both spatial and temporal symmetries.

As we show in § 4, the Liapunov-Schmidt reduction leads to a reduced bi-
furcation equation on ¥V ® C where I'xS' actson V@ C by (,0)v®z
=y ® e’z. See §3 for a discussion of this action. The isotropy subgroups
(1.7) can be identified with subgroups of I"x §* actingon ¥ ® C. See Theorem4.1. .
Our main theorem states that if X' is an isotropy subgroup of I' xS' for which

dim (¥ @ €)* = 2, (1.8)

then (locally) there exists a branch of small-amplitude periodic solutions to (1.1)
having spatio-temporal symmetry 2. See Theorem 5.1.

This result may be viewed as an analogue, for periodic bifurcations, of a static
bifurcation theorem due to VAN DER BAUWHEDE [1980] and CicoGNa [1982], where
the corresponding assumption is that the fixed-point subspace of 2’ is 1-dimensio-
nal. (A special case follows from MICHEL [1972].) The point of this assumption on
the fixed-point subspace is that maximal isotropy subgroups, with minimal-di-
mensional fixed-point subspaces, lead to solutions. This remark is discussed in
detail in § 12.

The remainder of the paper splits into three parts.

(a) A discussion of which subgroups of I'xS' can be isotropy subgroups,
and how to compute dim (¥ ® C)* for subgroups of I'xS!. See §6 and
§13. '

(b) How to compute the (orbital asymptotic) stability of these periodic solu-
tions. See § 8.

(c) The computation of specific examples. Here we discuss ' = O(2) actmg
on V=R?* §7,9, 10; I'= O(n) acting on R", § 11, and every irreducible
representation of I'= O(3), § 14, I5.

Our discussion of stability exploits a suggestion of John Guckenheimer to
assume that the vector field fis in /-normal form, and hence commutes with
I'x S, notjust I". In this case, the Liapunov-Schmidt reduction may be computed
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explicitly. See Proposition 4.3. We use the extra S'-symmetry to solve explicitly
the Floquet equations (Lemma 8.3) and show that the eigenvalues of the linearized
reduced equations give the Floquet multipliers. See Theorem 8.2.

As mentioned above, the specific example of O(2) acting on R? was considered
by SCHECTER [1976] and others. There are two types of periodic solutions:.a
spatial branch with Z, symmetry and a branch of rotating waves with symmetry

$§6(2) = {(w, —) | v€ SOQR) C O}

Both branches occur together provided (1.3) holds. Rotating waves were
noted by AUCHMUTY [1978] in reaction-diffusion equations. To obtain the rotating
wave solutions by our methods, the simple Hopf theorem 1.1 is insufficient, and
one needs the more general existence theorem 5.1. Indeed solutions with nonspatial
symmetry are a generalized form of rotating wave. We recover the existence
results by our group-theoretic techniques in § 7.

Schecter and others also analyzed the stabilities of branches. We recover
these results in § 10, using general group-theoretic ideas to complete the stability
analysis, at least when f'is in /-normal form. We find that a bifurcating branch
(of either type) can be stable only when both branches are supercritical. When
both branches are supercritical, exactly one is orbitally asymptotically stable.
Which branch is stable depends on third-order terms in the reduced equation.
See § 10 and the bifurcation diagrams in Figure 10.1. Interestingly, these results
carry over, with little additional computation, to O(n) acting in its standard
representation on R”. In particular, rotating waves may be found for O(n) acting
diagonally on R" @ R”, and can in some cases be stable. See § 11.

"The final sections, §§ 12-14, concern O(3) acting in" any of its irreducible
representations on spherical harmonics ¥,. (For the analogous static bifurcation
problem see IHRIG & GOLUBITSKY [1984].) In particular, we compute here all -
~isotropy subgroups of O(3)xS' with 2-dimensional fixed-point subspaces.
A surprise here is the appearance of a branch with tetrahedral symmetry (twisted
into a spatial and temporal part), when [ = 2,4,5,6,7,9. Cf.§14. The existence
of such periodic solutions seems to be a new phenomenon. In addition, there are
a variety of spatial and rotating wave solutions. See Tables 14.1 and 14.2.

Throughout our work we have placed emphasis on general considerations
related to symmetry, resorting to detailed calculations only after making the
effects of symmetry explicit. The examples show how efficient this approach
can be when the group action is sufficiently well behaved.

" For simplicity we have assumed throughout that fin (1.1) is definedon V' & V,
" with I" acting absolutely irreducibly on V. However, standard methods can be
used to extend the results to a more general situation. In particular we have:

Theorem 1.2. Consider the differential equationA
dv
E_I_ F,2)=0 (1.9

where F:R™xR—> RM commutes with an action of I on R™. Suppose (dF)yo
has imaginary eigenspace V@& V C RM where I acts absolutely irreducibly on V.
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Identify V@V with V® C, and let 2 C I'xS' be an isotropy group with
2-dimensional fixed-point subspace. Then there exists a branch of small amplitude
periodic solutions to (1.9) whose group of symmetries is I.

Theorem 1.2 may be proved in the same way as Theorem 5.1, because the
Liapunov-Schmidt reduction leads to the same situation. Theorem 1.2 is a setting
for our results that extends naturally to partial differential equations. [J

Remark 1.3. Theorem 1.2, as stated, yields a periodic solution branch for
each suitable isotropy subgroup. However, one effect of symmetry is to relate many
of these solutions to each other. To see this, let x(¢) be a solution of (1.1) with
isotropy subgroup 2, and let (y,0) belong to I'xS!. Then vx(t+ 6) is a
periodic solution to (1.1) with isotropy subgroup (y, 0) Z(y, )~ C I'x S'. We
wish to enumerate the distinct trajectories of these symmetry-related solutions.
There are two sources of redundancy. First, change of phase yields solutions
with identical trajectories. Second, the action of elements of the isotropy subgroup
2 yields exactly the same solution. Letting = : I'X.S' — I be projection, we see
that the manifold ['/7(X), of dimension dim [’ — dim 2, parametrizes the distinct
trajectories. The union of these trajectories is an invariant submanifold for (1.1)
diffeomorphic to (I'xS8")/2, of dimension dim I' — dim X + 1, and foliated
by periodic trajectories. For example, if ['/=(X) is diffeomorphic to a circle,
then this invariant submanifold is a 2-torus.

In general, this invariant submanifold is the union of a finite number of
mutually diffefomorphic connected components. Typically, in applications, these
components correspond to physically observable distinctions between solutions,
such as direction of rotation.

Remark 1.4. One consequence of Remark 1.3 is that we require only one
representative from each conjugacy class of isotropy subgroups, when applying
Theorem 1.2. These representatives may be found by computing the isotropy
subgroup of a representation of each orbit of I'xS! on ¥V @ C. We follow
this procedure in the examples below.

§ 2. Conditions for Imaginary Eigenvalues

Let f:R"xXR-—+ R"™ commute with the action of a compact Lie group I
The requirement that the Jacobian (df)p have purely imaginary eigenvalues
imposes restrictions on the representation of I". To see this, decompose R" into
a direct sum of irreducible I™-invariant subspaces

R'=V,D... D V,. @.1)

We assert (and prove below) that if (df)oohas purely imaginary eigenvalues, then
either:
(a) some irreducible representation of I" occurs at least twice in the
decomposition (2,1) or (2.2)
(b) the action of I' on some ¥; is not absolutely irreducible.
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Recall that a representation of I'is absolutely irreducible if the only linear maps
commuting with I" are multiples of the identity.

We shall not discuss (2.2b) further in this paper. The simplest way for (2.2a)
to occur is for R™ to be the direct sum of two isomorphic absolutely irreducible
subspaces. By identifying these subspaces suitably we may assume that

RM=V@V - (2.3)

‘where I acts diagonally:
vy, w)= (v, yw), yel. | (2.4)

In this paper, we focus attention on the representation of I" defined by (2.3)
and (2.4) even though some of our results could be stated more generally.

To prove our assertion, we must show that (df)oo has real eigenvalues if
conditions (2.2) fail (that is, if each ¥ in (2.1) is a distinct absolutely irreducible
subspace). Now f commutes with I, that is, f(yu, 1) = yf(u, Z) for ye I. Differ-
entiate this relation using the chain rule to obtain

(czf)w,zy =7@up vET. | 25)

Since 90 = 0, (df)o,0 commutes with I'. Each ¥} is a distinct irreducible represen-
tation of I, so that (df)oo (V) CV; (see _DORNHOFF [1971]). Since I' acts ab-
solutely irreducibly on ¥}, (2.5) implies that on ¥}, (df)o0 is @ multiple of the
identity. Thus all eigenvalues of (df)o, are real.

We now consider the case (2.3) where (V@ V)XR — VGB V' commutes
with I, Let » =dim V.

Lemma 2.1. Suppose (df)oo has i as an eigenvalue. Then

(a) The eigenvalues of (df )o,1 consist of a complex conjugate pair o(%) 4 ip(4),
each of multiplicity n. Moreover, ¢ and ¢ are smooth functions of .

(b) There is an invertible linear map S:V@V—>V®V, commuting with

T, suc/z that
| (df o0 = SIS~

. where

s B

Remark. In fact, in the proof of Lemma 2.1(a) we show that each eigenvalue |

. of (df)op has multiplicity at least n.
Proof. (a) Let T: V@ V— V @ V be a linear map commuting with I” and write

( )
C D
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where A, B, C, D are nXn matrices. T commutes with the diagonal action of I"
if and only if each of 4, B, C, D commutes with the action of 1" on V. The absolute
irreducibility of I" acting on ¥V implies that

- 2)

It is well known that if 4, B, C and D commute, then
d t(A B) det (4D — BC
e\, p)=de (4D — BC).

(Cf. HaLmos [1974] p. 102, ex. 9.) It follows that the characteristic polynomial of
T is :
det (T — pul) = [(@ — p) (d — p) — bel". (2.8)

Thus each of the eigenvalues of T occurs with multiplicity at least ».

Since (df), , commutes with I"and has a pair of complex conjugate eigenvalues
it follows that each eigenvalue occurs with multiplicity n. The smoothness of
o(A) and ¢(4) also follows from (2.8).

al bl
(b) As above, (df)op has the form (cI d[)'
(df)oo to have i as an eigenvalue we must have a +d =0, ad — bc=1. We
now conjugate (df)op so that a=d = 0. Assuming a =0, define

R — cos 8] —sin 61
®~ \sin6I cosOI /’

From (2.8) we see that for

which commutes with I, and choose 6 so that

b4c

cot (20) = 2

Then

_ 0 hI
Ro(df)ooRy " = (_h—ll 0)

for he R. Finally, note that

S (T 0\ B\ (I 0O |
"(o —h]) (—11-11 o) (0 —11—11)‘ [

§ 3. The Action of I'xS!

In the next section we show that our search for periodic solutions of (1.1) leads
to a mapping
| $: (VO VXRXR>VOV G.1)
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which commutes not only with the diagonal action of I', but also with an action
of the circle group §*. In this section we give two presentations of the representa-
tion of I'xX 8! on ¥ & V and we show that they are equivalent. Then, we descnbe
in general, the linear ~maps that commute with I" X §*.

(a) The representation of I'xS* on V & V. Fix an orthonormal basis of ¥V
and let the vector (x,, ..., x,) denote the coordinates of the vector x¢€ V in this
_ basis. The action of I" on V allows us to identify each y € I" with an n X n matrix
o(y) acting on (the coordinates of) V.

We may identify (x, y)€ V@ V with the nx2 matrlx

X1 Y1 _
Z={: : | : (3.2
Xn yn .
Define an action of I'xS! on VEB vV by
(% 0)-zZ ——0(7) ZRy (3.3)
where .
R (cos 6 —sin 6) ' ‘ (a4
= \sin6 cos6 : (3.4

is the 2x2 rotation through the angle 6¢ S*.
This action of I'X S! may also be understood using tensor product nota-
tion. Identify V' @ V with ¥ ® C by

»N—>xQ1+yei _ (3.5)
Now define an action of I'xS' on V' ® C by
(,0) (v ® 2) = () ® ’z. : (3.6)

Alternatively, we may . calculate (/, f) actingonv ® z=xQ® 1+ y ®i and
obtain

(cosBx—'sinBy) ® 1 —I—(sin6x+cos fy) ®1.

Using the identifications (3.5) and (3.2) we see that the action I'xS' defined
by (3.6) and the one defined by (3.3) are identical. '

Remark 3.1. In later sections we sometimes consider the diagonal action of
I'on V@V, and sometimes the action of I'xS' on V@ ¥V just defined.
To reduce confusion we will use ¥V @ V in the former case and ¥V ® C' in the
latter.

(b) The Linear Equivariants of I'xS*.
Lemma3.2. Let T:V ® C— V ® C bea linear map that commutes with I' X S*.

Then .
T=al+ cJ ' 3.7
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where a, c€ R and

I, 0 0 —I,
() o)

Remarks 3.3. (a) The matrix J may be defined in a coordinate-free manner
using the action of $* and differentiation. Using (3.3) we compute

d )
V) (;) = —=(,0)" (;) (3.8)

S (x
where the 2n-vector (}) is identified with the n X2 matrix Z in the obvious way.

(b) J is the matrix form of the action of (1, —4x) € I'xS!. In this way we
see that J commutes with the action of I'xS' on ¥ ® C. In particular, every
matrix 7T of the form (3.7) commutes with I'xS*,

(c) Note that Lemma 3.2 implies that the action of I'x.S! on ¥V ® C is not
absolutely irreducible, even though it is irreducible.

Proof. As in the proof of Lemma 2.1(a) we may write T in the block matrix

A
form ( c D)' Since T commutes with the diagonal action of I, T must have the
. al bl .
form (2.7), that is, T = o dif We now note that T commutes with S?

a b
only if the 2:<2 matrix (C d) commutes with Ry, 6 € S*. This happens precisely

when d=a and b= —c; that is, when (3.7) is satisfied. O

§ 4. The Liapunov-Schmidt Reduction

It is well known that the Hopf theorem can be proved using a Liapunov-
Schmidt reduction (see HALE [1969]). Here we adapt this approach to the sym-
metric case. We follow the exposition of GOLUBITSKY & LANGFORD [1981] where
the role of the S'-symmetry arising from phase shifts is emphasized. See GOLUBITSKY
& ScHAEFFER [1985] for a similar treatment.

Consider the differential equation

dv > | :
e =0 (4.1)

where f:(V® V)xR— V & V is infinitely differentiable and commutes with
the diagonal action of I". (As above, we assume that I" is a compact Lie group
acting absolutely irreducibly on V.) Here A€ R is a distinguished parameter,
assumed to be near 0, that will act as a bifurcation parameter.

Note that (provided dim ¥ > 1) the commutativity of f with I" guarantees
the existence of a trivial steady state solution to (4.1); that is, f(0,2) =0. (To
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prove this fact, observe that if dim V"> 1 and V is irreducible, then 3+ x = x
for all ye I' only if x=0. It follows that y-(x,y) = (x, y) for all y only
if (x,y) = (0,0). Now use the commutativity of f to conclude that y - f(0, 2)
= £(0,7) for all y€ I' and that (0, 2) is zero.) _ :
The implementation of the Liapunov-Schmidt reduction requires one assump-
tion: ' ’ _ ‘ '
' (HL) (@)oo = J.

Remarks. (a) If (df)oo has non-zero purely imaginary eigenvalues, then we
may rescale time ¢ in (4.1) so that the eigenvalues of (df)o, are precisely i,

(b) We may now apply Lemma 2.1(b) to observe that (df)o, is similar to the
matrix J, where the similarity commutes with I'. Therefore, we may make a linear
change of coordinates on V, and hence on V @ ¥V, so that the system (4.1)
satisfies (H1). We now see that (H1) is equivalent, up to a linear change of coordi-
nates, to the assumption that (df)oo has a non-zero purely imaginary eigenvalue.

(c) We do not require the imaginary eigenvalues of (df)o,0 to be simple. Indeed,
they will have multiplicity » = dim V. So the usual hypothesis of the Hopf theo-
rem does not apply. : ' ' ' '

We now state three results. Proofs are given later in this section.

Theorem 4.1. Assume (H1). Then there exists a reduced bifurcation equation
$(x, 75 A7) = 0 | 4.2)

where ¢:(V ® C)xRxR—V ® C is infinitely differentiable and commutes
with T'x S, such that the small amplitude periodic solutions of (4.1) with period
27/(1 - 7) are in one-to-one correspondence with those solutions (x, y, A, T) to
(4.2) which are near (0, 0, 0, 0).

The equivariance of ¢ with the action of I'xS" allows us to compute ex-
- plicitly several terms in the Taylor expansion of ¢. Since ¢ commutes with S*
it commutes with R., so ¢ is an-odd function. Using Lemma 3.2 (which characterizes
the linear maps commuting with I XS') we see that .. '

4 ) = PG, (;) + 0, ) (—ch )— )

where - ...-indicates term of degree at least three in x and y. .
Using Lemma 2.1(a) we know that the eigenvalues of (df)o,; are o(A) = id(d)
where ¢(0) =0, ¢(0) =1 and o'(0) exists. Using the notation of (4.3), we have -

Proposition 4.2.
(@ P0,0) =0, Q0,0=0,
®) PO, =0, 0.0,7)=-1, )
© Pi0,0) =3'(0).

There is a special case for which the reduced bifurcation equation ¢ may be
" computed explicitly in terms of f.
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Proposition 4.3. Suppose that f: (V@ V)XR— V@ V commutes with the
action of S*, as well as with the action of I'. Then

¢(x,y, 4, 7) = f(x, 3, 4) — (1 +7) J(J;) (4.5)

Note that (4.4) may be verified directly from (4.5) in this special case.

In the next section, we use  Theorem 4.1 and Proposition 4.2 to prove the
existence of certain types of periodic solution to (4.1). In § 8 we use Proposi-
tion 4.3 to discuss the (orbital) stability of these solutions. The remainder of this
section is devoted to proofs of the above results. Since most of the ideas for these
proofs may be found in the proof of the standard Hopf theorem, we shall be brief.
Notation is chosen to conform with that of GOLUBITSKY & SCHAEFFER [1985].

Proof of Theorem 4.1. Let C,, and C., respectively denote the Banach spaces
of continuous and continuously differentiable 2z-periodic mappings u: R —

du
ith r = . d = —.
V @ V, with norms |u| Ogisag)gJu(s)[ and |u|, = |u| + %
In this proof we exploit an action of I'X.S*! on Cy,. The action is given by

(¥, 0) - u(s) = yu(s + 0); (4.6)

so I" acts spatially and 6 acts by a phase shift.
In order to look only for 2z-periodic solutions we rescale time ¢ in (4.11) by

s= (141t uls)=uv(). 4.7)

Then we may rewrite (4.1) as a nonlinear operator equation:
du
D(u, A, 1) = (1 + T)}F + flu, ) =0 (4.8)

where @: Cl,XxRXR— C,,. Note that if @(u,2,7) =0 then uv(t) = u(s),
asin (4.7),isa 2z/(1 + 7)-periodic solution to (4.1). Also observe that @ commutes
with the action of I'xS' defined in (4.6).

To solve the equation @ = 0 we apply the Liapunov-Schmidt procedure.
Let L be the linearization of @ about the trivial solution u = 0, that is,

d
L = (d@)o'o'o = (—{S- ‘{" J (4.9)

using (H1). In particular, (HI) implies that there are 2n linearly independent 27-
periodic solutions to the linear differential equation Lu = 0. These solutions
are -

Re (€“E), Im(c“E), j=1,...,n (4.10)

where E; is the 2n-vector with i in the j* position and 1 in the (# -+ /)™ position.

We digress to observe that we may identify ker L with ¥ @ C in such a way
that the action of I'x.S! on ker L given by (4.6) becomes the standard action
of 'xS' on ¥V ® C described in § 3. Since @ commutes with I'xS?, so does
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the linearization L. It follows that both ker L and range L are invariant sub-
spaces under the action of I'x.S*. To determine this action explicitly, we identify
(x, ) EV @V with '

u(s) = 3, x; Re (¢°E) + y;Im (€°E). - 4.1
j=1 | |

A computation using (4;11) shows that the action of I'xS* on u(s), defined by
(4.6), leads to the standard action of I'XS 1 on the nX 2 matrix (x, y) defined

by (3.3).

We now proceed ‘with the Liapunov-Schmidt reduction. Since the formal

adjoint of L is

L* = 44 g= -1
——ds+ __a’s__——f’

we may use the Fredholm alternative to write .

C,, = ker L* @ range L = ker L @ range L. - (4.12)‘

Using the splitting (4.12), let | |
' "~ E:Cy,—>rangeL

be the projection whose kernel is ker L. Now split the equatioh ® =0 into

(a) ED(u, Z, rj = 0,

.'w)U—B¢@Lﬂ=Q 4.13)

If we write u = v+ w where .ve ker L, werangeL, then by the virnplicit
" function theorem we may solve (4.13a) for w, obtaining w = W(v, 1,7), so that

EO( + W, 4,9, 1) =0. @14

~ Substituting for w in (4.13b) leads to the reduced bifurcation equation

&, 4, 7) = ([ — E) Dw + W(, 4, 7), A7) (4.15)

where ¢ :ker L X Rx R— ker L. 'Now the generalities of the Liapunov-Schmidt
procedure in the presence of symmetries imply that ¢ commutes with the action
of I'xS' on ker L and that the linear terms vanish identically, that is,

(d$)o,00 =0. o - (4.16)

See SATTINGER [1979, 1983] or GOLUBITSKY & SCHAEFFER [1985];

" Moreover, the Liapunov-Schmidt procedure shows that locally the zeros
of ¢ are in one-to-one correspondence with the zeros of @. [

Proof of Proposition 4.2, Observe that P(0, 0) and Q(0,0) are linear terms in
¢ and must vanish by (4.16). Next note that the subspaces

V, = R{Re (¢“Ep, Im(e"EQ}CkerL,
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k =1,...,n, are S'-invariant. One may now perform the same calculations as
in GOLUBITSKY & LANGFORD [1981], for ¢ restricted to V), to obtain (4.4b, c).
See also GOLUBITSKY & SCHAEFFER [1985]. These calculations require only the
linear terms in v. [

Proof of Proposition 4.3. We claim that under the assumption that f commutes
with S* as well as I', the choice W(v,A,7) =0 provides a solution to (4.14).
The main observation needed to prove this is the following:

If v(s)€ ker L, then f(v(s),X)€ ker L. 4.17)

Suppose that W(v, 4, 7) ==0 is a solution of (4.14). By uniqueness of solutions
given by the implicit function theorem, we know that W = 0 is the only solution.
A computation using (4.15) and (4.8) shows that

@, A7) = —E)[(1+ 1)% + f(v, M)].
We assert:

If veker L, then % = —Jv€kerL. (4.18)

Since I — E equals the identity on ker L, it follows from (4.17) and (4.18) that
¢ has the form (4.5). Here we use the coordinates on ker L given by (4.11).

To complete the proof we must verify (4.18), (4.17), and show that W =10
satisfies (4.14.) We begin by observing from the definition of L in (4.9) that
Lv =0 implies dv/ds = —Jv. Moreover, since f and hence @ commute with
the spatial symmetry S!, it follows that L commutes with S'. Since J is just
rotation by —}n (see Remark 3.3(i)), it follows that L commutes with J and
that Jv€ ker L. This verifies (4.18).

To verify (4.17) we observe that every uv(s)€ ker L has the form

v(s) = (1, ) - vo (4.19)

where v, is a fixed vector in ¥V @ V and s acts on v, via the spatial action of S*
given in (3.3). To see this, first note, using (3.8), that every v of the form (4.19)
is a solution to Lv = 0. Now use a dimension count to show that every periodic
function in ker L has the form (4.19). The observation (4.17) follows from a short
calculation:

1
LAG) = —(0(6), 3) + JF((5), 2,

f

d
—= [ 9) Ao, D] + T - (1, 5) S (b0, B,

_J(17 S) ‘f(vo, A) + J- (13 S)f(UOa A)s
= 0.

Here the second equality uses the commutativity of f with §* and the third equality
uses (4.18).
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Finally, we show that W =0 satisfies (4.14). Use (4.17) and (4.18) to observe
that &(v, A, 7) € ker L and note that ker E = ker L. [] '

" Remarks 4.4. (a) We have shown that if / commutes with I'xS*, then the

periodic solutions to (4.8) lie in ker L and hence are circlesin V'@ V. Cf. (4.19).

(b) Proposition 4.3 shows that there are in general no additional restrictions

on the form of the reduced mapping ¢, other than those required by I'xS*-

symmetry and the occurrence of purely imaginary eigenvalues in (df)oo. This

implies, for example, that the various combinations of stabilities allowed by
Theorem 10.1 below can all occur for suitable choices of f.

§5. A Hopf Theorem with Symmetry

The main result of this section is an analogue, for periodic solutions, of a static
~ equivariant bifurcation theorem of VAN DER BAUWHEDE [1980] and CICOGNA
[1981]. In order to state this theorem we need to describe precisely the types of
periodic solutions we seek.

Let u(s) be in C,,. Recall from (4.6) that I'x.S' acts on C,, by

. 6) u(s) = yuls + 0). | 5.1)
The isotropy subgroup of I'xS' corresponding to u(s) is '
X =y, ) e I'xS':(y,0) u=u}. (5.2)

We speak of X, as the symmetries of the periodic mapping u. Observe that these
symmetries are a combination.of spatial (I') and temporal (S*) symmetries.
We need two hypotheses in addition to -

HD) @@=

in order to state our theorem. First, we need the standard transversality condition
of Hopr: ‘ )
(H2) ¢'(0) =0

where o(4) is. the real part of the eigenvalues of (df)os as in Lemma 2.1(a) and
Proposition 4.2(c). Second, we need to restrict attention to periodic solutions
of (4.1) with certain kinds of isotropy subgroup. Let 2 be an isotropy subgroup
 of the action of I'xS! on ¥V ® C. (We may identify 2 with the symmetries
of a periodic mapping in ker L since the action (5.1) of I'x St on kerL C Gy,
may be identified with the action of I'xS* on ¥ @ C defined in § 3. See (3.6).)
Every isotropy subgroup 2 has a fixed-point subspace, defined as follows.
Let G be a group acting on a vector space . Choose we W and let 2 be the
isotropy subgroup of G corresponding to w. Then the fixed-point subspace of X

is . :
W= ={ve W|ov=uv for every o€ X}. : (5.3)

W= consists in all points in ¥ which have at least 2’ as their group of symmetries.
We can now state our third hypothesis. As above, let 2 be an isotropy subgroup
~of I'xS! acting on ¥V ® C. Assume ' '

(H3) dim (¥ ® C)° = 2.
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Proposition 6.2. Let 2" be an isotropy subgroup of I'xS!' acting on ¥V ® C,
as above, with X == ['xS'. Then

(@) H ==P(X) is isomorphic to Z.
(b) There is a homomorphism 6: H— 8! such that X~ = H’

Proof. (a) Since the action of §' on ¥ ® C is fixed-point-free (¢f. (3.6)), 2N §!
= 1. Here we use the fact that 2 is an isotropy subgroup. Thus ker PN X =1
and H =2 :

(b) Every o€ 2 may be written uniquely as ¢ = (h, 6(h)) for some 0(/1) € S*.
We must show that 6: H— S' is a homomorphism. However, the fact that X
is a subgroup of I'xS' leads to

(h, 0(h)) - (k, O(k)) = (hk, O(h) O(k)).
Hence 6(hk) = 6(h): 0(k) and 6 is a homomorphism. []

Remarks. (a) If 0 is trivial, then H°= H C I'. Otherwise, we think of H as
being twisted by 6 and refer to 0 as the rwist.

(b) A homomorphism H — S' is often called a character of H. To each
character there corresponds an orthogonal representation of H on R? =
defined by & — ¢“®, and conversely. We shall use the term ‘‘character” in a
slightly different sense in § 13: we prefer the term ‘“twist” here.

We think of elements of I as spatial symmetries (acting on ¥V and V @ V)
and we think of elements of S! (acting on periodic solutions by phase shift) as
temporal symmetries. In this sense, an element ¢ = (h, 6(h)) € I'x S* is a spatial
symmetry if 0(h) = 0 and a combined spatio-temporal symmetry if A ==1 and
O(h) =+ 0.

For a given isotropy subgroup H? of I'xS!, the spatial symmetries form a
subgroup

K = ker 6.

We would like to think of a periodic solution having only spatial symmetries in
its isotropy subgroup (H = H’= K) as being spatially symmetric. However,
this leads to certain technical difficuities regarding the implementation of Theo-
rem 5.1.

- We prefer:

Definition 6.3. An isotropy subgroup X' I'xS' is spatial if
dim (¥ ® C)* = dim (V' ® C)X (6.1)

and temporal otherwise.

Thus a spatial isotropy subgroup 2" may include some spatio-temporal sym-
metries, but these symmetries do not impose any additional restriction on the
fixed-point subspace of 2. For an example, see § 7.

- We can now characterize those spatial isotropy subgroups having 2-dimensional
fixed-point subspaces.
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Proposition 6.4. Let H?® be a spatial isotropy subgroup of I'XS*. Then
(@) dim (V' ® O’ =2 if and only if dim V¥ = 1.

(b) Let K be an isotropy subgroup of I" actmg on ¥V with d1m VX = 1. Then

there exists a2 unique spatial isotropy subgroup H of F xSt with d1m V ® C)H °
=2 and K= ker0. A

Remark. 1t follows from Proposition 6.4 that the simple Hopf Theorem of
§ 1 corresponds precisely to the spatial isotropy subgroups H % for which dim V¥
= 1. , :

Proof. (a) Using the deﬁmtlon of spatial isotropy suboroup H’ we se¢ that (a)
will follow from: _

dim (¥ ® C)¥ =1 if and only if dim V¥ =1,

where K = ker 8 C I". Since the action of I on ¥V ® C is just the diagonal
action of I"on ¥ @ ¥V we conclude that

(@, w) = (v,w) if and only if yv =10, yw=w.
Thus (v, w)€ (¥ ® C)¥ if and only if v, we VX It follows that -
dim (V @ O)f = 2.dim V¥ : T (6.2)
and (a) is proved.

(b) Let K be an isotropy subgroup of I actmg on¥andlet v€ ¥ bea vector
whose isotropy subgroup is K. Since dim V¥ =1, we see from (a) that X fixes
every element v ® z€ ¥V @ C and no other.

Let H® be the isotropy subgroup in I'xS* fixing v ® z, z = 0. We assert
that ker @ = K. On the one hand, K consists of spatial symmetries and fixes
v @ z; thus K ker 6. On the other hand, ker 6 fixes » ® z and hence v. Thus,
ker 6 C K since K is an 1sotropy subgroup

Next we note that v ® z=1" ® z’ when v, v, z,z" are all nonzero only if

v =¢v, z =¢z where e = +1. It follows that (4, 0(h) v ® 2) =v ® z if
and only if /w=ev and 6(h) z = ez.  Thus

H® = ker 0V {(h, O()) | 6()) = m, o = —2}.  (6.3)

1t follows from (6.3) that H® fixes every vector in ¥® C and dim (V' ® C)He = 2.
Moreover, (6.3) uniquely characterizes the 1sotropy subgroup of I'xXS! contain-

ing K. [
§ 7. O(2)-Symmetric Hopf Bifurcation

We now apply our results to the case where ['= 0(2) acts on R? by its
standard representation. This situation has been studied by (among others)
SCHECTER [1976] and Basay [1982]: we recover their main results by exploiting
the symmetry directly. We show that the lattice of (conjugacy classes cf) isotropy
subgroups is the one given in Table 7.1 where Z3 acts tr1v1a11y on R*® C and
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3’6(2) is a twisted copy of SO(2) inside O(2)x§*. We also show that the fixed-

point spaces of §é(2) and Z, ® Z§ are each 2-dimensional, so Theorem 5.3
gives the existence of two distinct periodic solution branches (when the usual
transversality condition (H3) ¢'(0) == 0 holds).

Table 7.1. The lattice of isotropy subgroups of O(2) X S*
0o(2) x St

/N

S0(2) Z, ®Z§
/
zs

In addition, Z, @ 25 is an example of a spatial isotropy subgroup and 36(2),
which occurs in twisted form, is an example of a temporal isotropy subgroup.
The subgroup S%(Z) leads to rotating waves. The stability of these solutions is
discussed in § 10.

The submaximal isotropy subgroup Z§ acts trivially and has a 4-dimensional
fixed-point subspace. Possible solutions with this symmetry are discussed briefly
in § 10.

Note that although O(2) acts faithfully on R? (that is, the representation has
a trivial kernel) the action of O(2)xS! is not faithful: the kernel is Z3. This is
one of the reasons for the choice of Definition 6.3 as the appropriate one for a
spatial isotropy subgroup.

We write the action of O(2)x S! in the matrix form (3.2); that is,

@, 6) - Z = o(y) ZRs (7.1)

#=(c

and the column vectors (a, ¢) and (b, d) are vectors in ¥ = RZ,

where the 2 X2 matrix

a 0
Lemma 7.1. Every orbit of O(2)xS' contains a diagonal matrix (O d) where
a=d=0. Moreover, there are four orbit types. Orbit representatives, isotropy
subgroups and fixed-point subspaces are given in Table 7.2.

We define the action in (7.1) more explicitly. Recall from (3.4) that

cos) —sin 6
Ro = (sin 9 cos 0)' 7.2

The action of the group O(2) on R? is generated by rotations R, and a flip (or

complex conjugation)
_ l 0
ZmQ _J. ®

Thus the elements of O(2)xS' acting on Z are either (R,, Rg) or (%R, Ry).
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Table 7.2. Isotropy subgroups and fixed-point subspaces for O(2) x §*

Orbit representative Isotropy grbup ' Fixcd—point‘subspace
00 ' :
R O Sl .
‘@_@ J . @xs* | 0
® (¢ % a>0 5060 = - @ b) b er
0 a » —b a ‘
© (g ) a>0  ZOZ=(006m, K D) ab er
. @, 0), Gem, )y 0 O
where # is defined in (7.3)
a 0 ‘ a b\ ‘
. Z5 = 7 v R
@ (0 d)a>d’>o =00, 0} (C d) abcd €

Proof of Lemma 7.1. If Z is symmetric, then R_sZRy isv diagohal for suitable &
(diagonalization by an orthogonal transformation). If Z is diagonal, then multi~

. 1 oy |
‘plication (on the left) by a suitable choice of (iO. i 1) allows us to assume

that a@,d = 0. Finally, multiplication on the left by (1 O) , if necessary,

~ allows us to-assume a=d=0. Thus it suffices to show that each orbit contains.
. a symmetric matrix. ‘

Let Z = (ccz d) and assume b ==c. Then R,B is symmetric if o =

ot (9],
o (224 |

Next we compute the data in Table 7.1 assurriing that Z is diagonal. We dis-
tinguish four cases: : .

@ a=d=0,
(b) a=d>0,
© a>d=0,
d a>d>0.

1t is easy to verify that each of the isotropy subgroups 2 fixes the listed fixed--
point subspaces. Moreover, it is clear that O(2)xS! fixes only Z = 0. We need.
to check that the isotropy subgroups in cases (b), (c) and (d) are no larger than
those listed. Note that det Z> 0 in cases (b) and (d). Therefore, the isotropy
subgroups in these cases are contained in SO(2)x S*. In case (b) we compute

R,alRs = aR, 1.

a4

" Now Rgy, =1 only if 6= —y)., so 2 = SO(2).
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To complete cases (c) and (d) we observe that R,ZR, is diagonal if and only
if

) (@) (a-+ d)sin(y + 6) =0,

. (7.5)
(b) (@ —d)sin(y — ) = 0.
In cases (7.4c, d), equation (7.5) is satisfied only if py=0=0 or p=0=nm.
Thus case (7.4d) has the isotropy subgroup Z5. Note that x is in the isotropy sub-
group of (7.4c). It then follows that the isotropy subgroup is Z, & Z5 in this
case.

Remarks. (a) The ﬁb(Z)-symmetric solutions are the rotating waves of AUCH-
MUTY [1979]. To see this, recall how X = SO(2) acts on C,,. In particular, if
u(s) is a periodic solution with isotropy subgroup SO(2), then u(s) = Ru(s — )
or

u(s +y) = Ru(s), (7.6)

which is the standard definition of a rotating wave.

(b) The existence of rotating waves in O(2)-symmetric systems of ‘partial
differential equations was proved by AucHmuTy [1979]. The Liapunov-Schmidt
reduction of §4 may be adapted to partial differential equations and should
provide another method for obtaining AUCHMUTY’S results.

(c) Pictures ofrotating waves found numerically by ERNEAUX & HERSCHKOWITZ-
KAUFMAN [1977] in the Brusselator on a disc are in AuchamuTy [1978].

(d) Recall Remark 1.3, in which we show how to enumerate distinct trajec-
tories of symmetry-related solutions. We stated there that a given isotropy sub- -
group X' gives rise to a family of trajectories parametrized by I'/n(X), where
m: I'x 8§t I' isprojection. In thisexample, I'= O(2), with two choices for
2 X =2,® Z5, then ['/n(2) is diffeomorphic to a circle, and this family
of periodic trajectories forms an invariant 2-torus. If X = 56(2), then [7a(X)
consists in two points, yielding two isolated periodic trajectories. These differ
in their direction of rotation, in the sense that one satisfies (7.6) and the other
satisfies '

u(s + ) = R_,u(s). | (7.7

‘Compare SCHECTER [1976] § 4, example 2.

(e) To analyze the branching direction and stabilities for O(2)-symmetric
Hopf bifurcation we shall need more information on the invariant theory of
0(2) 2 S'. This is obtained in §9.
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§ 8. Asymptotic Stability

. We now investigate the stability of periodic solutions constructed using Theo-
rem 5.1. Our approach is to use a combination of Floquet Theory, normal form
theory and group theory. We wish to thank Joun GUCKENHEIMER for pointing
out the utility of assuming that the vector field is in normal form when making
stability calculations. . _ '
Let s = (1 + 7) ¢ be rescaled time as in § 4, and let u(s) be a 2n-periodic solu-
tion of

du o B ’
(1 + 7)o + 1 H=0 ' (8.1)

where 7: (V@ V)XR—V @& V commutes with T. Consider the linearization .

of (8.1) about the solution u(s); this is the Floquet equation ..

dz 1 J —0
‘ ds + 1 + T ( f)u(s),l zZ = 'V' (8'2) |
Let z(s) be a solution to (8.2) and define .
Mz2(0) = 2(27). ‘ : - (8.3)

M, is linear, since (8.2) is linear. M, is the Floguet matrix and its eigenvalues are -
the Floquet multipliers. , : .

We show below that one of the Floquet multipliers is forced to be 1; this
follows from the S!-symmetry of phase shift. The standard Floquet Theorem -
states that if the remaining eigenvalues of M, lie inside the unit circle, then u(s)

is an asymptotically stable periodic solution to (8.1). Cf.-CODDINGTON & LEVINSON
© [1955] or HALE [1969]. -

For symmetric periodic solutions, this assumption on Floquet multipliers
is rarely satisfied. The reason is that many eigenvalues of M, may be forced to
be 1. More precisely, we have: o :

Proposition 8.1. Let u(s) be a 2r-periodic solution of (8.1) with isotropy subgroup
Y. Then M, has at least d eigenvalues equal to 1 where T ‘

dy=dim '+ 1 —dimZ. - (8.4)

Proof. Let y, be a smooth curve in I'X.S* where, say, 1€ (—1, 1) with yo = 1.
d : ‘

Let w(s) =V u(s)|,—o- We assert and prove below that w(s) is a 2n-periodic

solution to the Floquet equation (8.2). It follows from (8.3) that

Muwo = Wo. _ . ' (85)

Whenever w, = 0, M, has an eigenvector with eigenvalue 1.

Observe that if y,€ 2 for every ¢ then yu(s) = u(s) and w(s) =0. Conver-
sely, if v, is transverse to 2 in I'x St then wy == 0. In particular, one can con-
struct de = dim I'x.S' — dim 2 - such independent eigenvectors with eigen-
value 1. :
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d
Note: If 7, =r€S! then yu(s) = u(s + 1). Thus, wo=-ff(0), which in

standard Floquet theory is the eigenvector with eigenvalue 1.
To prove the assertion, we must show that w(t) satisfies the Floquet equation.
Compute

dw d d

dS (1t yt I(S)l, =20

d d
= = Vi (5o,
(8.6)

] 1
== ),

1 d
1 e Ttyrf(u(s): l)‘rno-

Since y, consists in spatial symmetries that commute with £, and phase shifts
that also commute with f, we have y,f(u(s), 1) = f(yu(s), 4). It follows from (8.6)
that

dw 1 d
(TS(S) =17 d—tf(wl(s), Mle=0

= 1 + T (df)u(s)l W(S)

the last equality following from the chain rule and y, = 1. []

Let n = dim V. The standard Floquet Theorem may be modified to show that
if the 2n — dy eigenvalues of M,, which are not forced to equal 1 by the group
action, lie strictly inside the unit circle, then u(s) is orbitally asymptotically stable.
That is, any solution starting sufficiently close to u tends towards a periodic solu-
tion yu for some y€ I'xS'. Cf. HALE & STOKES [1960].

The purpose of this section is to provide a theoretical basis for determining
whether or not the remaining 27 — d eigenvalues lie inside the unit circle. Although
our results are far from complete, they are sufficiently detailed to enable us to
compute stabilities in the O(2) X S' case. However, we must assume that (8.1) is
in normal form.

The idea in normal form theory for vector fields is to perform (polynomial)
changes of coordinates to simplify the form of the k-th order terms in £. More
precisely, one simplifies the second order term, then the third, etc. This simplifi-
cation procedure is described by TAKENS [1973], HASSARD er al. [1981], and
GUCKENHEIMER & HOLMES [1983], for example. The end result is to find, to any
desired finite order k, a set of coordinates in which the terms of f up to order k
commute with S! acting as a group of spatial rather than temporal symmetries.
See Proposition 8.6. -

There is an implication of this normal form procedure in our case. By perform-
ing changes of coordinates that commute with I" acting on V@ V we can
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think of the terms in f up to order k as a mapping of (W ® C)XR into V¥ ® C
that commutes with I'x S, not just I'. (In this way S*' now acts as spatial
symmetries.) We have already seen a trivial instance of this process when we
showed under the assumption of purely imaginary eigenvalues that we could
assume (H1): (d oo = J- : ' :

" For the stability calculations below we augment (H1) by

(H4) f:(V ® C)xR—V ® C commutes with I'xS:.

Hypothesis (H4) is unlike (H1) in that we cannot, in general, prove that
our initial f can be put exactly into a form satisfying (H4) by an appropriaite
change of coordinates. However, to any finite order &, this can be done. Since we
are trying to estimate eigenvalues (do they lie inside the unit circle ?), the assump-
tion (H4) should not lead to any difficulties in the general case. We have not
attempted to verify this point. Nevertheless our arguments are valid for f’s satis-
fying (H4) and this is a reasonable class to consider.

The remainder of this section is divided into three parts:

~(a) Stability from the reduced bifurcation equation. .
(b) Ways that isotropy subgroups help in the analysis of stability.
(c) Normal forms for vector fields with symmetry.

(@) Stability and Liapunov-Schmidt. The main result in this subsection relates the
eigenvalues of the (linearization of the) reduced bifurcation equation to the (orbital
asymptotic) stability of the corresponding periodic solution of (8.1).

We begin by letting ¢: (V@ C)xRXxR—V ®C bethe reduced bifurcation
equation obtained from (8.1) by the Liapunov-Schmidt reduction (Theorem 4.1).
Let (4o, 4o, To) be @ solutionto ¢ = 0. Assuming that f is in normal form (hypo-
thesis (H4)) we recall two facts from §4: ,

(@ ¢=rf—0+1J (O Proposition 4.3)
| ) | @7
() u(s) = (1,5) - o, (1,s)e I'xS* is the periodic_ solution

to (8.1) corresponding to uo (Cf. Remark 4.4).

and

Since ¢ commutes with I'xXS' we know that 2n — ds of the eigenvalues

of (@), 7, €qual zero. The proof is analogous to Proposition 8.1 since ¢(, 4o, To)

vanishes on the orbit of i, under the action of I'x St. Thus (d),, 1,z vanishes
on the tangent space of that orbit, which has dimension dz. We claim that the
remaining 2n — dy eigenvalues of dé control the orbital asymptotic stability
of u(s).

Theorem 8.2. Assume that f satisfies (H4). Then the periodic solution u(s) to (8.1)
is orbitally asymptotically stable if the 2n — dy eigenvalues of (Ad)uy s, that are
not forced by the group action to be zero, have positive real parts. The solution is
unstable if one of these eigenvalues has negative real part.

The first step in the proof of Theorem 8.2 is showing that the form of u in
(8.7Db) allows us to convert the Floquet equation (8.2) to a linear equation with
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constant coefficients. This is reminiscent of rotating wave solutions; ¢f. RENARDY
[1982] and Jooss & JosepH [1981]. (In fact, one might say that the imposition
of normal form (H4) on f serves to convert all periodic solutions to (8.1) into
rotating waves. This point can be made rigorous; we do not pursue it here.)

Lemma 8.3. For a periodic solution u of the form (8.7b) the Floquet matrix is

given by
M, = exp (~2 [ . J) 339)
Proof. Let
z(s) = (1, 5) - w(s) 8.9
and compute (8.2) as follows:
dz
5T T (df)u(s)?o Z(é)~—-(1 ) w (1, 5) ——-l— (df)u ot (1 HW,

=(1,9)- [ Jw+ =t T @ e

1 + To
where the last equality uses (2.5) and (3.8). Thus the Floquet equation is satisfied

when
dw ‘ 1
ds ' |1+ 1,

This linear system may be solved explicitly to yield

JJ w=20.

w(s) = exp (— [1 s J] s) . (8.10)

From (8.10) observe that w(0) = z(0) and w(27) = z(2). Now use the defini-
tion of M, in (8.3) to verify (8.3).

Proof of Theorem 8.2. It follows from (8.7a) that

(dqb)uo/'-n.ru == (df)uo,i.(, — (1 + TO) J.

|Zo-To) °

Thus, if the 2n — d- eigenvalues of d¢ have positive real parts, then the corres-
ponding Floquet multipliers lie inside the unit circle and u(s) is orbitally asympto-
tically stable. O

Thus (8.8) implies

M, = exp (—

(b) Isotropy subgroups and eigenvalues of dé. Let u(s) be a periodic solution to
(8.1) with isotropy subgroup 2. Assume (H4) is valid so that ~ C I'xS! may be
viewed as spatial symmetries in ¥ ® C. As above, let ¢(u, A, T) be the reduced
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bifurcation equation. We claim that the existence of 2 restricts the form of d¢
sufficiently to allow, in certain cases, explicit computation of the eigenvalues of
de. ' -

To begin, we write

VRC=W® ...0 W, , (8.11)

where each W is invariant under X and each W, is the direct sum of irreducible
subspaces of Z of a given isomorphism type. That is, irreducible subspaces of
W; and Wy, j= k, do not have isomorphic actions of 2.

. Note. The fixed-point éubspace (V ® C)* consists of all subspaces of ¥V ®C
on which X acts as the identity representation. Thus (V' ® C)* = W; for some .
For definiteness we set

W1_= (V ® C)z.

' Lemma 8.4. Using the notation above, we have

@ uare W) C Wi J=1, .00, L.

Proof. It follows from (2.5) that (d),, s, commutes with Z. Hence, d¢ maps any

irreducible subspace W of W, to-an irreducible subspace of W with an isomorphic
representation. But W; contains all such subspaces; ¢f. DORNHOFF [1971], Lem-

ma 21.1.

Observe that if (H3) is valid, that is, if dim (V' ® C)* = 2, then f maps.
(V ® C)°x R to (V ® C)* and one can apply the simple Hopf Theorem of § 1.
It follows from the standard Hopf theorem that one of the eigenvalues of d¢ | (V

- ® C)° is zero and the sign of the other determines the stability of periodic solu-

tions to the restricted system f|(V ® C)*x R. In this case exchange of stability

~ holds. In particular, we have proved:

Lemma 8.5. Assume (H4). If the steady-state solution is stable subcritically, then
any subcritical branch of periodic solutions, with isotropy subgroup 2 satisfying

(H3), is unstable.

(¢) Normal forms and S ymmetry. The method of normal forms provides an answer
to the question: Given the linear part L of a vector field X, which higher-order

- terms in' X cannot be transformed away by smooth changes of coordinates?

To state the answer we introduce some notation. Let H) be the linear space of
vector fields X whose coordinate function are homogeneous polynomials of degree k.
Let '

ad L(Y) = [L, Y]

denote the Lie bracket of vector fields. Since L is linear, ad L maps H to itself.
Let G, be any vector space complement to ad L(H,) in H. Then the answer to

- the above question may be phrased as follows (see GUCKENHEIMER & HOLMES

[1983] Theorem 3.3.1): For any integer N there exists a polynomial change of
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coordinates /4 such that

l‘l,kX: L “‘l““ Y2 “I[‘ e -l" YN ‘“'I’“‘ RIVJ'_I (8.12)

where
hy X(x) = (dhy~* X(hx)

is the vector field X in the new coordinates, Y, € G, (k= 2,...,n), and Ry,
vanishes through order M.
Suppose that L is the linear vector field on ¥ @ V associated with (degenerate)
Hopf bifurcations, that is. '
. 0 _
L = ( I 0) x.

Then there is a natural choice for the complements G, in H,. Let S* act as usual
on V ® C (identified with ¥V @ V). Then we may take

G, ={X€ H.|(R)s X = X, 0€ S"}. (8.13)

This fact seems to be well known (see GUCKENHEIMER & HOLMES [1983] p. 144,
GUCKENHEIMER [1984], RUELLE [1973]) but we give a proof below for completeness.
Moreover, this proof extends to symmetric vector fields, which are our main
concern here. Let I" be a (compact Lie) group of symmetries and define H,.(I")
to be the set of I-equivariant vector fields in H,. Then we shall give a short Lie-
theoretic proof of the following result, suggested to us by JoHN GUCKENHEIMER:

Proposition 8.6. Let X be a [™-equivariant vector field on V' @ V with (dX), = L.
Then for every integer N there exists a polynomial change of coordinates / such
that

II*X=L + Yz + e + YN+ R1V+l
where Y, € H(I'xS') and Ry., vanishes through order N.

Proof. First, assume I = 1. W need to prove that
Imad L @ G, = H, (8.14)
when G, = H,(S') asin (8.13). Let o: H, -+ G, be defined by averaging over
S!, that is,
St

It is well known (¢f. ADAMS [1969], Proposition 3.15) that ¢ is a projection onto
G,.. Therefore '

kergo & G, = H,. (8.15)
Since ad L is linear we have

dim ker ad L -+ dim Im ad L = dim H. (8.16)
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, Now (8.14) follows from (8.15) and (8.16) provided we can show that

~ kerad L = G, : : (8.17)
| Imad L C kerp. . o (8.18)
First we prove (8.17). The definition of the Lie derivative of a vector field (SPIVAK

d
[1979]), and the fact that —

7 — Ry x = Lx, imply that

d
[L: Y] = %(—Rﬂ)* Y

If YEG, then (Rp), Y =17, so [L,Y]=0 and YckeradL. Conversely
if yckeradL then [L, Y]=0 implies that (Rp), ¥ =Y by Seivak [1979]
pp. 217-218.

To prove (8.18) observe that

by (8. 17) :

We have now proved that (8.13) prowdes a suitable choice of complement '
to Im ad L for the standard normal form procedure, described in GUCKENHEIMER
& HoLMmes [1983]. For the general symrnetrlc version, let J’ acton V@ V, define
Hk(]") as above, and set

G = G. N H(T),
adpL = ad L | H(I).

Smce the. actlon of S* on ¥V ® C commutes with that of I, 1t follows that ad ['L
maps H,(I") to itself. We assert that '

Imad, L @ G(I') = H(T). (8.19)

This follows from the proof of (8.14) because all constructions used commute
with I'. But now the usual normal form procedure applies in this T’-symrnetnc

- setting. [

§ 9. Invariant Theory for O(2)xS'

In order to determine the precise direction of branching (sub- or supercritical)
and the stability of given branches of periodic solutions, we must explicitly com-
pute the I'xS'-equivariants, that is, the mappings that commute with I'XS*.
We carry out this calculation here when I'= 0(2) actmg on R? by its standard
representation.

Recall the matrix notation for R? ® C in (3.2). Specxﬁcally, let

7 a b :
_(c d) ' 2
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bein R? ® C. The action of O(2)xXS' on R? ® C is defined by (3.3) which we
restate here as:

(,0)*Z=yZR, (9.1)
where y is a matrix in O(2) and

R = (c050 —sin 6) :
07 \sinf  cosb

as in (3.4). There are two functions which are obviously invariant under the
action (9.1), namely
@) N=a*+b*>+c* +d?,

9.2
(b) 6* where 6 =ad— bc. ©-2)

The function A is just the norm of Z; since the action of O(2)xS! is orthogonal
with respect to this norm, N is invariant. The function ¢ is just det Z; § itself is
not invariant since det y can be —1. However, 7 is invariant. In fact, these two
functions generate all invariants, as part (a) of the next theorem shows.

Theorem 9.1. (a) Let h: R* ® C— R be infinitely differentiable and invariant
under O(2)xS'. Then there is a smooth function k: R*— R such that
h(Z) = k(N, 6%). (9.3)

(b) Let ¢:R* ® C— R*> @ C be infinitely differentiable and commute with
O(2Q) X S'. Then there exist invariant functions p, q, r, s such that

¢=p(z Z)+q(:3 ‘CZ)-%:-(S(_Z _b)-'rsa(_z _Z) (9.4)

Remark. If h in (9.3) or ¢ in (9.4) depend smoothly on parameters «¢€ R},
then one can prove that (9.3) and (9.4) still hold, where &, p, g, r, s also depend
smoothly on «.

First we establish that the function ¢ in (9.4) does commute with O(2) X §*.
This is immediate from:

Lemma 9.2, The generators

Cd Codh o) ol 7

- comimute with O(2)x S*.

Proof. The first two are  and —J, which commute with O(2) XxS' (Lemma 3.2).

—¢ —d
Let E =( Z b)' The other two generators are 6E and —dJE. Now 4 is

i . 1 0
invariant under SO(2)xS' and is sent to —d by x =(

0 _1)60(2). It
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suffices to show that E commutes with SO(2)xS* and is sent to —E by x.

Note that E——(O ! “b) Since (- "1) 50(2) it follows that E
o'e a =\; 0) . a) Since |y 0 € ()' it follows that

commutes since SO(2)x S is abelian. The x-action is easily computed. []
The proof of Theorem 9.1 makes use of an extension argument involving the
diagonal and antidiagonal matrices. (A more direct computational proof is.

possible but lengthy.) Let
0 b o
={ e ol (9.‘5)

{6 o))

VeC=DoA4.

Observe that

Proof of Theorem 9.1. First note that ¢ may be written uniquely in coordinates as

¢ =¢p + ¢4
' where 4’9 R* ® C—> D and ¢A R?> ® C— A. Moreover, the matrix J acts
on Z by _ . '
Ja‘b __‘(a b) 0 —l_bb —_
| C\ed/ T e a1 o) \d —c)
 In particular, J: D—> 4 and J A->D are 1sornorphlsms with J? = —Id.

Thus we can write

¢ = bp — J(Jba), 96

~ where ¢, and J$, both map R* @ C——>D

A second remark is that ¢ is determined by its values on D. This follows since

every orbit of the action of O(2)xS* intersects D (see Lemma 7.1) and ¢ com-

‘ 0
- mutes with O(2)xS*. In symbols, if Z=y (g d)’ then
“z ( 0 | NN,
@=7(5 o)) o

Now even though it is true that ¢ | D determines ¢, it is not true that ¢ | D
is arbitrary. That is, not every smooth mapping of D— R*> ® C extends to a
smooth mapping of R?> ® C— R? ® C commuting with O(2)xS*. We can
see this in two- dlfferent ways. First we assume that (9.4) is valid and write

o-afs el 8 Gl el )
o el Dol D)

where ¢ = ad and p, .q,' r, s are functions of N = a® + d* and 0% = a*d?.
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Note that
a 0\ d 0
(a) "’D‘sz(o d)+S6(O a)’

©9)
® <J¢,,>w=q(g )+ o)

so that although ¢p|D and (Jé,) | D have the same structure, they are not
arbitrary smooth functions.

The second way see we that ¢ | D is not arbitrary is to observe that the sub-
group 4 of O(2)xS! which leaves D invariant is nontrivial. In fact, from (7.5)

1 0
we see that 4 is generated by theflip % = (0 _1) and all (R,, Ry) in SO(2)
X8t for which
sin (p + 0) = 0 = sin (p — 0).

Therefore, 4 consists in the eight elements (y, 0) =

©,0), ©,7), (0,), (=),

(i _rc-) (i 3n) 3n 'z) (37z 37z) (5.10)
2°2) 2’2’(2’2’ 272

along with x times each of these elements. Since ¢,: D — D and (J¢,): D— D,
each of these functions must commute with 4.

We assert that given any two smooth mappings g, and Jg,4 which map D — D
and which commute with 4 there exists a smooth extension of

gD =gp— J(Jg4) | 9.11)

mapping R* ® C— R? @ C, and commuting with O(2) xS*. The extension
of (9.11) is obtained using (9.7). Moreover, in proving this fact we derive the
forms (9.3) and (9.4).

To prove the assertion, we first need to identify 4 and its action on D more
precisely. Since Z5 = {(0, 0), (7, %)} acts as the identity on R?*® G, the effec-
tive action of 4 on D is given by the eight-element group 4/Z5. One may check
that this quotient group is just the dihedral group D,. Moreover, the dihedral
group D, acts naturally on R? as symmetries of a square. One may also check
that the action of 4 on R? is this natural action. This is clear, since

%(a, d) = (a, —d) 9.12)
flips the square, and

(% ) (a,d) = (—d, a) (9.13)

rotates R? by a right angle.
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Now the commuting maps and the invariant functions for the dihedral group
D, acting on R? as symmetries of an n-gon are well known. To describe them,
- we identify R? with C. Then the action of D, is generated by

z—>z and z—>ePz,

. By (9.12), (9 13) this identification may be achleved by lettmg
z=a-+id.

The invariant functions are generated b_y the quadratic zz and the quartic Re z*.
The mappings of C— C commuting with D, have the form

‘ A(zE, Re z%) z + B(zz, Re z%) Z°.

Thxs is known for polynomlals and extends to smooth functions as usual by
ScHwaARz [1975], POENARU [1976]. Cf. SATTINGER [1983].

In particular, the vector space of invariant quadratics is 1-dimensional (R{z z})
and the vector space of invariant -quartics is 2-dimensional (R{(zz)%, Re z%}).
By a dimension count, each of these invariants extends to R?> ® C, since N .
is quadratic and N? and 6? are quartic invariants. This verifies (9.3).

To verify (9.4) observe that both ¢, |D and —(J¢,) | D each have one
- linear generator (z— z) and one cubic generator z— z®. These correspond to
the two linear and two cubic generators in (9.4).

In fact, we can exhibit the invariants and equivariants (commuting maps)
for D, on C exp11c1tly as restrictions of those for O(2)xS* on R? ® C, as fol-

' lows

‘zE=a2—l—b3=N[D,
Re (z%) = a* — 622 d* + d* = (N? — 88%) | D,
z—a—l—zd—IlD |
— @ — 3ad?) + i(d® — 3a> d) = (NI + 48E) | D,

where E is as in the proof of Lemma 9.2. []

§ 10. Branchmg and Stability for O(2)

Having obtained the exphc1t descnptlon of O(2)><S‘-equ1var1ant mappings
in (9.4), we are now in a position to apply our theory to derive specific results
about the direction of branching and stability of the two types of periodic solutions
guaranteed by Theorem 5.1. See § 7. This completes the recovery, from the group-
theoretic viewpoint, of the results of SCHECTER [1976] and Baiay [1982].

~ In order to compute stability we assume that our system of differential equa-
tions is in normal form; that is, that (H4) is valid. We also assume the transversality
condition (H2). Since the vector field f'is assumed ‘O(2) X $*-equivariant we have

N T e P I
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where p, g, r, s are functions of N, 6%, A and p(0) = 0, g(0) = 1. The last restric-
tion corresponds to (df)op = J. The reduced bifurcation equation has the form

. a b —b a —c —d d —c
e e rmo(s Y rno(f ) oo

where P=p, Q=¢qg—1—1, R=r, S=3s using Proposition 4.3.

Remark. If we had not assumed that f is in normal form (H4) then ¢ would
still be O(2) X S'-equivariant (Theorem 4.1); however, we would not be able
to make the above §imple correspondence between fand ¢ in that case. In principle,
we could determine the first few coefficients of ¢, say up to order three, for a
general f by explicitly putting f in normal form up to order three. We have not
attempted this calculation.

Recall that P,(0,0) = ¢’(0) == 0 by (4.4c), and (H2) states that ¢'(0) == 0.

Theorem 10.1. Assume f is in O2)xS' normal form and satisfies (H2). Let
¢ = sgn (¢'(0)). Assume in addition that
Py() 50, 2Py(0) -+ S(0) #=0, S(0)=0. (10.3)

Then (a) the branch of spatial periodic solutions with isotropy subgroup Z, @ Z§
is supercritical if ePn(0) <O and subcritical if ePy(0) > 0. This solution is

“orbitally stable if Pn(0) >0 and S(0) > 0.

(b) The branch of rotating wave solutions with isotropy subgroup SO(2) is
supercritical if £(2Py(0) 4 S(0)) < 0 and subcritical if &2Pn(0) + S(0)) > 0.
This solution is orbitally stable if 2Pyn(0) + S(0) >0 and S(0) < 0.

(¢) There are (locally) no periodic solutions with period near 2m, other than
the ones listed in (a) and (b).

Remarks. (a) Spatial solutions (a) are unstable if Py(0) << 0 or S(0) < 0;
rotating waves (b) are unstable if 2Pn(0) + S(0) <0 or S(0) > 0. If any of
these inequalities become equalities, the stabilities depend on higher order terms
in ways we have not attempted to determine.

(b) We summarize the results of Theorem 10.1 in the schematic bifurcation
diagrams of Figure 10.1. The branches represent O(2)xS'-orbits of periodic
solutions. We consider the case &= sgno’(0) <0, where the steady-state
solution is stable subcritically and unstable supercritically.

We see that one of the bifurcating periodic solutions can be stable only if both
bifurcate supercritically. The other is then unstable, assuming the nondegeneracy
condition (10.3). Which one is stable depends on the sign of S(0).

Proof of Theorem 10.1. (a) First consider the solutions with isotropy subgroup
Z, @ Z5. When looking for Z, @ Zs-solutions to ¢ = 0, we need look only
0
0 .
O(2) x S'-orbits. See Table 7.2. For such Z, ¢ = 0 reduces to the equation

P(a?,0,2) =0, Q(a? 0,47 =0.

. a . .
at ¢ evaluated at points Z u( ) where a > 0, since ¢ vanishes on
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Fig. 10.1. Branchmg and stability for the two types of periodic solutions in 0(2) sym—
metric Hopf bifurcation. The (Py(0), S(0)) plane divides into 5 regions: for values
interior to these the schematic bifurcation diagrams are as shown. (Solid lines correspond

‘to stable branches, dotted lines to unstable branches.) Here we assume ¢ = sgn (6'(0)) <0

Note that 7 = ¢(a? 0,4 — 1 satisfies Q =.0. Since P;(O) =% 0 we can solve

P(a?, 0, A) =0 for

PN(O) " '
A= — P;(O) + .., a}O, - - (10.4)

which yields the super/subcritical result. ,

To find the stability of these solutions we must compute the eloenvalues of
d¢ along the solution branch. Recall that ds of the four elgenvalues are Zzero,
where ‘
dy = dim I' + 1 —dimZ=1 +1—0=2.

See Proposition 8.1. Moreover, we can decompose R? ® € into subspaces in-

variant under the action of 2 as follows:

RQC=W, oW, (10.5)

A0 O c.d

. ‘ o . b 0 0 :
where W, = (R* @ C)~ ={(a )} and W, ={( )} To prove that W,

[0 . o
" is invariant under 2, note that » = (O -—l) is the only element in Z, @& Z3

which acts nontrivially, and W, is the —1 eigenspace of ». Because x acts different-
ly on W, and W,, we know from Lemma 8.4 that (dé) (W) C W), j=1.2,
Moreover, d¢ restricted to the fixed-point subspace has only one zero eigenvalue.
Since d- =2, it follows that d¢>| W, and d¢| W, each have one possibly
nonzero eigenvalue.
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These can be computed as tr (d¢ | W,) and tr (dp | W,). We write ¢ in coor-
dinates as

(4 B _(Pa—Qb—Réc-{-Séd Pb+Qa—Rod— S8 .
*=\¢ p)=\Pc—Qd+ Roa—Sob Pd+0c+Rob+soa) 109
Then

: 94 9B

(@) @] W)=+,
sc._ o (10.7)

(©) trdb | W) =7 + o0,

where each of these derivatives is evaluated at (g g), P=0 and Q=0.

It is straightforward to compute the necessary derivatives; the results are

cA OB ,
(@) =+ 7 = 2a°Py + 0@),

8C éD (105
(b) — = Sa’.

T ed

The nondegeneracy conditions (10.3) allow us to conclude that the signs of the
two nonzero (real) eigenvalues of d¢ are given by sgn (Px(0)) and sgn (S(0)).
Now apply Theorem 8.2.

(b) Next we consider the solutions with isotropy subgroup SO(2) Referring
to Table 7.2, we see that to solve ¢ =0 we need only consider points Z =

0
(g a)’ a> 0. For such Z, the equation ¢ = 0 reduces to

P+a’S=0, Q—a’R=0. (10.9)

The second equation can be solved for . Observe that N = 24%, 6 = a* for
these solutions so that the first equation may be solved for 4, yielding

_O0+5O L
P,0)

To compute the stability of these solutions, we first observe that dr =1

and that
R2 ® C = W1 @ W2

. - a b a b
where W, = (R- ®C)‘=:{(__b a)} and W, = {(b —a)}' To see that

W, is invariant under SO(2) = {(Ry, R_,)} observe that W, consists of symmetric
trace-zero matrices, which are preserved by similarity transformations Z — RyRy L,
A calculation shows that (Ro, R;") acts as a rotation through angle 20 on W,,
which is irredusible for 2" and distinct from W,.
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The next step in the proof is to compute the eigenvalues of d¢ | W, and
dé | W,. Here we use Lemma 8.4 again. Observe that one of the eigenvalues of
" dé | W, is zero, since W, is the fixed-point subspace of .2 = S0(2). The other
eigenvalue is tr (d¢ | W,). Since X' acts as the group of rotations on W, and dé
commutes with 2 (cf. (2.5)) we see that the 2X2 matrix d¢ | W, commutes with .
rotations. The only linear maps which commute with rotations are themselves
multiples of rotations. Thus d¢ | W, either has two equal real eigenvalues, or
- a complex conjugate pair. In either case the -réal parts of these eigenvalues are
% tr(d¢ | W). It now follows from Theorem 8.2 that a rotating wave solution is

orbitally stable when

tr(d¢ | W) >0 and ftr (d¢ | W,) > 0. | ‘(10:10)

(Condition (10.10) could also have been obtained by a lengthy direct calculation
of dé on rotating wave solutions, and indeed this can even be done without assum-
ing that f is in I'-normal form.)

Use the obvious b {-1 0 01}f v oana b O (1
se€ e obvious Dbases 0o 1/\=1 0 Or 1an{0>_1a1-0

fbr W,, and compute the trace of dé on each of these subspaces. The answer is:

94 04 0B @B

2a T TH 7
94 ©B ¢B

0A
(b) ff(dMWz):E;—E'i—i-gg-Fa—c',

(@) trd| W)= L
- (10.11)

in the notation of (10.6). We now compute the right-hand ‘sidg of ‘(10.11) explicitly.

. ~ fa O
at points Z = (g a)’ a> 0 satisfying (10.9). First calculate:
| 24 P oS

@ =% e

gy PP o S
B Tt TR T g o
o (10.12)
o8, 0 IR Bty
© H=FtHm* B
. @B 8Q OR , _,
| (d) -a'z-—aca—--a'za ——Sa .
Using (10.11) and (10.12), we compute
@ tr(dd| W)= 2(2Px(0) + S(©0))a*> + O(@*), _
| (10.13)

(b) tr(d$ | W,) = —4S(0) a*> + 0(a®).

In deriving (10.13), we use the fact that 1 = O(a®) along this solution branch.
The stability conditions for rotating waves now follow from (10.10), (10.13)
and the nondegeneracy condition (10.3).
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(c) In theory there are other possible solutions with isotropy subgroup Zs.

0
From Table 7.2 we see that orbits of such possible solutions intersect Z — (a )

a d
with @>d > 0. For such 4, the equation ¢ = 0 reduces to the equation
P=Q=R=S5=0. (10.19)

Use (10.6), However, the nondegeneracy condition S(0) ==0 in (10.3) will be
violated by any such solution. []

To round off the dicussion of O(2) acting on R? we briefly discuss solutions
to a degenerate system, not satisfying (10.3), wich have isotropy subgroup Z5.
As we saw, such solutions must satisfy the system (10.14) of four equations in
four unknowns N, 62, 4, v. For such a solution to exist we need to assume two
extra conditions

R(0) = S(0) = 0. (10.15)

We know that we can always solve Q = 0 for 7, and under the hypothesis (H2)
wecan solve P =0 for A = A(N, 6%). Thus (10.14) reduces to the two equations

R(N, 6%, A(N, 6%)) =0,  S(N, 82, A(N, 6?)) = 0. (10.16)

Typically, solutions of (10.16) have to be isolated orbits of solutions in (zZ, 2)-
space. (The possible existence of such solutions is noted in passing by BaJaJ
[1982].)

Now if we arrange for (10.15) to be satisfied by specifying the values of two
auxiliary parameters «,, «,, then we can ask: “What happens to the solution
to (10.15) as these parameters are varied ?”’. The answer is that for a typical point
in the («,, &;)-plane there will be an isolated value of 1 for which a periodic solu-
tion with isotropy subgroup Zj5 occurs. We emphasize that this periodic solution
does not lie on a branch of periodic solutions obtained by varying 4, while keeping
(~), x5) constant. At first glance, this fact seems bizarre., However, JOHN GUCKEN-
HEIMER provided us with a plausible explanation for such a solution—if one
considers the dynamics in toto. '

Any solution with isotropy subgroup X = Z§ lies on an invariant 2-torus
in R* ® C which is foliated by 2a-periodic solutions conjugate under O(2)x S!.
‘This fact follows from 'dim Z5 = 0. Suppose the invariant torus persists as A
is varied. It could happen that 2z-periodic flows on the torus would occur only
for isolated values of 1. At other values of A the flow could either be quasiperiodic
or periodic with period incommensurate with 27. In either case, such flows
would not appear in the Banach space C,.. This conjecture points out one weakness
in the Liapunov-Schmidt approach to dynamics.

§ 11. Remarks on O(n) acting on R"

We now prove that the analysis for /"= O(2) acting on R? generalizes easily
to O(n) acting on R” its by standard representation, with essentially identical



T e

Hopf Bifurcation and Symmetry | -145

results. The afgument uses group theory and requires little additional computa-
tion. C ‘ : -

Let ¥V = R" be equipped with the usual inner product, denoted by <v, w)
for v,weR",. For y¢€ O(n) we have : ‘

Gy, ywy = <o, w}.

Let O(m)xS* act on R" ® C, thought of as nX2 matrices as in (3.3).

We begin by showing that the lattices of isotropy subgroups of O(n) XS*
acting on R" ® C has the same form for general n as it does for n=2. See
Table 11.1. Moreover, the computations for general »n depend on the results for
n =2, as follows. Since O(n) acts transitively on planes in R" it follows that for

every
z={: 1 |=0w
‘ ' vn wn

there exists y € O(n) such that yv and yw both lie in.the space
W =1{x,0,...,0)}.

Therefore
a b
d
: a b
vz . [c ‘d}
00

Now use Lemma 7.1 and the action of O(2)xS' C O(m)xS' to see that

_ 0 v
every orbit of ‘O(n) x S* contains an element. lg d] where a=d=0. It

s easy to see that -the isotropy subgroups of the elements listed in Table 11.1

contain the listed subgroups; we assert that these subgroups are precisely the iso-

0 0] 01 . '
tropy subgroups. For {O OJ and [?) O} this assertion may be verified directly.

0
Next we c_onsider elements {g d]’ a=d>0. Let B be the 4-dimensional

{a b - ‘ :
space of matrices [c d]' Note that the action of §' on R" ® C has B as an

~invariant subspace. Moreover, an argument using determinants shows that if

a b a b
the columns in L ‘ d} are independent then so are the columns in L d} Ro.

0 _
Tt follows that if (y, Re) fixes [g d] then y:R?>— R?, since the columns

a 0
in {0 d} R, are independent in R2 and the image of these columns under
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Table 11.1. The lattice of isotropy subgroups of O(n) x S!

O(n)x St ([g g)
RN
Z5®0(n — 1) ([“ g) SO0Q2)x0(n — 2) ([g 2])

Z5X 0 — 2) <[a 0], a>d>0)

(=]

0 d

v also lies in R?. Now since y€ O(n), the (n — 2)-dimensional space (R?)! is
a 0
also invariant under y. It now follows that for [0 d] the isotropy subgroup is

b

a’J augmented with O(n — 2).

the isotropy subgroup of O(2)xS§' acting on [:
This completes Table 11.1.

Observe that the fixed-point spaces for the two maximal isotropy subgroups
are 2-dimensional, so again we can use Theorem 5.1 directly to obtain an exi-
stence theorem for two branches of periodic solutions for O(n) acting on R".
The analogy between O(n) and O(2) continues.

Next consider the invariant theory of O(n)xS'. We assert that this is deter-
mined from O(2)xS' by extension. Observe that the subspace B is the fixed-
point subspace of O(n — 2), that is, B= (R" ® C)°“~?, Thus if f:R" ® C
— R" @ C is O(n) xS'-equivariant, then it follows that

f:B—B

and f|B commutes with O(2)xS!. Moreover, we showed above that every
orbit of O(n)xS' on R" @ C intersects B. Thus f is uniquely determined by
S !B. We now show that every smooth O(2)XS'-equivariant map g: B— B
extends to a smooth O(n) xS'-equivariant mapf: R" @ C— R" ® C. We do
this by explicitly extending the generators of the O(2)xS'-invariants and equi-
variants listed in Theorem 9.1.

Let Z=(v|w), v, w€ R". Then N and * extend to

(a) N = , vy + {w, w),

_ (11.1)
(b) 4 = v, vy {w, wy — <o, wd?,
which are clearly O(n)-invariant since {(yv, ywd = (v, wd. They are also S!-

invariant since without loss of generality (v | w)€ B where O(2) X .S!-invariance
and hence S!'-invariance holds by Theorem 9.1.
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—c —d\-
Similarly, the equivariant generators I, J, K=96 ( ¢ ‘ b)’ L= —JK
extend to a .
@ I=@w
(b) J=(—w]v),
— ’ (11.2)
© K=(,vdw— < o,wypv|<w,wyo— <, w)w)
(@ L=-JK. S

- Again O(n)-equivariance is clear, and Sl-equlvarlance follows from S*-equivari-
ance on B (Lemma 9.2). Thrs proves:

Proposntlon 11.1. The generators for 0(2) X S*-invariants and -equivariants extend
uniquely to provide generators for O(m)XS 1-invai iants ana’ -equivariants on
R" @ C.

The branching drrectlons of the two families of periodic solutions for O(n)x S*
‘now follow directly from Theorem 10.1, the corresponding results for oQ)xS'.

Finally, we look at the stabilities. We consider the two- isotropy subgroups
Z5x0(n — 1) and SO(2)xO(n — 2) separately. In the case Z' Z§><O(n ),
we find that

(R” ®C)“ Wz—-(Wl)l o : (113)

where dim W, = 2. Moreover, the action of 2 is the action of O(n — 1) on
R~ @ R"!; here we use the notation of (8.11). Since dimO(n) = (n — 1) n/2
~ we calculate dv =dim O(n) + 1 — dim O(n — 1) = n. One of the eigenvalues
" of d¢ forced to be zero occurs in Wl, the other n — 1 in W, Since d¢ | W,
commutes. with 2 we see that

‘x_]n—-l ﬂI —1)
| W = ('J’In-1 81,;-.1) ’
There are two eigenvalues of this matrix, each with multiplicity n — 1. One of
these eigenvalues is zero. To determine orbital stability for these solutions we need
only check whether

tr(de| W) >0, tr(dd|W,)>0.

We have now reduced to the case of O(2)xS'. See Theorem 10.1 and (10.7),
in particular. The result is identical.

Finally, we consider orbital stability for the rotatmg waves, X = SO(2)><
O(n — 2). Note that dr= 2n — 3. Here all but three of the eigenvalues of d¢
are forced by the group action to be zero. Observe that 2 decomposes R" ® C
into

R"®C=W1@W2@W3
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where

W, = (R" @ C)* = {[_a b]},

ol P

W3 = Bl.

Note that W, & W, = B. One may verify that d¢ | W; =0, which contributes
2n — 4 zero eigenvalues, the other zero eigenvalue occurring in do | W,. In
any case, orbital stability is determined by

trdp| W, and tr d | W,

as in Theorem 10.1 and (10.10). These results and those for O(2)xS' are iden-
tical.

§ 12. Remarks on Maximal Isotropy Subgroups

A key ingredient in the proof of Theorem 5.1 is the assumption (H3) that
the fixed-point subspace of the isotropy subgroup X is 2-dimensional. In this
section we present a context in which this hypothesis seems more natural. We
show that X' is a maximal isotropy subgroup, and make some observations about
these maximal isotropy subgroups.

Definition 12.1. A proper isotropy subgroup X' is maximal if no other proper
isotropy subgroup contains 2.

Let X be an isotropy subgroup of a group G acting linearly on a vector space
W. Let Ng(2) be the normalizer of X' in G. Since X' is normal in Ng(X) we can
form the quotient group D(X) == Ng(X)/X. We assert that D(X) acts naturally
on the fixed-point subspace W=. Let wé& W=, &€ N4(X). For every o€ZX
there exists ¢’ €X such that o ¢ = d¢’. It follows that ¢ dw = do'w = dw.
Hence 2 fixes ow and ow¢€ W=, Hence N9(Z) maps W= to W=~. Since Z acts
trivially on W=, by definition, there is an induced (linear) action of D(X) on W=,

Lemma 12.2. Let X' be a maximal isotropy subgroup of G acting on W. Assume W°
= {0}. Then the induced action of D(X) on W= is free of fixed-points.

Proof. Suppose the action has a fixed point, that is, there exists 6 € Ng(&) ~ 2
and 0 5= w€ W~ such that ow = w. Then the isotropy subgroup of w contains
2, and 04 2. Since w==0, this isotropy subgroup is proper, and X is not a
maximal isotropy subgroup.

The importance of Lemma 12.2 is that actions of compact Lie groups which
are free of fixed points are relatively rare, and can be classified. This observation
leads to:
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Theorem 12.3. Let G be a compact Lie group acting on W. Assume w° = {0}.
Let X be a maximal isotropy subgroup of G and let D° be the connected component
of the identity in D(X). Then either - '

(@) D° =1,

(b) D° = 8* and W= is the direct sum of irreducible subspaces under .S'1
each isomorphic to C, with S* actmg on C by complex multiplication.

(c) D° == 83 = SU(2) and W= is the direct sum of irreducible subspaces under
S3, each isomorphic to the quaternions H, with S* acting by quaternionic multzplz-
cation (via the identification of S* with the unit quaternions).

Proof. The classification of fixed-point-free actions of éompact connected Lie
groups is given in BREDON [1972]. A sketch is also given in GoLUBITSKY [1983].

In fact, the possibilities for D(Z) can be classified, not just D°. There is a lengthy
list for case (a), see WoLF [1967]. For case (b) D =~ SO(Z) or 0(2) and for case
(c) D =< SU(2); see BREDON [1972]. .

Definition 12.4. A maximal isotropy subgroup 2 of G is said to be reali'if DO =1,

complex if D° = 8", and quaternionic if D = §3,

Note that for the complex case, dim W~ =0 (mod2), and in the quatefn—
jonic case, dim W* =0 (mod 4). -

: Pfoposition 12.5. (a) The action of I'xS* on ¥ ® C cannot have real maximal

isotropy subgroups.
(b) If dim (V ® C)* =2, then X' is a complex maximal 1sotropy subgroup

Proof. (a) In Proposmon 6.1 we showed that SINZ =1 for any proper . iso-

‘tropy subgroup Z. Since S' C Nrysi(Z) it follows that S!' embeds in D°.

(b) If dim (¥ ® C)* =2, then 2 must be a maximal isotropy subgroup.
(Any larger isotropy subgroup would have a fixed-point subspace of smaller

dimension, but this is impossible since there are no real maximal isotropy sub- .
groups.) 2 cannot be quaternionic as then dim (V' ® OyY=4. O

Note. Proposition 12.5(a) provides another proof that dim (V@ C)* =2
for any isotropy subgroup X' in I'xXS*.

In static bifurcation theory there is a theorem of VAN DER BAUWHEDE [1980]
and CIcOGNA [1981] that (in this language) states that a branch of steady-state

 solutions exists for every real maximal isotropy subgroup whose fixed-point sub-

space is 1-dimensional, as long as an eigenvalue-crossing condition analogous to
(H2) is valid. Stated loosely: real maximal isotropy subgroups with minimal
dimensional fixed-point subspaces yield steady-state solutions. :

Our Theorem 5.1 provides an analogous result for complex maximal iso-
tropy subgroups. Stated loosely: complex maximal isotropy subgroups with mini-
mal dimensional fixed-point subspaces yield periodic solutions.
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This analogy leads directly to the question: What natural class of solutions
corresponds to quaternionic maximal isotropy subgroups with minimal (4-)di-
mensional fixed-point subspaces?

As a side note, we know that in order to find solutions for complex maximal
isotropy subgroups 2 with dim (V' ® C)* = 2 it is necessary (mathematically)

‘to introduce an auxiliary parameter, in addition to the bifurcation parameter A.

In Hopf bifurcation this auxiliary parameter is 7, the perturbed period.

For quaternionic maximal isotropy subgroups 2 with dim W* =4 we can
show that it will be necessary to introduce three auxiliary parameters in order to
find solutions. We are, however, unable to find a naturally occurring context for
such an analysis.

§ 13. Dimensions of Fixed-Point Subspaces

In this section we derive criteria for determining when a fixed-point subspace
of ¥V ® C is 2-dimensional, in terms of the dimension of fixed-point subspaces
of V. These criteria will be required in § 15 to classify isotropy subgroups of
O(3) xS having 2-dimensional fixed-point subspaces. The reader willing to take
the results of § 15 on trust may skip this section.
~ Recall from Proposition 6.2 that every isotropy subgroup X of I'xS! may
be written in twisted form as H’, where H C I' is a subgroup and 0: H— S!
is a homomorphism. We have two main results in this section.

Theorem 13.1. Let K =ker 0 C H. Then dim (V¥ ® C)*’ =2 if
(@ 6(H)=1 and dim V" =1,
(b) 0(H)=2, and dim V¥ —dim V¥ =1,
(0 O0H)= 2y and dim V¥ —dim V¥ = 2.
Remarks. (1) Theorem 13.1(a) was already proved in Proposition 6.4(a) and
is included here for completeness.

(ii) Similar formulas exist for 0(H) == Z, or Zg (for example) but not for
Zs, Z,, etc.

For each twist §: H-> S! there is an irreducible representation of H defined
as follows.
First, suppose O(H) =1 or O(H) = Z,. Then H acts on R by

h-x=cosf(h)x, x€ER.
Otherwise, H acts on R?* =~ C by
h-z=¢"Wz zeC.

Denote these representations of H by g,.
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Theorem 13.2. dim (V ® C)H is equal to twice the multiplicity with which s

 occurs in the action of H on V. Thus dim (V ® C)H =2 preczsely when 9o occurs
once in the action of H on V.

Remark. In case 6 = 0, 0o is the identity representation and the multiplicity

| - with which g, occurs in the action of H is just dim VE This special case is proved

by (6.2).
We begin with a discussion of Theorem 13. 1 whose proof follows dlrectly
from: ‘

Proposition 13.3. Let H’ be a subgroup of I'x St and let K = ker 0.
(@) If (H) = 2, then - ,
| | dim (¥ ® C)"’ = 2 (dim V¥ — dim V¥).
(b) If 6(H) = Z3, then
dim (¥ ® C)#’ = dim VX — dim V.

The proof of Proposition 13.3 requires the trace formula, which we digress to
~ explain. Let ¢ be a representation of a compact Lie group G on a vector space W.
For each y€ G, the map g(y): W— W is linear; denote its trace by Tr g(y).

We state the well known trace formula. (Cf. IHRIG & GOLUBITSKY [1984] SAT-
TINGER [1983] MICHEL [1980] ApAwms [1969] Prop. 3.3.)

A Proposmon 13.4. Let H be a closed subgroup of G. Then .
dim WH = {Tr oh). | (13.1)

Remark. The integral in (13.1) is with respect to the invariant (Haar) measure
‘on H, which we assume normalized so that the total volume vol (H) is 1. Integra-
tion with respect to this measure defines the normalized Haar mtegral (Cf. Apams -
[1969] or KIRILLOV [1976]) :

Next we apply the trace formula to an isotropy subgroup H? of I'x.S* actmg
on ¥V ®C. .
Lemma 13.5. Let ¢ be the representation of I' on V. Thén

dim (¥ @ O’ =2 f Tr o(%) cos 0(/1)4. |

Proof. Let ¢’ be the representanon of I'xS* on V¥ ® C and let lst In
block matrix form we have e

o'(h, 6(1)) = ¢'(h, 0) - ¢'(L, ),
o(h) O\ [cosOI —sin6I
- ( 0 Q(h)) (sin 6I  cos 01)’_
o(h) cos 0 —o(h) sin 6
- (Q(h) sin® (k) cos 6)'
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Therefore
dim (¥ ® €' = [ Tre'(h, 0(4),
HO

= 2 [ o(h) cos 0,
H

as desired. (This fact can also be proved from the ¥V ® C structure via the for-
mula Tr(xxpf) = Tr(x) Ttr (5). [

Remark. Suppose H’ is spatial, i.e., 6 =0. Then Lemma 13.5 implies that
dim (¥ ® C)" = 2 dim H, which yields another proof of Theorem 13.1(a).

Proof of Proposition 13.3. (a) Since 6(H) = Z, we must have 6(h) =0 or =n
and cos (6(h)) = £1. Infact, cos (6(h)) =1 on K and cos (6(h)) =—1 on
H ~ K. Now use Lemma 13.5 to compute

2 [.
dim (¥ ® C)’ = VO—”—{[ Kj Tro(h) — . NfKTr g(h)], (13.2)

to avoid confusion with the normalizations, we use a fixed normalization of I
Next observe that

2 dim V¥ = —— [ [Trothy + [ Tr Q(/l)}. (13.3)
H~K

Adding (13.2) and (13.3) yields
dim (V ® C)H" + 2dim V¥

= vol 7] [ Tro(h)

since vol A = 2 vol K. This proves part (a).
(b) Similarly, when O(H) = Z; we have cos0(h) =1 on Kand cos (6(h))
== —1 on H~ K. Hence Lemma 13.5 implies that

) 2 .
dim (V@ O =——| [Tro(h) — % [ Tro(|. (13.4)
vol H K H~K
Further, (13.3) is still valid. Adding 4 (13.3) to (13.4) yields

dim (¥ ® €)*’ - dim VH——fTrQ(h)

= vol K,J Tro(h),

= dim VX,

since vol H = 3vol X in this case. []
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The proof of Theorem 13.2 uses orthogonality of characters. We summarize .
the required results here.
In representation theory the function

x») = Tre@y)

is called the character of p, and it determines ¢ uniquely up to equivalence. Let
41 and y, be the characters of irreducible representations g,, g, of G. Then we
have the orthogonality relations (Apams [1969]) which for real representations
take the form:

0 (o 1 02 inequivalent)
[ 2:10) 22(0) = 1 1 (o1 ~e2 absolutely 1r1'educ1b1e) - (13.5)
2 .

2 (o, ~ g, not absolutely 1rredu01ble)

Here ~ denotes equivalence of representations, that is, isomorphisin of actions.
Decompose W into irreducible subspaces for G:

W=W,.. @Wk

Leto be an irreducible representatxon of G. Then its multiplicity ,u(g) is the number
of W; for whlch the representatmn of G on W; is equivalent to o

Proof of Theorem 13.2. Let %o be the character of s, and x the character of g | H.

- Let u(6) be the multiplicity of gy in ¢ o | H We need to show that dim(V ® C)HB

=2u®).
. Note that

o _{v cosb if |0(H)| <2
Ae—k T00=12¢cos 6 otherwise.

By Lemma_13.5, o
dim (V¥ ® CY' =2 [y)cosf. (136
| v

If |6(H)| <2, then the right-hand side of (13.6) .equals

2 [ 2(h) 1ok
H

By the orthogonality relations (13.5) this is 2u(8), since 2 is absolutely 1rredu01ble
If |6(H)|> 2, then (13.6) is equal to

[ %) %)
H

Since g is irreducible but not absolutely irreducible, this is also 2u(0). []
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§ 14. O(3)-Symmetric Hopf Bifurcation

In this section and the next we consider the orthogonal group O(3), which
occurs in many problems with spherical symmetry. This group has two distinct
irreducible representations in each odd dimension 2/ - 1, expressed in terms
of the spherical harmonics ¥; of degree I. If —I€ O(3) acts as the identity on
¥, we have the plus representation; if —/ acts as minus the identity then we have
the minus representation. The “natural” representation of O(3), arising in most
applications, is plus when / is even, minus when / is odd. (These are the natural
representations induced on spherical harmonics by the standard actions of O(3)
on the 2-sphere in R3.)

Our aim is to classify, for both plus and minus representations and for all /,
the isotropy groups of O(3)xS! on V; ® C having 2-dimensional fixed-point
spaces. For each such group Theorem 5.1 yields the existence of a branch of perio-
dic solutions.

The subgroups of O(3), and the dimensions of their fixed-point spaces on V),
are described in IHRIG & GoOLUBITSKY [1984], whose notation we shall follow.
Similar results are stated without proof by MicHEL [1980]. In order to state the
main results of this section, we briefly describe the subgroups.

We have

0(3) = Z; & S0(3)
where Z§ = {4-1}. There are three types of subgroups:

I: Subgroups of SO(3).
II: Subgroups containing Z3, of the form Z5 @ H where H C SO(3).
I1I: Subgroups intersecting Z3 trivially but not contained in SO(3).

These are classified up to conjugacy as follows:

Type I SO(3),0(2), SO(2), I (icosahedral group), O (octahedral), T (tetrahedral),
D, (dihedral), Z, (cyclic).

Type Il Z5 @ Type L.

Type III OQ2)~, O—, D (n = 2), D}, (n = 2), Z3, (n > 1).

The superscripts in type III indicate subgroups isomorphic, but not conjugate
in O(3), to their unsubscripted counterparts of type I. The groups of type III
are constructed as follows. If H is of type III then it is uniquely determined by
H,, its projection to SO(3), and by H, = HN SO(3). We have [H,: Hy| =2
and any pair of subgroups (H,, G,) of SO(3) with |H,: H,| =2 can occur:
see THRIG & GOLUBITSKY [1984] Lemma 1.7 (or argue as in Proposition 6.2 above).
There is a homomorphism #: Hy — Z5 such that

1 h€ H,
n(h) _{—1 he H, ~ Hy'
Define H" = {(h, 7(h)) | h€ H,}. This is the subgroup of type IIL (The construc-

tion is essentially a Z,-twist on H,, but now the twist map is into Z3, not S'.)
For H; = 0(2), O, or Z,, thereisaunique subgroup of index 2, H, = SO(2),
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T, or Z,, respectively. For these groups we denote H{ by Hy . For (H,, Hy) =
(D,, Z,) we denote H] by DZ; for (H;, Hy) = (D1, D,) we denote it D%,
Let H° be an isotropy group of O(3), with 2-dimensional fixed-point space.
It turns out that H must be of type I, so that H = Z5 & J where J C SO(3).
In almost all cases, H® is determined up to conjugacy by the type (I, II, or III) of
K = ker §. We summarize the results of the computation in Table 14.1. For details

Table 14.1. Isotropy subgroups of O(3) X.S! on ¥; ® C, having 2-dimensional
‘ fixed-point subspaces

J Type of K Twist 6(H) Value of /

(see note [3D) . Plus representation Minus representation
02 II 1 even /

0R) 1 z, ~ : even [

o2 Ii Z, odd !

o2 I Z, o odd !/

S0 1I Stk =1,..,11 alll

SOo(2) III . Stlk=1,..,00 all /

‘ ~ (see note [1]) -
I I 1 6, 10, 12, 16, 18, 20,

22, 24, 26, 28, 32, 34,

38, 44; 21, 25, 27,31,

33, 35, 37, 39, 41, 43,
- 47, 49, 53, 59

6, 10, 12, 16, 18, 20, .
22, 24, 26, 28, 32, 34,
38, 44; 21, 25, 27, 31,
33, 35, 37, 39, 41, 43,
' 47, 49, 53, 59
o n 1 4, 6, 8,10, 14;
: . - 9,13,15,17,19, 23
(o) I z, ' 4, 6,8, 10, 14;
9, 13, 15, 17, 19, 23
G 1 z, 6, 10, 12, 14, 16, 20;
o - 3,7,9,11, 13,17 - . ' ;
(0] a1 - z, ‘ 6, 10, 12, 14, 16, 20;
, 3,7,9,11, 13, 17
T I Z, B 2,4,6;5,7,9 ‘ '
T 1 Z . 2,4,6;579
D, 1 L Z, _ RR<nsl
D, IIA z, P fR2<n=l -
D, 1B Z, l<nx2l
(see note :
21y

Notes: [1] For S!-twists, 6 : SO(2) — S* is given by 6(¢) = k¢ and k = 1, ..., [ occur.
[2] For D,, 1A is Z§ @ Z,; and IIB is Z5 @ D,, when n is even.
[3] Here H’ = Z5 @ J is the isotropy subgroup, K = ker 6.



156 M. GOLUBITSKY & I. STEWART

and further explanation of the terms used, see below. For concreteness, we sum-
marize the classification for the ‘“‘natural” representation of O(3), of sign (—1)/,
for /< 6, in Table 14.2. This is just a reformulation of parts of Table 14.1 and
may easily be extended to all / by combining the even / entries in the “plus”
column of Table 14.1 with the odd / entries in the “minus” column. Note in parti-
cular the Z,- or Zg-twisted tetrahedral symmetry occurring when /=2, 4,5, 6,7,
9. For static O(3)-equivariant bifurcation problems the tetrahedral group does not
appear as a maximal isotropy group, see IHRIG & GOLUBITSKY [1984]. Also note
that the case /=1 was obtained in § 11.

The verification of Tables 14.1 and 14.2 is a case-by-case computation, making
use of the results of § 13. It is given in the next section.

Table 14.2. Low dimensional isotropy subgroups of O(3)xXS! on ¥; ® C,
with the natural (—1)/ representation, having 2-dimensional fixed-point subspaces

! Twist 6(H) J Number of branches
" of periodic solutions
given by Theorem 5.1
1 z, 0(2) 2
Stk =1] SO0(2)
2 1 0(2) 6
Z, D,, D,
Z, T
Stk =1,2] 50(2)
3 z, 0(Q2), 0, D,, D, 7
Stlk=1,273] S0(2)
4 1 0(2), O 11
z, D,, D,, Dg, Dy '
z, T
Sl £k s4] SO(2)
5 Z, 0(2), D;, D, D; 10
zZ, T
St =k 5] SO(2)
6 1 0(2), 1,0 i7
Z, O, Dy, Ds, D, Dy, Dyq, Dy
z, T
St{l £k = 6] SO(2)

Note: H = Z§ @ J twisted by 0.

§ 15. Calculations for O(3)

We end by detailing the somewhat technical calculations required to verify
Tables 14.1 and 14.2 above. We split the computation into subsections according
to the twist type O(H), which may be SO(2), trivial, Z; (and Zg), or Z,. The Z,-
twisted case is the most complicated.
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Note that although 6(H) does not determine the twisted group H % uniquely
(because there may be several twist maps 6 with the same image) it will determine
the conjugacy class uniquely when 6(H) = Z,, Z, or Zs, because the generators
of these groups are un1que up to sign, and H® is conjugate to H~%in O(3)xS*.

A: Possible twists

Lemma 15.1. For the plus representation, (—1I,0) lies in every isotropy subgroup
and (—I, ) in none. For the minus representation, (—I, n) lies in every isotropy
subgroup and (—1, 0), in none.

‘Proof. (0, @) acts as —1Id; (—1,0) acts as £-1d. []

Every isotropy group is of the form H % where 6: H—> S*, and H is a closed
subgroup of O(3). Let K =ker 0, and say that the twist zype of H is 6(H).
Thatis, H has a Zs-twistif 6(H) = Z3 C 8!, andso on. The only closed subgroups '
of 8§ are S* and Z,, k =1,2,3,...; so these are the only twist types.

Now H is the projection of H v on 0(3). By Lemma 15.1 this must contain

¢, so H is always type II, with H=25&@ J for JC SO(). From Nnow on
we use J to spemfy H in this sense. Let

= <g‘1 highlg, he H

be the commutator subgroup. Then K> H' since 6(H)C S* is abelian. Hence,
we may read off the possible twist types for H from the abelianization H* = H/H'.

- Table 15.1 lists all possibilities: it is easily obtained form IHRIG & GOLUBITSKY

- [1984].
Table 15.1. Twist types for closed subgroups of O(3)
J H H' Heb E Twist Types
SO(3) 0@3) - S0(3) Z, 1,2
0(2) Z5 @ 0(2) S0(2) Z% ' 1, Z,
S0(2) Zi®s0(Q2) 1 S0Q2) ® Z, 1, SY, Z,
I Z5p1I1 I z, 1, Z,
o Z59 0 T z2 : 1, Z,
T zseD, - D, Z,DZ,=2Zs 1,Z;, 25,26
Dn Z% @ Dn Zn or zn/2 [1] Z% or Z% [2] 1‘: ZZ
z, Z§ ®Z, o1 . Z Dz, 1, Z,(d|2nord|n)[3]
Notes:

[1] Z,if nis odd, Z,, is n is even. .
[2] Z3 if n is 0dd, Z3 if n is even.

[3] d12nif nis odd, d | n if n is even.
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B: Recognizing Isotropy Subgroups

Our computations will show that a given H’ has a 2-dimensional fixed-point
space, but this does not of itself imply that H? is an isotropy subgroup. To decide
this, we use:

Lemma 15.2. Let H°C O(3)xS* have a 2-dimensional fixed-point space. Then
the following are equivalent.

(@) H®is an isotropy subgroup.
(b) H’ is a maximal isotropy subgroup.
(c) Whenever H'( L%, the fixed-point space of L* has dimension <2 (hence 0).

Proof. All fixed-point spaces of isotropy groups of O(3)xS' have dimension
= 2 by Proposition 12.5 (indeed the dimension is even, by Theorem 12.3). So
(a) implies (b). Clearly (b) implies (c).

To prove (c) implies (a), suppose His not an isotropy subgroup. Let 0 == x
eV ® C)Ho. Then H°C X, =1L* for suitable L, ¢. Hence x€(V; ® C)L¢.
But (V; ® C)m C(Vix C)Ho and dimensions are =2, so (V; ® C)m’ =
7, ® C)”o. This proves (c) implies (a) so all statements are equivalent.

It is usually easy to decide when H®(C L®. This occurs if and only if

H{ L and ¢ extends 0. (15.1)

It follows that ker 6 C ker ¢.

Our strategy for finding isotropy subgroups with 2-dimensional fixed-point
spaces is to classify first by twist type, and second by the type (I, II, or III) of K =
ker 6. Both of these are conjugacy-invariants for O(3) xS*.

For the plus and minus representation, Z5 must be respectively untwisted and
twisted by Lemma 15.1. (That is, Z3 is, or is not, in ker ). Hence

For the plus representation, X is of type II. (15.2)
For the minus representation, K is of type I or III. (15.3)
C: St-Twists

SO(2) is a maximal torus of O(3), and the root-space decomposition of ¥}
Vi=We @ W, ®...0 W, (15.4)

where dim W, = 1, dim W, =2 for k> 0. If ¢€.S0(2), then ¢ acts on W
as rotation by k¢. Cf. Apams [1969].

By Theorem 13.2,if §:S0(2) — S is a twist with 0(¢) = k¢, then dim (V ®
C)°@° is a 2 precisely when the representation of SO(2) corresponding to 6
occurs exactly once in the restriction of the O(3)-action on V; to §O(2). By (15.4)
this happens for k= 1,2, ...,/ only. (Note: a twist by —k¢ gives a group con-
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jugate in O(3)><S 1 to that given by +k¢, so we may assume k = 1.) Hence
(Z; @ S0(2))? has a 2-dimensional fixed-point space when

0=k (k=1,....0),

(0  (plus representation)

6(—1) = {

7 (minus representation).

This leads to the entries with S!-twists in Table 14.1.

D: Cyclic Subgroups

We can now avoid what would otherwise be a complicated calculation: the

case J= Z,. There are many twists of Z, @ Z5. However, as in subsection C

we may consider the effect of the twist separately on Z, and on Z3. The effect
of the twist on Z5 is determined by the parity (plus or mmus) of the representation;
and the fixed-point space is the same as for the twisted Z,.

- 2kx -
Let x generate Z,. The possible twists are X—>— k=0,...,n. By

Theorem 13.2 the fixed-point space has dimension 2 if and only if this representa~

tion occurs with multiplicity 1 in the restriction of the O(3)-action to Z,. But
Z,C SO(2), so the root-space decomposition implies that k=1,2,. oA

The twist on Z, therefore extends to the corresponding twist on SO(2), and by

Lemma 15.2, ZS cannot be an isotropy group with 2- dimensional fixed-point.
space. Hence J = Z, does not occur in Table 14.1.

E: Dimension Formulas for O(3)

We now state formulas for the dimensions d(#) of fixed-point spaces‘ VH of
H C O(3) acting on ¥;. These are reproduced from THRIG' & GOLUBITSKY [1984].

Plus Representation. J C SO(3) and 22 @ J have the same ﬁxed—pomt space,
so d(Z; © J) = d(J). Their values are given by:

d(Z)-—Z[Z]-i-l | n= 1),

[%] |  1 odd
D) =1 nz2),
: [-n—] + 1, leven

d(SOQ2) = 1,

. _.
d(0@)) = {1 ! odd

[ even’
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T / l
d( )x2[7}+[7]—1+ 1,
l / /
10 =]+ 5]+ 7]+
/ / I
a =[]+ [5]¢|5]- o0

We shall not require the value of d(H) of a type III group H in the plus represen-
tation.

Minus Representation. If J C SO(3) then d(J)is as above. Clearly d(Z5 @ J)
= 0. For type III groups the results are:

d(Z7) =2 [’ T ”],

2n
/
— [ even
n
(dD}) = | ,
—] -+ 1 [ odd
n

I+ n
d(Dg" ::l: 2’1 ]’

o= [ [ [ -

0 [ even
d(0@y) = {1 I odd.

The values for the exceptional groups I, O, T, O~ are ‘“‘periodic” in the sense that
d(I) (I + 30) = d(I) () + 1
d0) (I +12) = d(0) () + 1
d(Ty(I + 6) = d(T) () + 1
dO~) (I + 12) = d(O~) () + 1.

Their values for /< 30, 12, 6, 12 respectively are given in IHRIG & GOLUBITSKY
[1984]. This periodicity is useful in the calculations sketched below.

F: Untwisted Groups

Consider an untwisted group H C O(3), with 0 = 0. By (15.2) only the

plus representation can apply, and H = K = Z5 @ J. We have dim (V ® C)"

= 2dim V7 as in (6.2). Hence we seek J such that dimJ’ = 1. By §15E
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we find those éubgroups whose fixed-point subspace are 2-dimensional. By inspec-
tion (using Lemma 15.2(c)) we determine which of these are isotropy subgroups.
The resulting list is:

Z5 @ 0(2): all even I

c@ I: 1= 6,10, 12, 16, 18, 20, 22, 24, 26, 28, 32, 34, 38, 44; -
21, 25, 27, 31, 33, 35, 37, 39, 41, 43, 47, 49, 53, 39.

c@dO0: =468, 10, 14; 9, 13, 15, 17, 19, 23.

(We have separated the even and odd I for later convenience, when considering
‘the (—1)-representation.) This gives the entries in Table 14.1 with 6(H) = 1.

G: Zy- and Z6-twisis .

" These arise only when H = Z5 @ T. Inthe plusrepresentation, K = Z3 & D,
and the twist is Zs; in the minus representation K = D, and the twist is Z.
(The subgroup D, is defined geometrically as the symmetries of the tetrahedron
" formed by rotating it about the lines joining mid-points of opposite edges. Alter-
" natively, think of T as the even permutation on the vertices 1, 2, 3, 4 of the tetra-
hedron, and D, as the Klein Four-Group {Id; 12) (34), (13)(24), (14 23)})
In either case, in order for T° to have a 2-dimensional fixed-point subspace we
must have by Theorem 13.1(b) ' :

dim VP: — dim V[ = 2.
By inspection from § 15.E we find that /=2,4,5,6,7,9.

H: Z,-twists '

. This is the only remaining case. Thanks to the dihedral groups, it requires
detailed analysis, depending on the type of K = ker 6.. Using Theorem 13.1 and

Lemma 15.1 we can tabulate the conditions for a 2-dimensional fixed-point space

(Table 15.2). ' ' '

Table 15.2. Conditions for a 2-dimensional fixed-point space with Z, twist

H=Z0J Plus Representation ‘Minus Representatibn
K type I None : | dim 7/ =1

K=17J :

K type 11 dim VL = dim ¥/ + 1 None

K=Z56L ,

K type III ~ None ' dim VM =1 -

K=M"
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Note that a type III kernel can occur only for the minus representation, as
asserted in § 15.E. From Table 15.1, the possible J are O(2), SO(2), I, O, T,
and D,. (Z, is eliminiated by § 15.D). Assuming d(H’) = 2 we may use § 15.E)
to obtain Table 15.3, where we abbreviate the lists of values of / for exceptional
groups as follows.

6-44: 6, 10, 12, 16, 18, 20, 22, 24, 26, 28, 32, 36, 38, 44.

21-59: 21, 25, 27, 31, 33, 35, 37, 39, 41, 43, 47, 49, 53, 59.

4-14: 4, 6, 8, 10, 14,

9-23: 9,13, 15, 17, 19, 23.

6-20: 6, 10, 12, 14, 16, 20.

3-17: 3,717,911, 13, 17.

Note that for J = SO(2), I, and T, only a kernel X of type I is possible since J
has no subgroup of index 2.

Table 15.3. Z,-twisted groups with d(H® = 2

J K Plus Representation ~ Minus Representation
0(2) I. 0 l even

II: Z¢® SO(2) [odd

III: O(2)- lodd
S0(2) I. SOQ2) all /
I I. I 6-44; 21-59
(0] I. O 4-14; 9-23

I: Z5pT 6-20; 3-17

III: O- 6-20; 3-17
T I. T 4,8;3,7,11
D, I. D, ! < n(leven)

n=1<2n(odd)
IIA: ZS® Z, n<l<2n(leven)
! < n({lodd)
(n=2m) 1B: Z25®D, m=Il<3m
HIA: D} leven
(n=2m) IIB: DY Qk +1)msI<@k+2)m
(any k, [ odd)

I: Conjugacy Problems

In obtaining Table 15.3 we must consider conjugacy classes under O(3) of
pairs (H, K) where |H/K| = 2, two such pairs (H, K;) being conjugate if yH,;y~!
= H,, yK;y~! = K, for the same y. This is not necessarily the same as consider-
ing pairs of conjugacy classes (where y may differ between H; and K}). If H has
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a unique-subgroup of index 2 (or more generally if X is a characteristic subgroup,
invariant under automorphisms of H), then any y that conjugates™H; to H,
automatically conjugates K; to K,. This justifies the entries for J = SO(2), I,
and T. If H has a characteristic subgroup L C SO(3) such that H/L = Z, @ Z,

"then there are three possible groups K, of types I, II, III respectively. This justifies

the entries for J = 0(2), O, and D, where n is odd. When ‘n'=2m 1is even,
Z5 @ Dyl Z,, ® Z3 and there are seven possible K. ‘Three of these, types I,
TIA, IIIA, contain Z,, which is characteristic; types IIB and IIIB occur as O(3)-
conjugate pairs, since they are conjugate in Dy, which normalizes D,,. This justi-
fies the remaining entries. ' - ' '

J: Elimination of redundancy

To complete the proof that Table 14.1 is correct we must eliminate from

* Table 15.3 all groups H® contained in a larger group L? also in Table 15.3. The

SO(2) entries for / even extend to O(2) with K of type I; for / odd, to O(2) with K
of type IIL. Similarly the T entries extend to O, For D,, the cases I (I even), ITA

(I odd), TIA, IIIB extend to 0(2). In case IIB we have [—3-] < mZ 1, and we must

also eliminate m < [—2—] since 2mis then in the same range. Once this is done,

Table 14.1 results. It is easy to check that there are no repetitions, up to conju-.
gacy. : '
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