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Preface

This book has been written in a frankly partisian spirit—we believe that
singularity theory offers an extremely useful approach to bifurcation prob-
lems and we hope to convert the reader to this view. In this preface we will
discuss what we feel are the strengths of the singularity theory approach.
This discussion then leads naturally into a discussion of the contents of the
book and the prerequisites for reading it.

Let us emphasize that our principal contribution in this area has been to
apply pre-existing techniques from singularity theory, especially unfolding
theory and classification theory, to bifurcation problems. Many of the ideas
in this part of singularity theory were originally proposed by René Thom;
the subject was then developed rigorously by John Mather and extended by
V. I. Arnold. In applying this material to bifurcation problems, we were
greatly encouraged by how well the mathematical ideas of singularity
theory meshed with the questions addressed by bifurcation theory.

Concerning our title, Singularities and Groups in Bifurcation Theory, it
should be mentioned that the present text is the first volume in a two-volume
sequence. In this volume our emphasis is on singularity theory, with group
theory playing a subordinate role. In Volume II the emphasis will be more
balanced.

Having made these remarks, let us set the context for the discussion of
the strengths of the singularity theory approach to bifurcation. As we use
the term, bifurcation theory is the study of equations with multiple solutions.
Specifically, by a bifurcation we mean a change in the number of solutions
of an equation as a parameter varies. For a wide variety of equations,
including many partial differential equations, problems concerning multiple
solutions can be reduced to studying how the solutions x of a single scalar
equation

g(x,2) =0 P.1)
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vary with the parameter A. This simplification depends on a technique known
as the Liapunov-Schmidt reduction.

The singularity theory approach deals with equations of the form (P.1);
i.e., with equations after the Liapunov-Schmidt reduction has been per-
formed. We shall emphasize the qualitative properties of such equations.
This emphasis is sharply focused by the notion of equivalence, which defines
precisely what it means for two such equations, and their solution sets, to
be qualitatively similar.

The theory quickly leads one to generalize (P.1) to include k-parameter
families of such equations; i.e., equations of the form

G(x, A, @) = 0, (P.2)

where o = (a4, ..., o) is a shorthand for & auxiliary parameters. We shall
call G an unfolding of g if for o = 0

G(x, 4, 0) = g(x, 4). P.3)
Since
G(x, A, o) = g(x, 1) + [G(x, 4, @) — G(x, 4, 0)],

we may think of G(x, 4, «) as a perturbation of g(x, 4).
In this volume we limit our discussion of (P.2) in the following four ways:

(i) we assume that the dependence of G on x, 4, and « is infinitely differ-
entiable;
(ii) we consider primarily the case where x is a scalar (one-dimensional)
unknown;
(iii) we work locally (i.e., in the neighborhood of some fixed point (x,, 4o));
and
(iv) we discuss dynamics only in a limited way.

Brief discussions of points (i) and (iii) occur later in this Preface. Concerning
point (ii), in Volume II we will consider finite-dimensional systems of
equations with several unknowns. Let us elaborate on point (iv). Typically,
equations with multiple solutions arise in characterizing steady-state
solutions of an evolution equation. Singularity theory methods are useful in
finding the steady-state solutions and, in some instances, their stabilities.
However, it does not seem to be possible with these methods to analyze
essentially dynamic phenomena such as strange attractors.

One general strength of the singularity theory approach to bifurcation
problems is easily stated—this approach unifies the treatment of many
diverse problems in steady-state bifurcation. Such unification has the obvious
advantage of elegance, but it also leads to economy of effort. Specifically,
the same general methods used to study the most familiar problems in
bifurcation theory continue to apply in a variety of nonstandard contexts.
For example, whether or not g(x, 1) = 0 has a trivial solution and whether
or not symmetries are present, the theoretical framework of the singularity
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theory approach is the same. Also, although in this text we consider only
equations having A as a distinguished parameter, the same techniques work
equally well when all parameters are treated on the same footing.

In the next few paragraphs we discuss three specific problems in bifur-
cation theory that are solved by the singularity theory approach; we also
discuss how this information is useful for applications. The first problem,
called the recognition problem, is the following: Given an equation
h(x, ) = 0, when is a second equation g(x, 1) = 0equivalent to h(x, 1) = 0?
In solving this problem, singularity theory methods produce a finite list
of terms in the Taylor series of g such that the question of whether equiv-
alence obtains is determined wholly by the values of the derivatives of g on
this list—all other terms may be ignored. (Of course this list depends on the
given function h(x, A); moreover for certain pathological functions h(x, 1),
a finite list does not suffice.) Regarding applications, this list specifies
precisely the calculations which must be performed to recognize an equation
of a given qualitative type. As we shall illustrate in Case Study 1, this in-
formation helps organize the computations for analyzing mathematical
models.

The second problem concerns perturbations of an equation g(x, 1) = 0;
i.e., equations of the form

g(x, A) + p(x, 1) = 0, P.4)

where p is appropriately small. Specifically, the problem is to enumerate all
qualitatively different perturbations of a given equation. We will solve this
problem by constructing and analyzing what is called a universal unfolding.
By way of definition, a universal unfolding of g is a distinguished k-parameter
family of functions, G(x, 4, &), which satisfies (P.3) and has the following
crucial property: For any small perturbation p, there is a value of a such
that g + p is equivalent to G(-, -, ). Less formally, up to qualitative equiv-
alence, G contains all small perturbations of g.

Let us elaborate on point (i) above, the limitation that we consider only
smooth functions of x, 4, and «. In constructing a universal unfolding of g,
we will show that « in the universal unfolding and p in (P.4) are related by a
smooth transformation. Nonetheless, a great deal of nonsmooth behavior
is contained in a universal unfolding. Specifically, it is rarely possible, even
locally, to express the solution x of (P.2) as a smooth, or even continuous,
function of A and a. The spirit of our approach is to work with smooth
relationships between variables for as long as possible. Thus we attempt to
solve (P.2) for x only after transforming the equation to a particularly
tractable form; these transformations may be performed in a purely C®
context.

Our work with universal unfoldings has two additional benefits for
applications. First, these methods often allow one to determine quasi-
global properties of a model using purely local methods (cf. point (i) above);
and second, in multiparameter models, these methods impose a structure
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on the physical parameter space that is useful as a guide in thinking
about the problem. Both these benefits are illustrated in Case Studies 1
and 2.

The third problem is to classify the qualitatively different equations
g(x, ) = 0 that may occur. This is a problem of infinite complexity in that
there are infinitely many equation types and there are equation types of
arbitrarily high complexity. The singularity theory notion of codimension
provides a rational approach to this problem. The codimension of g is the
number of parameters needed in a universal unfolding of g; this notion also
provides a rough measure of the likelihood of an equation of a given quali-
tative type appearing in a mathematical model, equations with lower
codimensions being more likely. Of course we do not solve the classification
problem completely. In this book we list all the qualitative types of equations
having codimension three or less, along with all the qualitatively different
perturbations of each. (See Chapter IV.) It is possible to extend the classi-
fication to higher codimensions, but the effort required escalates rapidly.

Our list of qualitative types of equations and their perturbations includes
graphs of the solution sets, which we call bifurcation diagrams. These
diagrams may be used in applications as follows. Consider a physical
problem which depends on one or more auxiliary parameters. Suppose that
for various values of the parameters one can generate representative bifur-
cation diagrams for the problem either by experiment or by numerical
solution of a model. Suppose further that comparison with our lists shows
that the bifurcation diagrams so generated are many or all of the qualitatively
different perturbations of one specific qualitative type of equation, say
g(x, A) = 0. Then it is natural to conjecture that for some special values
of the parameters an equation equivalent to this g results. To verify such a
conjecture one needs to solve a recognition problem, as was discussed above.
If the conjecture is verified, then the physical parameter space inherits
useful structure from the universal unfolding, as was also discussed above.
Typically this sequence of events leads to a compact description of a great
deal of data. Following Thom, we use the term organizing center to describe
an equation type occurring in this way; i.e., an equation which occurs in a
model for certain values of the parameters such that the universal unfolding
of this equation generates many or all of the bifurcation diagrams occurring
in the physical problem. Each of the case studies illustrates the use of this
concept in applications.

We now outline the contents of this book, chapter by chapter. Chapters
II-TV, the essential theoretical core of the book, are a unit which develops
the main ideas of the theory. These three chapters deal with the three problems
discussed above; i.e., Chapters II, III, and IV study the recognition problem,
unfolding theory, and the classification problem, respectively.

Chapter I highlights the theory to follow and discusses how singularity
theory methods are used in applications. Also in this chapter we introduce
the Liapunov-Schmidt reduction in the limited context of ordinary dif-
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ferential equations. (As we indicated above, with this technique many
problems involving multiple solutions can be reduced to a single scalar
equation g(x, 4) = 0.) The style of the chapter is mainly expository, develop-
ing ideas by means of examples rather than theory.

Chapter V explores a theoretical issue that singularity theory methods
raise, the subject of moduli. Moduli are currently an active topic of research
in several areas of pure mathematics. Regarding applications, moduli might
at first seem to be an esoteric subject, but as illustrated by Case Studies 2
and 3, we have found moduli to play an important role in the more interesting
applications we have studied. (Remark: Chapter V considers moduli in the
simplest context—one state variable with no symmetry present. In appli-
cations, including Case Studies 2 and 3, moduli usually arise in a richer
context involving symmetry.)

Symmetry and its consequences are the focus of Chapter VI. The re-
striction to one state variable greatly simplifies the discussion of symmetry
since in one variable there is only one nontrivial symmetry possible. Thus in
this chapter we are able to illustrate, with a minimum of technical compli-
cations, the main issues involving symmetry. (The full complexities of
symmetry will be studied in Volume II.) In particular, one point illustrated
by Chapter VI is how singularity theory methods unify different contexts—
this chapter uses the same methods as are used in the unsymmetric context
of the preceding chapters, even though the specific results in Chapter VI
are quite different from those of earlier chapters.

Chapter VII develops the Liapunov-Schmidt reduction in general,
expanding on the limited treatment in Chapter I. In this chapter we also
illustrate the use of this reduction in applications—specifically, in a buckling
problem and in certain reaction—diffusion equations.

Chapter VIII studies Hopf bifurcation for systems of ordinary differential
equations; i.e., bifurcation of a periodic solution from a steady-state
solution. This dynamical problem can be formulated as a steady-state
problem, thereby permitting the application of singularity theory methods.
The advantage of this approach lies in the fact that these methods generalize
easily to handle degenerate cases where one or more hypotheses of the
classical Hopf theorem fail.

Chapters IX and X together serve as a preview of the main issues to be
studied in Volume II—bifurcation problems in several state variables,
especially with symmetry. The simplest bifurcation problems in two state
variables are discussed in Chapter IX, and certain bifurcation problems in
two state variables with symmetry are discussed in Chapter X. The treatment
of these subjects is not complete; in particular, several proofs are deferred
to Volume II.

The three case studies in this book form an important part of it—they
illustrate how singularity theory methods are used in applications. We
believe that the three problems analyzed in the case studies are of genuine
scientific interest. (Other examples, of primarily pedagogical interest, have
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been included within various chapters. Volume II will contain several more
case studies, treating technically more difficult problems.)

As to the interdependence of various parts, Chapters I-IV should be
included in any serious effort to read the book. After this point there are
some options. In particular, Chapters V, VI, and VII are largely independent
of one another, although the latter part of Chapter VI is closely related to
Chapter V. By contrast, Chapter VIII depends heavily on Chapters VI and
VII. Chapter IX may be read immediately following Chapter IV. (There is
some reason to do so, as Chapter IX completes a theoretical development
begun in Chapter IV; viz., the classification of bifurcation problems of
codimension three or less. Chapter IX eliminates the restriction to one state
variable that was imposed in Chapter IV.) Chapter X draws primarily on
Chapter VI. Each case study is placed immediately following the last chapter
on which it depends.

In writing this book we wanted to make singularity theory methods
available to applied scientists as well as to mathematicians—we have found
these methods useful in studying applied bifurcation problems, especially
those involving many parameters or symmetry, and we think others may too.
Therefore we have tried to write the book in ways that would make it acces-
sible to a wide audience. In particular, we have devoted much effort to
explaining the underlying mathematics in relatively simple terms, and we
have included many examples to illustrate important concepts and results.
Several other features of the book also derive from our goal of increasing its
readability. For example, each chapter and case study contains an intro-
duction in which we summarize the issues to be addressed and the results to
be derived. Likewise, in several places we have indicated material within a
chapter that may be omitted without loss of continuity on a first reading,

especially technically difficult material. In the same spirit, in cases where
proofs are not central to the development, we have postponed these proofs,

preferring first to discuss the theorems and give illustrations. Usually we
have postponed proofs until the end of a section, occasionally until a later
section, and in a few cases (the unfolding theorem among them) until
Volume II.

The prerequisites for reading this book may seem to work against our
goal of reaching a wide audience. Regarding mathematical prerequisites,
the text draws on linear algebra, advanced calculus, and elementary aspects
of the theory of ODE, commutative algebra, differential topology, group
theory, and functional analysis. Except for linear algebra and advanced
calculus, we attempt to explain the relevant ideas in the text or in the appen-
dices. Thus we believe it is possible for a nonmathematical reader to gain
an appreciation of the essentials of the theory, including how to apply it,
provided he or she is comfortable with linear algebra and advanced calculus.
The many examples should help greatly in this task.

Prerequisites for understanding the applications should not pose a
problem for mathematical readers. Although our three case studies involve
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models drawn from chemical engineering, mathematical biology, and
mechanics, in each case we have described the physical origins of the equa-
tions of the model and then analyzed these equations as mathematical
entities. A mathematical reader could follow the analysis of the equations
without understanding their origins; of course some physical intuition would
thereby be sacrificed.

We are aware that many individuals whose work is not mentioned in this
book have made important contributions to bifurcation theory. Consistent
with our goals in writing this book, we have given references only when
needed to support specific points in the text. Moreover by quoting one
reference rather than another we do not mean to imply any historical
precedent of one over the other—only that the quoted reference is one with
which we are familiar and which establishes the point in question. The lack of
acomplete bibliography in this book is made less serious by the recent appear-
ance of several monographs in bifurcation theory, for example, Carr [1981],
Chow and Hale [1982], Guckenheimer and Holmes [1983], Hassard,
Kazarinoff, and Wan [1981], Henry [1981], Iooss and Joseph [1981].

An amusing, personal anecdote may suggest further reasons why we have
not attempted to include a complete bibliography. One of us was lecturing
before an audience that included researchers in bifurcation theory. When
asked to date a paper we had quoted, we guessed “around 1975.” It was
in the early sixties!”” came the prompt reply from someone in the audience
who had been associated with the work. Like children everywhere, we find
that events before our time are somewhat blurred.

There remains only the pleasant duty of thanking the many people who
have contributed in one way or another to the preparation of this volume.
Dave Sattinger originally suggested applying singularity theory methods to
bifurcation problems. Jim Damon has been a frequent consultant on the
intricacies of singularity theory; moreover Lemma 2.7 of Chapter III is
due to him. Encouragement by, advice from, and lively discussion with
John Guckenheimer, Jerry Marsden, and Ian Stewart have been most
helpful. Joint work with our coauthors Barbara Keyfitz and Bill Langford
are included in this text. The manuscript benefited greatly from suggestions
made by Joe Fehribach and Ian Stewart. Barbara Keyfitz has contributed to
the book in more ways than can reasonably be enumerated. To all these
people, and to Giles Auchmuty, Vemuri Balakotaiah, Charlies Conley, Mike
Crandall, Jack Hale, Phil Holmes, Ed Ihrig, Dan Luss, and Ed Reiss, we
express our heartfelt thanks. The figures were drawn by Jim Villareal and
Wendy Puntenney. While pursuing the research reported in this text, we
were generously supported by the NSF and AROQ, including visiting positions
at the Courant Institute, the Institute for Advanced Study, the Mathematics
Research Center, and the Université de Nice. Finally we are grateful to
Bonnie Farrell for her most efficient typing of an illegible manuscript—we
only wish that we might have written the book as quickly, accurately, and

cheerfully as she typed it.
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CHAPTER 1

A Brief Introduction to the Central
Ideas of the Theory

§0. Introduction

In this book we shall study local bifurcation problems with one state variable.
Such problems may be formulated as an equation

g(x, ) =0 (0.1)

for a single unknown x, the state variable, where the equation depends on an
auxiliary parameter A, the bifurcation parameter. We shall call the set of
(x, A) satisfying (0.1) the bifurcation diagram or solution set of g. The central
questions about (0.1) concern multiple solutions. For each 4, let n(4) be the
number of x’s for which (x, A) is a solution of (0.1). Our study of (0.1) will be
local; thus we suppose that (0.1) may only be defined in some neighborhood
of a point (x,, 4,) and that n(4) only counts solutions in this neighborhood.
To avoid trivialities we assume that g(x,, 4o) = 0. Classically, one calls
(x0, 4o) a bifurcation point if n(4) changes as A varies in the neighborhood of
Ao. (Remark: Our theory makes liberal use of the derivatives of g; for
simplicity we assume throughout that this function is infinitely differ-
entiable.)

A surprising variety of the problems in applied mathematics which exhibit
multiple steady-state solutions, even systems with infinitely many degrees of
freedom, can be reduced to the form (0.1) by the so-called Liapunov-
Schmidt reduction. We will illustrate this technique in §3 of this chapter and
study it in earnest in Chapter VII; however, for the moment we take (0.1) as
the basic datum.

The implicit function theorem (see Appendix 1) gives a simple necessary
condition for (x4, 4o) to be a bifurcation point; namely g.(xq, o) = O.
(Here the subscript x indicates partial differentiation.) For if g.(x¢, 4¢) # O,
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then (0.1) may be uniquely solved in the small for x as a function of 1; in other
words, for each A near 4, there is exactly one solution of (0.1) close to x,.
We shall call a point (x4, 4y) for which

9(Xo, Ao) = gx(x0, 40) =0 0.2)

a singularity.
Note that a singularity need not be a bifurcation point in the classical
sense. For example, consider

x>+ A2 =0,

which has exactly one solution (viz., x = —A?3) for any 4, but is obviously
singular at the origin. (Remark: This example is quite important for the
physical problem that we consider in §2 below.)

This chapter is divided into four sections. Section 1 is a theoretical section;
in it we discuss the information that singularity theory methods provide
about the pitchfork bifurcation, perhaps the most important example of
bifurcation in the classical literature. In §2 we consider the application of
singularity theory methods to a chemical engineering model. In §3 we intro-
duce in a special case the Liapunov-Schmidt reduction mentioned above.
Finally in §4 we analyze the relation between the Liapunov-Schmidt reduc-
tion and the stability of equilibrium solutions of an autonomous system of
ordinary differential equations.

Sections 1-3 introduce the three major themes that occur throughout this
volume. Section 1 leads naturally into the theoretical side of the subject,
which we begin to develop in Chapters II and III. Section 2 is indicative of the
applications in the Case Studies. The third section is concerned with the issue
of how the study of equations as simple as (0.1) can have such wide applic-
ability; we return to this theme in Chapter VII. By contrast, the material in §4
lies outside the mainstream of this text, although it is extremely important for
bifurcation theory in general.

§1. The Pitchfork Bifurcation

In this section we discuss the pitchfork bifurcation from the singularity theory
point of view. This bifurcation occurs frequently in the classical literature. It
has the basic property that as A crosses some value 4, the number of solu-
tions n(A) jumps from one to three. The simplest equation with this behavior is

x3 — Ax =0, (1.1)

where A, = 0. The solution set for (1.1) is shown in Figure 1.1, which explains
the nomenclature. In the figure the orientation of the coordinate axes is
shown to the right.



§1. The Pitchfork Bifurcation 3

X
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Figure 1.1. The pitchfork bifurcation x> — Ax = 0.

We have divided this section into five subsections. In subsection (a) we
present a simple mechanical system which illustrates the pitchfork bifurca-
tion. In subsections (b) and (c) we discuss the information that singularity
theory methods provide about the pitchfork bifurcation. The fundamental
ideas of the theory already occur in this simple example. In particular,
Chapters II and III develop the ideas in subsections (b) and (c), respectively;
i.e., they extend these ideas to a general context and supply proofs. Finally, in
subsections (d) and (e) we consider certain related issues needed to under-
stand the significance of bifurcation theory for applications. This latter
material is a standard part of bifurcation theory, and not at all tied to the
singularity theory approach. We present it here because it gives the subject
vitality by making connections with applications.

(a) An Example of the Pitchfork Bifurcation

In Figure 1.2 we illustrate a simple physical system which exhibits a pitchfork
bifurcation. (This is a finite element analogue of the Euler column which we
will study in Chapter VII, §2.) The system consists of two rigid rods of unit
length connected by pins which permit rotation in a plane; it is subjected to
a compressive force A which is resisted by a torsional spring of unit strength.
We neglect friction. The state of the system is described by the angle x
measuring the deviation of the rods from the horizontal. The potential
energy of this system equals

xZ

2

the first term representing the stored energy in the torsional spring and the
second, the work done by the external force. Steady states are described by an

V(x, A) = — + 2A(cos x — 1),

Figure 1.2. Finite element analogue of Euler buckling,
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equation of the form (0.1), where
g(x, 1) = aa—I;(x, A) = x — 24 sin x. (1.2)

We ask the reader to check that the function (1.2) has a singularity at
(X0, 40) = (0,3) and that modulo higher-order terms (hot)
3

g(x, A) = % — 2(4 — Hx + hot, (1.3)

where the neglected terms are of order x°, (A — 3)?x, or higher. Equation (1.3)
bears a strong similarity to (1.1) but differs in three respects: first, the singu-
larity in (1.3) is not located at the origin; second, the coefficients in (1.3)
differ from unity; and third, there are higher-order terms present in (1.3). The
first two differences may be absorbed by simple linear changes of coordinates;
i.e., by replacing 1 by a(A — %) and x by bx for appropriate constants a and b.
These two differences have no effect on the qualitative picture of the solution
set. As for the higher-order terms, below we will describe results which show
that they may be absorbed by a nonlinear change of coordinate. In other
words, the third difference also has no effect on the qualitative behavior of the
solution set in the small.

Let us elaborate. Formula (1.4) below provides a sufficient condition for
n(A), the number of solutions of g(x, 1) = 0, to jump from one to three as 4
crosses A,. We ask the reader to verify that (1.2) satisfies (1.4) at (x, ) =
(0, 1). This will show that there are three equilibrium configurations of the
model in Figure 1.2 when A > }, the trivial (or undeformed) state x = 0 and
two nontrivial (or buckled) states with x # 0. (To relate this result to the
physical system, it is important to realize that for A > } the undeformed state
x = 0is unstable and hence effectively unobservable in experiments. We will
discuss stability briefly in subsection (d) below, and more thoroughly in §4 of
this chapter.)

(b) Finite Determinacy and the Recognition Problem

There are two basic issues on which the singularity theory approach to
bifurcation focuses; the first of these concerns questions of the type just
encountered; i.e., questions about the importance of higher-order terms. We
shall use the singularity theory term finite determinacy to describe such
problems, since the underlying question may be phrased: “To what extent do
the low-order terms in the Taylor series expansion of a bifurcation problem
g(x, A) determine its qualitative behavior, regardless of the higher-order
terms that may be present?” For the particular case of the pitchfork, our
answer, in part, is as follows. Let g(x, A) be a bifurcation problem such that
when (x, 1) = (xq, 4¢) we have

g =9x= Ixx = 9o = 05 Ixxx9ax < Oa (14)
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then n(4), the number of solutions of g(x, 1) = 0, jumps from one to three as A
crosses Aq. (If g,..g,, has the opposite sign, n(4) jumps from three to one,
while if g,,.. g, = 0, more information is required.)

A direct and fairly elementary proof of this result is possible, using only the
implicit function theorem; this proof is outlined in Exercise 1.1. In the
singularity theory approach, however, one proves considerably more—
namely, that any g satisfying (1.4) may be transformed by an appropriate
change of coordinates into the standard model for the pitchfork, x> — Ax = 0.
More precisely, if g(x, 1) satisfies (1.4) at (x,, 4o), then there exist:

(i) alocal difffomorphism of R? of the form (x, 4) — (X(x, 4), A(4)) mapping
the origin to (x4, 4¢); and
(ii) a nonzero function S(x, 1);

such that
S(x, Dg(X(x, A), A(A) = x> — Ax (1.5)

near the origin, where, moreover, X .(x, 4) > 0and A’(4) > 0. Since the factor
S(x, A)is nonzero, the solutions of g(x, 2) = Odiffer from those of x> — Ax = 0
only by the diffeomorphism (X, A). This is the precise sense in which the
higher-order terms in (1.3) have no effect on the qualitative behavior of the
model in the small—they may be transformed away entirely by a change of
coordinates.

Equation (1.5) leads to the definition of equivalence, which is one of the
fundamental concepts in the theory. We shall say that two bifurcation prob-
lems g and h are equivalent if they may be related through an equation

S(x, Mg(X(x, 1), A(A)) = h(x, A), (1.6)

where S is nonzero and positive and (X, A) is a local diffeomorphism which,
as above, preserves the orientations of x and 1. Note that this definition
requires that S > 0; as we shall explain in §4 below, this convention preserves
useful information about the stability of solutions. Unfortunately this con-
vention also leads to some nuisances regarding plus and minus signs. For
example, with this convention we must decompose (1.4) into two distinct
cases, depending on which factor in the product g,..g,, is negative.

If g and h are equivalent, then the two multiplicity functions are related as
follows:

n(A(4)) = n(4). (L7)

Indeed, (1.7) is one of the most important consequences of equivalence. It
turns out that this equation is intimately related to our restriction that in the
diffeomorphism (X, A), the second coordinate A may not depend on Xx.
We explore this relationship in Exercise 1.4; here we only motivate this
restriction by the remark that typically in applications A is associated with an
external force set by the experimenter, while x is associated with an internal
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state of the system that results from the choice of A. In other words, 4 in-
fluences x, but x does not influence A. Coordinate transformations of the
form (X(x, A), A(4)) reflect this distinction.

Our treatment of the pitchfork is representative of the general singularity
theory approach to determinacy questions. Let us summarize the above
discussion as a way of introducing the terminology of Chapter II. We shall
call x> — Ax = 0 a normal form for the pitchfork bifurcation. Any bifurcation
problem g(x, A) which at a specific point (x,, 4,) satisfies

9=9x-=9xx=9:=0; gux>0, g,,<0 (1.8)

is equivalent to this normal form. We shall say that (1.8) solves the recognition
problem for this normal form; i.e., (1.8) characterizes the bifurcation problems
equivalent to x* — Ax = 0. Equivalent bifurcation problems have the same
qualitative properties; more precisely, qualitative properties are those which
are unchanged by equivalence. The object of this book is to study qualitative
properties of bifurcation problems.

(c) Universal Unfoldings and Perturbed Bifurcation

The second of the two central issues in our approach to bifurcation theory
arises from the study of how bifurcation problems may depend on parameters.
In a bifurcation problem g(x, 1), small variations of an auxiliary parameter
usually lead to dramatic changes in the bifurcation diagram at a singularity of
g. As an illustration of this phenomenon, let us consider the perturbed pitch-
fork

G(x, A, 8) = x> — Ax + ¢ = 0. (1.9)

The bifurcation diagrams of (1.9) with ¢ # 0 are shown in Figure 1.3. Com-
plete derivations of these and other graphs are deferred until Chapter III, but
the following intuitive considerations may be helpful. The unperturbed
equation G(x, 4, 0) = 0is nonsingular away from the origin;i.e., G.(x, 4,0) =
3x% — Ais nonzero on both solution branches {x = 0} and {1 = x?} except
at the origin. Thus by the implicit function theorem the solution x of (1.9)
depends smoothly (and hence continuously) on ¢ (as well as 1) away from the
origin. In other words, away from the origin the diagrams in Figure 1.3 must

-
N\ <

e>0 e<0

Figure 1.3. Perturbations of the pitchfork, x> — Ax + ¢ = 0.
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closely resemble the pitchfork (Figure 1.1) for which ¢ = 0. On the other
hand, near the origin the quadratic term Ax will be more important than the
cubic term x3. Thus near the origin the graphs of Figure 1.3 should resemble
the hyperbola Ax = «.

In the classical literature there appear to be two distinct ways in which
auxiliary parameters arise in bifurcation problems. Often the original
formulation of a physical model involves many auxiliary parameters, as is the
case, for example, in the stirred reactor problem to be studied in §2. In other
cases, however, the parameters arise from the more subtle issue of imperfect
bifurcation. Let us elaborate. The mathematical equations which result from
the choice of a model for a physical phenomenon are invariably an idealiza-
tion; a more complete description would almost surely lead to a slightly
perturbed set of equations. These deviations of the actual situation from the
idealized one—imperfections—may be described by auxiliary parameters in
the equations.

Let us illustrate how imperfect bifurcation might introduce parameters
into the buckling model of Figure 1.2. One natural perturbation to consider is
a small vertical force ¢ applied to the center pin (See Figure 1.4(a)); this force
models the weight of the structure. Another such perturbation comes from
imagining that the torsional spring is slightly asymmetric, exerting zero torque
when x = § rather than when x = 0 (See Figure 1.4(b)). The potential
function with these two perturbations present is

(x —9)

V(x, A, ¢ 0) = 3

+ 2A(cos x — 1) + ¢sin Xx,

and the equilibrium equation is
x — 06— 2Asinx + gcos x = 0. (1.10)

Note that (1.10) is a perturbation of (1.2) depending on two auxiliary param-
eters. Near the singularity of the unperturbed problem at x = 0, 4 = 4, (1.10)
has the expansion

x3

?—2(/1—%)x+(g—5)—§x2 + hot. (1.11)
In the singularity theory approach, the occurrence of parameters is

handled as follows. One knows that auxiliary parameters are normally an

(b)

Figure 1.4. Two possible imperfections in the buckling model.
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important part of a bifurcation problem, and one attempts to classify all
possible behavior that can occur as a result of their presence. This problem
is solved in two steps. Given a bifurcation problem g, the first step is to
construct a certain distinguished family of perturbations of g. Let us elaborate.

Suppose that G(x, 4, ay,..., ) is a k-parameter family of bifurcation
problems; we shall call G a perturbation of g if
G(x,2,0,...,0) = g(x, A). (1.12)

Of course, G(x, 4, a4, ..., o), which we abbreviate to G(x, 4, «), need only be
defined for « close to the origin in R¥. In the first step of solving the classifica-
tion problem we seek a k-parameter family G of perturbations of g with the
distinguishing property that any perturbation of g whatsoever is equivalent
to G(-,-,a) for some o€ R near the origin. In other words, given any
perturbing term ep(x, 4, ¢), there are parameter values a,(g),..., ae)
such that for small ¢

g + &p ~ G('a (X(S)),
where ~ denotes equivalent i the sense of (1.6). We shall call such a G a
universal unfolding of g. Not every bifurcation problem admits a universal
unfolding, but, in a sense we shall clarify in Chapter III, most do. The
number k of parameters required for a universal unfolding depends on the

specific function g under consideration. For example, we will show in
Chapter III that

G(x, A, o) = x> — Ax + oy + o, x2 (1.13)

is a universal unfolding of the pitchfork. (Remark: In specific physical models
it is possible to relate the mathematical parameters of the universal unfolding
G to physical parameters in the problem, although in realistic applications
this often requires rather tedious calculations. For the beam model above,

o = —¢ o, =& — 0,

provides such a correspondence modulo higher-order terms, as (1.11) might
suggest.)

The second step in solving the classification problem is to explore the
parameter space R* of the universal unfolding with the goal of enumerating
the various bifurcation diagrams

{(x, 1): G(x, 4, a) = 0}

that can occur as a varies. For the universal unfolding (1.13) of the pitchfork,
there are essentially four different bifurcation diagrams which can occur as «
varies; these diagrams are illustrated in Figure 1.5. This figure also indicates
how the bifurcation diagram depends on a—the a,, a, plane is divided into
four regions by the two curves «; = 0 and «; = «3/27, and equivalent dia-
grams are obtained for all « within a given region. Proofs will be given in
Chapter III.
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Figure 1.5. Universal unfolding of the pitchfork.

The bifurcation diagrams of regions 1 and 2 in Figure 1.5 already occurred
in Figure 1.3 above. Let us discuss briefly the more complicated diagrams of
regions 3 and 4. First consider (1.13) with o; = 0 but «, > 0. Solving the
equations explicitly, we find the diagram of Figure 1.6. By choosing «;
nonzero, we will now split apart the two crossed curves of Figure 1.6. If a;,
is chosen positive and sufficiently small (more precisely, if 0 < «; < 23/27),
the primary solution branch will have a kink, as in region 3 of Figure 1.5. (By
the primary branch we mean the solution branch which connects to the unique
solution branch that exists for A < 0.)

With these complications in mind, the reader may well wonder what might
result from introducing three or more parameters into the model. In fact, no
new behavior would occur if more parameters were introduced. This fact is a
consequence of our assertion that (1.13), which contains two parameters, is a
universal unfolding of the pitchfork. Singularity theory methods tell the exact
number of parameters required to describe the most general perturbation of
a bifurcation problem—this is one of the theory’s achievements.

_— T_d

Figure 1.6. Bifurcation along the boundary between regions (1) and (2) in Figure 1.5:
o, = 0and a; > 0.
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X

L.,

(@) a, <0 (b) a, >0

Figure 1.7. Bifurcation along the boundary between two regions in Figure 1.5:
3
o, = a3/27.

It is instructive to consider the dividing cases in Figure 1.5; i.e., those which
occur for (a,, ®,) along the two curves o; = 0 and a; = «3/27. Actually the
first case, «; = 0, has already been considered above—it is graphed in Figure
1.6 for a, > 0. Note that the origin is a point of bifurcation. The bifurcation
diagrams for the second case,«; = «3/27,areillustrated in Figure 1.7. We refer
to the points on these graphs with vertical tangents as hysteresis points. (For
the origin of this term, see subsection (€) below.)

The pitchfork is an informative example because it is the simplest singu-
larity exhibiting both bifurcation and hysteresis. There is precisely one
singularity which exhibits neither bifurcation nor hysteresis, the limit point.
As we will show in Chapter II, such a singularity is defined by the equations

9=9-=0; g.,#0, g,#0 at(00),

and is equivalent to the normal form + x? + A for some choice of signs. The
only singularities in the bifurcation diagrams in Figure 1.5 are limit points; as
we shall see below, this occurrence is a special case of a general phenomenon.

(d) Stability

In applications, equations of the form g(x, ) = 0 arise in describing the
equilibria of some physical system. The notion of the stability of such
equilibria lies outside the scope of a steady-state theory; stability can only be
defined in a theory which follows the time evolution of the system. In this
subsection we briefly discuss stability in the context of the mechanical system
of Figure 1.2. (See §4 for a more general analysis of this concept.)

For this mechanical model, Newton’s equations of motion are the ap-
propriate dynamical theory. Let us write

Ms = — a—V(x, 2 — Cx, (1.14)
0x

where M and C are positive constants. (Remark: Here we assume a dynamic
frictional force proportional to %, and for simplicity we make the small angle
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approximation in the inertial term so that the effective moment of inertia M is
independent of x.) Note that a constant function x(t) = x, satisfies (1.14) iff
0V /0x(xq, Ag) = 0; in other words, equilibrium solutions of (1.14) are
characterized by x — 24 sin x = 0. (Cf. (1.2).)

We shall call an equilibrium solution x, of (1.14) asymptotically stable if,
for all sufficiently small ¢;, the solution of (1.14) with perturbed initial data

x(O) = x() + 31, )’C(O) = 82

decays to x, as t — co. Otherwise we call x, unstable. (Remark: The reader
should note the contrast between this subsection and subsection (c). Here
we are considering perturbations of the initial data in an evolution equation.
In subsection (c) we were considering perturbation of the equation describing
equilibrium.)

There is a natural sufficient condition for stability which only involves the
sign of V.. Let us define a new variable y = x and rewrite (1.14) as a first-
order system

X — y= 0?
. 1 {oV
y+ i {6_x (x, ) + Cy} = 0. (1.15)
The Jacobian of the function in this ODE is
0 -1
. (1.16)
1y €
M M

According to the results of §§1 and 2 in Chapter 9 of Hirsch and Smale
[1974], an equilibrium solution (x, y) = (x4, 0) of (1.15) is asymptotically
stable if both eigenvalues of the matrix (1.16) have positive real parts, and
unstable if at least one eigenvalue has a negative real part. The eigenvalues
of the Jacobian (1.16) are

1 [C? C
Lo _M{i— T_MVxx+§}-

Both eigenvalues lie in the right half plane iff

o’V
52 (%0, 20) > 0, (1.17)

while p_ lies in the left half plane if V,, is negative. According to the results
mentioned above, x, is a stable equilibrium point if (1.17) holds, and unstable
if the opposite sign prevails.

Note that (1.17) is precisely the condition for the potential V(-, 4,) to have
a nondegenerate local minimum at x,. Thus x, is asymptotically stable if
V(-, Ay) has a nondegenerate local minimum at x,. Similarly x, is unstable if
V(-, 4o) has a nondegenerate local maximum at x,,.



12 1. A Brief Introduction to the Central Ideas of the Theory

Let us relate the above discussion to subsection (a). Equilibrium points of
(1.14) are characterized by the equation g(x, 1) = 0 where g(x, 1) = V,(x, A).
Thus an equilibrium point x, is asymptotically stable if g,(x,, 40) > 0 and
unstable if g,(xo, A4g) < 0. The borderline case where g, = V., = 0 occurs
precisely when g has a singularity, as defined in subsection (a). In §4 we will
relate stability and singularities in a more general context.

Let us apply this criterion for stability to the model of Figure 1.2, first
assuming no imperfections. We have

g.(x, ) =1 — 24 cos x. (1.18)

Now as we saw above, g(x, 1) = x — 24 sin x has two solution branches—
the trivial branch x = 0 and a nontrivial branch where

1 x?
- ot 1.19
A 5 + 3 + hot, (1.19)

the latter coming from (1.3). For the trivial solution x = 0, we have
g (x, ) =1-=24A

Thus x = 0 is asymptotically stable for A < 3 and asymptotically unstable
for A > 1. For the nontrivial solution we substitute (1.19) into (1.18) to
obtain g, = x?/3 + hot. Thus the nontrivial solution is asymptotically
stable for all small x # 0. There is, of course, an intimate relationship between
the fact that the trivial solution loses stability as A crosses 3 and that stable,
new solutions appear (bifurcate) at this point. Classically this phenomenon
was described by the phrase exchange of stability.

In Figure 1.8(a) we have indicated the stability assignments for the pitch-
fork as just determined, using dashed lines for unstable solutions and
solid lines for stable solutions. The bifurcation diagram in Figure 1.8(a)
divides the xA-plane into four regions. Since the bifurcation diagram is the
zero set of g, the sign of g is constant in each of these four regions. We have
indicated these signs in Figure 1.8(a). Let us show how to use these signs in
determining the stability assignments when imperfections are present. We
have the following rule: g, is positive (and stability prevails) along a portion
of the bifurcation diagram where a region with g > 0 lies above a region

(a) (b) (©
Figure 1.8. Stability assignments for the pitchfork and for typical perturbations.
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where g < 0; g, is negative (and instability prevails) when the situation is
reversed. In Figure 1.8(b) and (c) we have indicated typical perturbations of
Figure 1.8(a), corresponding to regions 2 and 4 in Figure 1.5, respectively.
We ask the reader to verify the stability assignments on these two diagrams
by applying the above rule.

In experiments, a solution which is unstable is effectively unobservable.
This is because in an experiment there are always uncontrollable, even if
small, perturbations from the idealized situation. In the unstable case these
perturbations grow in time causing the system to leave any neighborhood of
the equilibrium point in question. In fact, our definition of stability, which
allows only a single small perturbation of the system at time zero, might be
criticized as an inadequate model of the physical situation where repeated
perturbations may be expected. However, questions about the long time
asymptotic behavior of an autonomous system subjected to small random
perturbations are very difficult indeed, and we leave such issues untouched.

(e) Quasi-Static Variation of Parameters

In this subsection we discuss a folklore interpretation of bifurcation diagrams
which makes the subject much more lively. A bifurcation diagram displays
the equilibrium states of a system (together with their stabilities) as a function
of the bifurcation parameter 4. Under certain circumstances a bifurcation
diagram can also describe the evolution in time of the system. In this sub-
section we discuss one such set of circumstances, called quasi-static variation
of parameters.

For definiteness we base our discussion on the beam model of Figure 1.2
(possibly with imperfections). Imagine that the applied load is slowly varied
with time; i.e., slowly compared to the relaxation time of the system. More
picturesquely, imagine applying a small increase in the load, waiting until the
system returns to a new equilibrium, then applying a second small increase in
load and again waiting for re-equilibration, and so on. The behavior resulting
from such variations in load depends crucially on whether or not the current
equilibrium state of the system lies near a singularity of the bifurcation dia-
gram.

We consider the nonsingular case first. Let x, and A, be the current
equilibrium state and load of the system, respectively, where, of course, x, is a
stable equilibrium. In the nonsingular case there is a smooth branch of
equilibrium points x(4) passing through (x,, A,), and these are the only
equilibria in the neighborhood of (x,, 4,). If the load is increased to 4, + A4,
the system will be out of equilibrium, but its initial data (namely x,) will lie
within the basin of attraction of the equilibrium at x(4, + AA). Thus the
system will settle into this new, close-by equilibrium. In other words, under
quasi-static variation of the load, the system will simply move along regular
portions of the bifurcation diagram.



14 1. A Brief Introduction to the Central Ideas of the Theory

At a singularity, however, quite a variety of behavior is possible. Let us
consider several examples. First we consider quasi-static variation of A in
the idealized beam model (i.e., ¢ = 6 = 0). The bifurcation diagram for this
system is pictured in Figure 1.8(a), with the bifurcation point at A = 4. For
A < } the system will follow the trivial solution branch x = 0, but for A > 4
it will follow one of the two nontrivial solution branches. (Exactly which
branch it will follow is indeterminate in the present case—this is another
illustration of the importance of imperfections.) Thus for Figure 1.8(a), the
derivative of the observed solution with respect to 4 is discontinuous at the
bifurcation point, although the solution itself is continuous.

Next we consider quasi-static variation of 4 in the beam model with
imperfections present (i.e., ¢ and é nonzero). Let us suppose that the system
is governed by the bifurcation diagram of Figure 1.8(b). Here the primary
solution branch consists entirely of regular points, so the evolution under
quasi-static variation of A will be smooth. In words, the imperfections intro-
duce a preferred direction into the system and smooth out the transition to
buckled states. There are stable buckled states on the secondary solution
branch, but these will never be reached by quasi-static variation of 4 starting
from small A. However, these states can easily be reached by temporarily
applying a large vertical force (once A is sufficiently large), and then releasing
the system in the neighborhood of the new equilibrium point. Once reached,
these equilibria will endure, since they are stable. Now imagine pushing the
system onto the secondary solution branch in this way and then decreasing A
quasi-statically. When the limit point is reached, a further decrease in 4 will
necessarily result in a large jump of the system, since there are no nearby
equilibria. In other words, at a limit point the solution itself, not merely its
derivative, will vary discontinuously with A.

If ¢, 6 are such as to produce the bifurcation diagram in Figure 1.8(c), then
there are limit points on the primary solution branch. Thus the solution x will
undergo a jump even in the simplest experiment of increasing A quasi-
statically from zero. Note that jumps occur for different values of 4, depending
on whether A is being increased or decreased. This is similar to the hysteresis
which occurs in magnetism and is the origin of our term hysteresis point,
which describes the borderline case between the presence or absence of
hysteresis.

We conclude this subsection with two remarks. The first concerns the
behavior of n-dimensional systems (as opposed to 1-dimensional). What
happens in several dimensions when, as in Figure 1.8(c), 4 is increased
beyond a limit point, causing the system to behave discontinuously? 4 priori
there is no reason why such a system has to jump to another equilibrium; it is
quite possible for the system to evolve to some sort of dynamic steady state
such as a periodic orbit. Only by close examination of the dynamical equa-
tions can one decide this issue, although in this book we consider primarily
cases where the new equilibrium is static. Second, in bifurcation theory it is
customary to study the dependence of the solution on a distinguished
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parameter — A in our notation. In our estimation, this practice hasits origins in
the interpretation of bifurcation diagrams as describing the evolution of a
system under quasi-static variation of parameters. In effect the parameter A is
identified with time.

EXERCISES

1.1. Show that if g satisfies (1.4) at (x,, o) = (0, 0) then there exists smooth functions
M(x, A), Y(2), and ¢(x) defined on neighborhoods of the origin such that

g0, D) = (A — ()x*)x — Y(M(x, 2), (1.20)
where ¢(0) > 0, Y(0) = 0, and M(0, 0) # 0. Conclude from (1.20) that

3 ifA>0,
n4) = {1 if1<0.

Prove (1.20) by using the following sequence of hints.

(a) Let s(x) = g(x, ux) for fixed u. Using (1.4) show that s(0) = s'(0) = 0. Using
Taylor’s theorem conclude that g(x, ux) = x2K(x, ).

(b) Show that K(0,0) = 0, K,(0,0) = g,,,(0,0)/6 and K (0, 0) = g,,(0, 0). Then
use the implicit function theorem to find a smooth function u(x) satisfying
K(x, u(x)) = 0, w(0) = 0, and '(0) > 0.

(c) Use Taylor’s theorem to conclude that u(x) = x¢(x) where ¢(0) > 0. Hence
g(x, x*¢(x)) = 0. Use Taylor’s theorem again to show that

g9(x, 4) = (1 — x*$(x))L(x, 1).

(d) Show that L(0, 0) = 0 and L,(0,0) # 0. Apply the implicit function theorem
to obtain a smooth function y(A) satisfying L(¥/(4), 2) = 0,¥(0) = 0. Now apply
Taylor’s theorem to obtain (1.20).

Comment. Exercise 1.1 gives a “classical” proof of the pitchfork bifurcation.
The basic idea in the proof is to construct the zero set of g by clever uses of the
implicit function theorem and Taylor’s theorem. Note that in order to apply
such methods one has to know a priori certain qualitative information about
the zero set of g; essentially one has to know that x* — Ax is a good “model”
for the general case.

1.2. Show that equivalence for bifurcation problems—as defined in (1.6)—is an
equivalence relation. In particular, let g(x, A), h(x, A), and k(x, A) be bifurcation
problems. Assume that g is equivalent to & and that h is equivalent to k. Then show
that g is equivalent to k.

1.3. Using (1.20), prove that if g(x, 1) satisfies (1.4) at (0, 0) then g is equivalent x> — Ax.
Prove this fact by considering the following sequence of four equivalences.
(a) g(x, 4) is equivalent to h(x, A) = (x — Y(A))x2P(x) — A).
(b) h(x, 4) is equivalent to k(x, A) = x3¢(x) — Ax q(x, A) where ¢(0, 0) = 1.
(c) k(x, ) is equivalent to I(x, 1) = x3p(x, A) — Ax where p(0, 0) > 0.
(d) Ux, 4) is equivalent to x> — Ax. Consider X(x,4) = x./p(x, A) and evaluate

[1/A/p(x, ) J(X3(x, A) — AX(x, A).
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1.4. Show that the formula (1.7) is false if one allows A in (1.6) to depend on x by con-
sidering the following two examples.
(@) g(x, ) =x2 — A%, X(x,2) = x — A, and A(x, }) = A + x.
(b) g(x,4) = x> — Ax and A(x, 1) = 4 + x%.

1.5. Let g(x, A) and h(x, 1) be equivalent, as in (1.6). Show that if 4 has a singularity at
(x0, Ap) then g has a singularity at (X(xq, 4¢), A(4g))-

§2. The Continuous Flow Stirred Tank Reactor
(CSTR)

In this section we discuss the application of singularity theory methods to the
continuous flow stirred tank reactor (CSTR), a model problem from chemical
engineering that exhibits multiple solutions. This problem differs from many
traditional problems of bifurcation theory in that there is no trivial solution
branch. It gives an excellent illustration of how singularity theory methods
may be applied in bifurcation problems; in particular, it leads to the important
concept of an organizing center. The problem is easy to describe and has been
the object of much study, but yet singularity theory methods were able to
provide new insights. In this section we only attempt to survey the situation;
all proofs are deferred for Chapters II and IIT and Case Study 1.

This section is divided into three subsections, as follows. In subsection (a)
we derive the equations which govern the CSTR. In subsection (b) we show
that these equations admit multiple solutions. Finally, in subsection (c) we
discuss how singularity theory methods apply to this problem. The issues
raised in subsection (c) are important in many applications of singularity
theory methods, not just the CSTR.

(a) Formulation of the Governing Equations for the CSTR

Figure 2.1 gives a schematic diagram for a continuous stirred tank reactor
(CSTR). In this problem a reactant flows into a reactor vessel of unit volume
at a rate r and undergoes a single, exothermic reaction to form inert products.
We suppose that the reactor is well stirred, which means that the concentra-
tion ¢ of the reactant and the temperature T are uniform throughout the
vessel. The unused reactant and the products leave the vessel at the same rate
r as the input; the concentration of the reactant and the temperature in the
exit stream are equal to those in the reactor itself. Heat is removed from the
reactor by a coolant fluid at temperature T..



§2. The Continuous Flow Stirred Tank Reactor (CSTR) 17

Feed Product

Flow rate r Flow rate r
Concentration Cy

Temperature T;

Concentration C
Temperature T

(v0T0t0000) |
1 I

Coolant temperature T,

Figure 2.1. Schematic diagram for CSTR.

The concentration and temperature in the reactor are modeled by the
following pair of coupled ordinary differential equations (ODE’s).

(a) % =r(c; — ¢) — ZcA(T),
2.1)
dT
(b) T HT; — T) + k(T, — T) + hZcA(T).

There are three physical processes represented in (2.1). In the first terms on the
right in (2.1), ¢ and T; denote the concentration and temperature of the
feed (i.e., the incoming reactant). In the absence of other terms, ¢ and T would
decay exponentially (at rate r) to the feed values ¢; and T;. The middle term in
(2.1b) represents heat removed by the coolant. The parameter k is a lumped
one, involving the heat transfer area, specific heats, etc. The final term in each
equation is associated with the reaction. Note that the reaction depletes the
concentration but increases the temperature. The factor A(T), which governs
the temperature dependence of the reaction rate, typically has Arrhenius
form

A(T) = exp{%l — —77—2’}, (2.2)

where T, is the activation energy (converted to a temperature by means of the
universal gas constant R). We have added the constant term T,/T; in the
exponent in (2.2) so that Z in (2.1) represents the reaction rate at the feed
temperature T;. (Typically T, is much larger than T;, say y = T,/T; > 10, so
that the factor exp(T,/T;) is substantial.) Finally the parameter h is pro-
portional to the heat released by the reaction.
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We are interested in equilibrium solutions of (2.1), so we set the left-hand
sides equal to zero. On solving the first equation for ¢ and substituting into the
second, we obtain the relation

h
HT = T) + KT, — T) + ——

1+

= 0. (2.3)

ZA(T)

In order to nondimensionalize (2.3), we define a normalized temperature
x = (T — T;)/T;. Then (2.3) may be rewritten as

BA

where A = r/k, 0 = k/Z,n = (T, — T;)/T;, B = hc;/T;, and

X
A(x) = exp {— e x}’

with y = T,/T;. Note that A and 6 represent comparisons of the flow rate and
the reaction rate, respectively, with the rate of heat loss;  and y compare two
temperature parameters with the feed temperature; and B is a dimensionless
measure of the heat of reaction. (Remark: We have inserted a factor —1 in
passing from (2.3) to (2.4) because this facilitates applying the stability results
of §4. The discrepancy in sign is a result of our convention in §4 of writing all
terms in a differential equation on the left; i.e., a minus sign is needed to
write (2.1) in the form (4.1).)

(b) The Occurrence of Multiple Solutions

Equation (2.4) determines the possible equilibrium temperature(s) x of a
CSTR. We regard (2.4) as defining x as a (possibly multiple-valued) function
of A. As is customary, we treat 4 as a distinguished parameter, since the flow
rate is the quantity most readily varied in the laboratory. We are primarily
interested in the bifurcation phenomena exhibited by (2.4); i.e., the occurrence
of multiple solutions and their dependance on the various auxiliary param-
eters in the problem.

It is quite easy to see that multiple solutions of (2.4) are possible. In
Figure 2.2 we have graphed the third term in (2.4) as a function of x for typical
parameter values. Solutions of (2.4) correspond to intersections of this curve
with the straight line (1 + A)x — 5. It is clear from the figure that there may
be either one or three intersections, depending on the value of the parameters;
three possible cases are sketched in the figure. In other words, multiplicity



§2. The Continuous Flow Stirred Tank Reactor (CSTR) 19

Bi
1+ 20e4(x)

-1 1 *

Figure 2.2. Possible intersection configurations.

results from the different balances that can be achieved between a linear term
(heat removed by cooling and by heat exchange of the flow) against a non-
linear one (temperature dependence of the reaction). (Remark: Calculation
shows that the curve in Figure 2.2 has a single inflection point; for large y the
inflection point occurs at approximately x = 2/y.)

In the limiting cases of A — 0 or A — oo, the solution of (2.4) is unique. If
A — 0, then insufficient new reactant is available to continue the reaction, so
the system will come to equilibrium at approximately the coolant temperature
T.. If 1 — oo, then the reactant temperature is not changed significantly by
any heat produced by the reaction or absorbed from the coolant since the
reactant remains in the reactor only a negligible time; thus the equilibrium
temperature will be approximately T;. Therefore multiple solutions can only
occur for intermediate values of A.

Independently, Zeldovich and Zisin [1941] and Uppal, Ray, and Poore
[1976] made the surprising discovery that there may be two distinct ranges of
A where (2.4) has multiple solutions and that some of these solutions may lie
on an isolated branch not connected to the unique solution of (2.4) which
occurs in the limits A - 0 or 4 — oo. Uppal et al. [1976] conducted an
extensive numerical study of the problem, and we present their results in
Figure 2.3. The upper half of this figure shows the (first quadrant of the) 6B
parameter plane divided by the curves 4,P;P.P,%, and #,P;P,#, into
five regions. (Notation is discussed below.) Associated to each of these five
regions, in the lower half of the figure, is a plot of the solutions x of (2.4) as a
function of A. (Remarks: The residence time, t = 1/4, is the bifurcation param-
eter used in Uppal et al. [1976]. Qualitatively speaking, this change of
parameter simply reverses the orientation of the graphs. Similarly 6~ is the
abscissa in the upper part of the figure. Finally, throughout Figure 2.3 the
parameter 1, which measures coolant temperature, is held fixed.)

Note that in graphs 2 and 5 there is an isolated solution branch, and that in
graphs 3 and 5 there are two distinct ranges of A with multiple solutions.
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Figure 2.3. Multiple solutions in the CSTR (after Uppal, Roy, and Poore [1976]).

(c) A Primer on the Application of Singularity
Theory Methods

One achievement of singularity theory is to provide a natural explanation for
the data summarized in Figure 2.3. Incidentally the information gained from
the theory shows that the two curves #,P;P.P,%, and #,P;P,#, must be
tangent at their intersection at P, a fact that was apparently not clear from
the numerical evidence. (We have drawn Figure 2.3 in imitation of Uppal et al.
[1976]; in Figure 2.4 the curves are correctly shown as tangent.) Another
achievement is that, using singularity theory methods, we can analyze (2.4)
analytically, without recourse to the computer. For the mathematician, this
has the advantage of elegance and rigor. For the engineer, it led to the dis-
covery that two additional bifurcation diagrams, not shown in Figure 2.3,
could occur for certain parameter values.
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Figure 2.4. Bifurcation diagrams along the boundary between two regions in Figure 2.3.

To understand how to apply singularity theory methods in problems such
as this one, it is helpful to consider the dependence of x on A when (6, B) lies on
the boundary between two regions in Figure 2.3. There are seven distinct
portions of the boundary (%,P;, P;P,, P.P,, P, %#,, #,P;, P;P,, P,)),
and in Figure 2.4 we have shown the associated bifurcation diagrams. For
example in the case of the boundary between regions 1 and 2, £#,P;, the
diagram consists of a smooth curve x = x(4) and an isolated point solution
(xg, 4g) of (2.4). As the parameters B and & vary, this isolated solution can
either disappear into the complex plane, as in region 1 of Figure 2.3, or open
up into a small “circle” of solutions, as in region 2. (We will supply proofs in
Case Study 1, drawing on Chapter III, §8.) Similarly, in the case of the
boundary between regions 1 and 4, #, P;, the curve of x as a function of A has
a vertical tangent, although it is still single-valued. (As indicated in §1, we



22 : 1. A Brief Introduction to the Central Ideas of the Theory

shall call points having vertical tangents hysteresis points.) If 6 or B is
varied to perturb this graph, it can either pull out to give a smooth, single-
valued curve, as in region 1, or twist back to give a range of A where there are
multiple solutions, as in region 4.

Let us explain the notation in Figures 2.3 and 2.4. We have labeled the
ends of one boundary curve with the letters 4;, i = 1, 2 because, as may be
seen in Figure 2.4, traditional bifurcation phenomena occur along this
curve—either the formation of new solution branches or the crossing of
already existing ones. We label the ends of the other curve 5, i = 1,2
because points on the curves are associated with the onset of possible hys-
teresis. For the three distinguished points on these curves, P, P, and P;,
the subscripts are mnemonics for pitchfork, cusp, and intersection, re-
spectively. Understanding the significance of these points is our next task.

In the singularity theory approach, one focuses relentlessly on degenerate
cases. Thus having seen the type of bifurcation diagrams which occur along
the boundaries of regions in Figure 2.3, we now ask what happens at bound-
aries of the boundary; i.e., at the three points P, P,, and P;. We exhibit
this behavior in Figure 2.5; again, justifications will be given in Case Study
1 and Chapter III, §8.

The following remarks on the three cases may be helpful. In case P, one
may regard this diagram as the limit of the diagrams in case P, P, of Figure 2.4
as the loop shrinks to diameter zero, or alternatively as the limit of case P; P,
as the isolated point meets the main solution branch. In case P,, the crucial
issue is that one of the intersecting curves has a vertical tangent—this is what
separates cases P, P, and P,%, of Figure 2.4. The bifurcation of case P, is
equivalent to the normal form (1.1) for the pitchfork (in a neighborhood of the
bifurcation point). Finally in case P; there are two singular points in the
bifurcation diagram, a bifurcation point and a hysteresis point, and they are
more or less independent.

Let us carry this focusing on the “worst case” to the extreme. Specifically,
we will show in Case Study 1 that it is possible to vary #, which was held fixed
in Figure 2.3, so as to make the three points P, P, and P; merge into a single,
superdegenerate point. This leads to a bifurcation diagram as shown in
Figure 2.6—analogous to case P, in Figure 2.5 except the tangent to the cusp is
vertical. Indeed, Figure 2.6 arises as a limiting case of Figure 2.6(c), since as
is increased the tangent to the cusp in Figure 2.5(a) rotates clockwise. Of

P, P, P;

Figure 2.5. Bifurcation diagrams at the three distinguished points in Figure 2.3.
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A

Figure 2.6. Bifurcation diagram of the organizing center for Figure 2.3.

course if  is increased beyond the critical point where the tangent is vertical,
one obtains a bifurcation diagram as in Figure 2.7(a), and on perturbation of
this, Figure 2.7(b), (c)—the two new diagrams whose existence was predicted
by singularity theory. This analysis is due to Golubitsky and Keyfitz [1980].

We now try to summarize how we will apply singularity theory methods to
the CSTR in Case Study 1, drawing on Chapter III. It turns out that

h(x, A) = x3 + A2 2.5)

is the appropriate normal form to describe the bifurcation diagram of
Figure 2.6 near the singularity. (Following Golubitsky and Keyfitz [1980], we
call (2.5) the winged cusp.) First, in Chapter II, §9 we will show that the
recognition problem for (2.5) is solved by the following conditions:

gd=9x =gi=Gxx = 9ix = 0’ Gxxx > 07 9ix > 0. (26)

In other words, a function g(x, A) has a singularity equivalent to (2.5) at some
point (x,, 4o) if and only if (2.6) holds at that point. Next, in Case Study 1 we
will use (2.6) to prove that there is a unique set of values for the parameters 9,
B, and 7 in (2.4) such that the resulting function has a singularity equivalent
to (2.5). Let 4, By, and 7, be the values which yield (2.6). Finally, we will call
on results from Chapter III, §§4 and 8 concerning the universal unfolding
of (2.5) in order to understand the solution set of (2.4) for 8, B, and 7 close to
0o, By, and 7. All the bifurcation diagrams of Figure 2.3 and the two addi-
tional diagrams of Figure 2.7(b), (c) will then emerge from perturbation of the

X X X ()

N S S\

\ A 1 A I A
(@) (b) (©)

Figure 2.7. Additional bifurcation diagrams deduced from singularity theory.
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distinguished values, d,, By, and 5, In particular, the geometry of the various
regions in Figure 2.3 is predicted a priori by the mathematics.

Although the above methods are local, Balakotaiah and Luss [1981]
verified numerically that the conclusions are in fact valid globally. In partic-
ular, all seven diagrams predicted theoretically have been found numerically.
This verification proceeded by computing numerically the transition curves
in global parameter space. Balakotaiah and Luss [1981, 1982, 1983] have
applied these ideas to a number of chemical reactor systems.

Following René Thom, we will refer to the bifurcation diagram in Figure
2.6 as an organizing center for this problem. This very suggestive, but some-
what vague, term only acquired meaning for us after we had analyzed several
physical problems along the lines sketched above. Let us attempt at least a
loose description of what this term means. Consider a physical problem which
exhibits a variety of qualitatively different behaviors, depending on various
parameters. An organizing center is associated with a distinguished set of
values for the parameters such that all (or at least many) of the different be-
haviors occur for parameter values in a small neighborhood of the distin-
guished values. Typically at an organizing center the system exhibits its
most singular behavior. We do not attempt a precise definition of this
concept anywhere in the text, even though this idea occurs frequently. The use
of an organizing center is best illustrated by the case studies. In particular,
quasi-global results may often be obtained by the application of local
analysis near an appropriately chosen organizing center.

In a typical application the parameters of the organizing center are
distinguished because for these values the several physical effects in the prob-
lem are exactly balanced. Let us illustrate this for the CSTR. It may be seen
from case 3 of Figure 2.3 that there can be hysteresis in the jump to the high-
temperature solution branch on both the high A and low A sides. It is possible
to vary two of the three parameters d, B, and 7 so that hysteresis is on the verge
of disappearing on both sides of the diagram, as sketched in Figure 2.8.
Further, with appropriate variation of the third parameter, the two hysteresis
points in Figure 2.8 approach one another and merge, resulting in the bi-
furcation diagram Figure 2.6. In other words, in Figure 2.6, the organizing
center, the dissipative effects which lead to a unique solutionas A - 0or A — o

Figure 2.8. A bifurcation diagram with two hysteresis points.
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are exactly balanced with the nonlinear temperature dependence of the reac-
tion rate which pushes toward multiple solutions.

EXERCISES

2.1. Suppose that g(x, 1) is equivalent to the winged cusp, x> + A2. Using the definition
(1.6) of equivalence, show that g satisfies (2.6).

2.2. Show that the perturbation of the winged cusp g(x, 4, @) = x3 + 4% + alx has a
pitchfork singularity at (x,, 4o) = (0, 0) when « # 0. Determine the orientation of
these pitchfork bifurcations. (cf. (1.8).)

§3. A First View of the Liapunov-Schmidt
Reduction

In this section we explore how it happens that so many problems in applied
mathematics involving multiple solutions can be reduced to a single equation
g(x, A) = 0. The discussion centers around what is called the Liapunov-
Schmidt reduction. Historically this procedure was used to reduce certain
infinite-dimensional problems to one dimension. In the present section we
consider the Liapunov-Schmidt procedure only in a finite-dimensional
context. This reduces technicalities to a bare minimum, and we hope it will
bring the essential issues into clearer focus. (We shall return to the reduction
of infinite-dimensional problems in Chapter VII.)

Let us now set the context for the reduction. Consider a system of n
equations

D(y, ) =0, i=1,...,n, (3.1)

where @: R" x R**! - R" is a smooth mapping. We regard the vector
y = (V1 .., Yn) as the unknown to be solved for in (3.1); &« = (atg, ..., %) isa
vector of parameters. (Usually we think of «, as a bifurcation parameter 4,
which is distinguished, and «, . . ., o, as auxiliary parameters. The reduction
is already of interest when k = 0; i.e., when there are no auxiliary parameters.
But since it does not complicate the analysis, right from the start we treat the
case where auxiliary parameters may be present.) We assume that ®,0, 0) = 0
and we attempt to describe the solutions of this system locally near the origin.
Let (d®),, o be the n x n Jacobian matrix (0®;/0y (0, 0)). If rank(d®), o = n,
it follows from the implicit function theorem that (3.1) may be solved uniquely
for y as a function of «; in other words, this is a nondegenerate case where no
bifurcation occurs. In this section we consider the minimally degenerate case
where

rank(dq))o’o =hn — 1. (3-2)
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This section is divided into five subsections, which address the following
issues:

(a) In subsection (a) we show that under the assumption (3.2), solutions of
the full system (3.1) locally may be put in one-to-one correspondence with
solutions of a single equation

g(x, ) =0, (3.3)

where g: R x R**! - R. This is the Liapunov-Schmidt reduction for (3.1).
In words, (3.3) is a k-parameter family of bifurcation problems of the form
g(x, ) =0.

(b) We summarize the essential steps of the reduction in subsection (b).
(This is primarily for reference in Chapter VII.)

(c) We interpret the reduction geometrically in subsection (c).

(d) There are several arbitrary choices that must be made while performing
the Liapunov-Schmidt reduction, and different choices lead to different
reduced equations of the form of (3.3). In subsection (d) we present a theorem
which states that different choices lead to equivalent reduced equations (as
defined in §1), apart from some + signs that must be inserted explicitly. This
result provides further motivation for our definition of equivalence. (We prove
this result in Appendix 2.)

(e) In subsection (e) we compute a few of the low-order derivatives of the
reduced function (3.3) at the origin. Being able to make these calculations is
important, since g is only defined implicitly—in most applications it is
impossible to obtain a formula for g.

The methods of singularity theory may be applied to a bifurcation problem
most readily after the Liapunov-Schmidt reduction has already been per-
formed. The reduction meshes well with our theory. This is illustrated by
items (d) and (e) above. Specifically:

(i) Although the reduced function is not uniquely determined, all possible
reduced functions are equivalent (apart from possible differences of sign).

(ii) Singularity theory methods analyze the reduced function in terms of the
data that is computable in applications; i.e., a finite number of the
derivatives of g at the bifurcation point.

The ideas in this section will be used in §4 below, but then will not reappear
until Chapter VII.

(a) Derivation of the Reduced Equations

Two arbitrary choices are required to set up the Liapunov-Schmidt reduction.
As a convenient shorthand let us write L = (d®), ,. We must choose vector
space complements M and N to ker L and range L, respectively, obtaining the
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splittings
R"=ker L® M, (34)
and
R* = N @ range L. 3.5)

Observe that by assumption (3.2), dimrange L = n — 1 and dimker L = 1,
so that dim M = n — 1 and dim N = 1. Let E denote the projection of R"
onto range L with ker E = N. The complementary projection I — E has
range equal to N and kernel equal to range L.

The following trivial observation starts the derivation: If u € R"

u=0 iff Eu=0 and (I — Eu=0. (3.6)

Thus the system of equations (3.1) (i.e., ®(y, ) = 0) may be expanded to an
equivalent pair of equations

(@ E®(y, o) = 0,

(b) (I - E)Y(y, o) =0.
The basic idea underlying the Liapunov-Schmidt reduction is that (3.7a) may
besolved forn — 1 ofthe y variables, and (3.7b) then yields an equation for the
remaining unknown if values for these n — 1 variables are substituted into
(3.70).

Let us expand on this idea. First we apply the implicit function theorem to
show that (3.7a) may be solved for n — 1 of the y variables. Because of the
splitting (3.4), we may decompose any vector y € R" in the form y = v + w,
where v e ker L and w e M. Let us write (3.7a) as

E®(w + w, ) = 0. (3.8)
More abstractly, we are thinking of (3.8) as defining a map F: (ker L) x
M x R¥*! - range L, where
F(v,w, a) = E®(v + w, ).

By the chain rule, the differential of (3.8) with respect to the w variables at the
origin is

3.7)

E(dq))oyo = EL = L,

the first equality holding by definition and the second because E acts as the
identity on range L. However, the linear map

L: M — range L

is invertible. Thus it follows from the implicit function theorem that (3.7a) is
uniquely solvable for w near the origin. Let us write this solution as w =
W(v, o); thus W:ker L x R**! - M satisfies

E®(w + W(v,a),0) =0,  W(0,0) = 0. (3.9)
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We substitute W into (3.7b) to obtain the reduced mapping ¢: ker L x
R¢*! — N where

¢, a) = (I — E)YD(w + W(v, o), o). (3.10)

Then the zeros of ¢(v, &) are in one-to-one correspondence with the zeros of
d(y, o), the correspondence being given by

o(v,2) =0 iff O + W(,a), o) = 0.

The reduced function ¢ has all the information we need from the Liapunov-
Schmidt reduction, but it suffers from the disadvantage that it maps between
one-dimensional subspaces of R"; i.e., ¢: ker L x R¥*! — N. In applications
it is customary to choose explicit coordinates on ker L and N and thereby
obtain a reduced map g: R x R¥*! —» R. Of course, this introduces addi-
tional arbitrary choices into the method, beyond the choices of M and N in
(3.4) and (3.5). We introduce coordinates as follows. Let v, and v§ be nonzero
vectors in ker L and (range L)*, respectively, where the orthogonal comple-
ment is taken with respect to the usual inner product

yzy = z YiZi-

i=1

Any vector veker L may be written uniquely in the form v = xv, where
x € R. We define g: R x R¥*! - R by

g(x, 2) = {v§, p(xvo, 7). (3.11)

Since ¢(xv,, &) € N, g(x, o) = 0iff ¢p(xv,, &) = 0. Thus the zeros of g are also
in one-to-one correspondence with solutions of @(y, ) = 0.

It is worth noting that in substituting the definition (3.10) of @ into (3.11)
the projection (I — E) drops out; i.e.,

9(x, @) = {v§, P(xvy + W(xvo, ), %))

The reason for this simplification is that v¥ e (range L)*, and for any vector
VeR", EV erange L, so {v§, EV) = 0. Hence

g, (I — E)V> = vk, V. (3.12)

Remark 3.1. We use the phrase “reduced function” to refer to both ¢(v, )
and g(x, o). Both functions contain the same information—g is just the
representation of ¢ in specific coordinates. For theoretical analysis ¢ is
typically more convenient; for applications, g. We shall use whichever
seems more appropriate.
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(b) An Overview of the Liapunov-Schmidt Reduction

For purposes of reference in Chapter VII, we divide the above derivation of
the reduced equation (3.11) into the following five steps:

Step 1. Decompose the ambient space into summands related to L. (Cf. (3.4),

(3.5).)
Step 2. Transfer this decomposition to the equation. (Cf. (3.7).)

Step 3. Show that (3.7a) may be solved for all but one of the variables, using
the implicit function theorem.

Step 4. Substitute the solution of (3.7a) into (3.7b) to obtain (3.10).
Step 5. Choose coordinates on ker L and (range L)' to obtain (3.11).

The essence of the Liapunov-Schmidt reduction is to show that the
implicit function theorem is applicable in situations where its applicability
may not be readily apparent. Thus Step 3 is the fundamental step in the
reduction. The other steps are required to carry out Step 3. Note that in Steps
1 and 5 a choice must be made, while Steps 2 and 4 are primarily notational.

(c) A Geometric View of the Liapunov-Schmidt Reduction

It is instructive to think of the Liapunov-Schmidt reduction pictorially. In
particular, this view clarifies the identification of the bifurcation diagram
{(v, @) eker L x R**1: ¢(v, a) = 0}
with the solution set
{(, ) eR" x R @(y, o) = 0}
of the full equations.
We claim that the set

¥V = {(y, 0): EQ(y, o) = 0} (3.13)
is a (k + 2)-dimensional submanifold of R" x R¥*! whose tangent space is
ker L x R**!, (See Figure 3.1.) In fact, solving (3.9) by the implicit function

theorem, we see that ¥~ may be parametrized by a map Q: ker L x R**! -
R" x R**! where

Qv, ) = (v + W(v, o), ®). (3.14)
In this formula v and W(v, ) belong to ker L and M, respectively. Since we

have the decomposition R" = ker L @ M, we could rewrite (3.14) in an
equivalent notation as

Qv, a) = (v, W(v, o), @). (3.14a)
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¥ = {Ed =0}

' (v+Wlt, A), A)

(0 + W, ), 2)

{®=0}
— {¢=0}

Figure 3.1. A picture of the Liapunov-Schmidt reduction: n = 2, k = 0.

It is clear from (3.14a) that (dQ), , is nonsingular; therefore ¥" is a (k + 2)-
dimensional submanifold of R" x R**!, We will show below by implicit
differentiation that (9/0x)W(xvy, 0)|,=o = 0. (Cf. (3.15).) It follows that the
tangent space to ¥~ at the origin is ker L x R**?, as claimed.

In Figure 3.1 we have attempted to sketch ker L x R, #; and the zero
sets of ® and ¢ in a case where n = 2, k = 0, and the reduced function
exhibits a pitchfork bifurcation. One can see from the figure how the bifurca-
tion diagram {¢(v, A) = 0}, which lies in ker L x R**!, is identified with
the zero set of ®, which lies in ¥~

(d) Relation with Equivalence

Different choices of the data needed to carry out the Liapunov-Schmidt
reduction lead to reduced equations which are (essentially) equivalent. To
formulate this assertion carefully, we need to set up some notation. Let
®: R" x R—> R" be a smooth mapping satisfying ®(0,0) = 0 and (the
minimal degeneracy condition) rank(d®), , = n — 1. Choose complements
M, and M, to ker L as in (3.4). Choose complements N, and N, to range L as
in (3.5). Choose v, and v, in ker L, v* and v¥ in (range L)*. Let g,(x, 4) and
g.(x, 1) be the reduced bifurcation equations obtained by using the four
choices subscripted by 1 and 2, respectively. (We are assuming k = 0 here, and
we write A for a,. There is no difficulty in extending the following theorem to
positive k.)
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Theorem 3.2. Let ¢ = sgn{v,, v,» and 6 = sgn{v}, v¥). Then g,(x, A) is
equivalent to dg,(ex, A).

The importance of Theorem 3.2 lies in the motivation it provides for the
definition of equivalence. We shall not make further use of this result in the
text, so we have relegated its proof to Appendix 2. However, let us mention an
issue that might not be apparent—reading this proof is a wonderful exercise
for the reader who wishes to understand just what is involved in the
Liapunov-Schmidt reduction.

() Computation of Derivatives of the Reduced Equations

In this subsection we show how to compute the derivatives of the reduced
function g(x, y) from derivatives of the original mapping ®(y, «). Let us
summarize the calculations before performing them. We can find the deriva-
tives of g by substitution into (3.11), g(x, &) = {v§, dp(xve, ), if we know the
derivatives of the function ¢. To this end we rewrite the definition (3.10) of
¢ in the form in which it appears in (3.11):

P(xvg, a) = (I — EYD(xv, + W(xvg, @), @). (3.10a)

Calculation of derivatives of (3.10a) is a straightforward application of the
chain rule. However, the resulting formulas contain derivatives of W, and
these must be determined by implicit differentiation of (3.9)

E®(w + W(v, o), ) = 0.

This step is the most tedious part of the calculation, both in the present
theoretical discussion and in actual applications.

It turns out that the first derivative of W with respect to x vanishes. We
digress to prove this. (Warning: We sometimes write W(x, «) for W(xv,, «). In
this way derivatives of W with respect to x make sense. Cf. Remark 3.1.) We
substitute v = xv, into (3.9) and differentiate with respect to x to obtain
E d® - (vy + W,) = 0. This becomes EL(v, + W,) = 0on evaluating at (0, 0).
However v, e ker L and EL = L so that we have

LW,(0,0) = 0.
But W,(0,0)e M and L: M — range L is invertible. Thus it follows that
w0, 0) = 0. (3.15)

Before actually starting the calculations we introduce an invariant nota-
tion for higher-order derivatives of functions of several variables. If vy, . . ., v, €
R", we define

0 0 k
k () v
(d*®), vy, .-, vg) oo <y + i;tlv,, oc)
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Note that (¢*®), , is a symmetric, multilinear function of k arguments. If
desired, we may represent (3.16) in terms of kth-order partial derivatives of ®@;

for example, if k = 2
n 2

(O
2 _ - W
(d*®), (v, w) = i,jz=1 9y, y, w)v;w;

In this notation the chain rule takes the following form. If the base point y and
the vectors v;,i = 1,..., k depend on a parameter ¢, then

0 _ 0
E {(qu))y,a(ljla ] vk)} = (dk-*- I(D)y.a<a_i}5 vls ceey vk)

k ov;
+ Z(d"q))y,a(ul,...,a—t',...,uk). (3.17)
i=1

Here we are assuming that ® does not depend explicitly on ¢; when it does,
an additional term with d*(6®/dt) is required on the right-hand side of (3.17).

We finally begin the calculations. Repeated application of the chain rule to
(3.10a) yields the following formulas for the derivatives of ¢.

(@ ¢, = - E)dD(vo + W),
(B) ¢ = (I = E)dO(W,,) + d*®(vy + Wi, vg + WS)),
(C) ¢xxx = (I - E)(d(p(VVx\).) + 3d2(D(UO + VVx’ I/Vxx)
+ BP0y + W, v0 + W, 05 + W), (3.18)
d ¢, =U- E)D, + dD(W,)),
(e) d)z,x = (I - E)(d(ba,(vo + VVx)
+ dD(W,,,) + d*D(v, + Wy, W,)).

We evaluate at x = 0. o = 0 and recall that (I — E)L = 0 and W,(0, 0) = 0;
the formulas become

(@  ¢(0,0)=0,

(b)  ¢.(0,0) = (I — E)(d*®(v,, vo)),

(C) ¢xxx(09 0) = (I - E)(3d2(D(UO, VVxx(Oa 0)) + daq)(vO’ Vo, UO)’ (3°19)
(d) ¢a,(0’ 0) = (I - E)(cba,((), 0))’

() ,x(0,0) = (I — E)(dD,,(vo) + d*D(vg, W,(0, 0))).

Before continuing the calculation, we make two remarks. First, the fact that
¢.(0, 0) vanishes is totally expected. This means that the reduced equation has
a singularity at the origin. If it did not then we could have applied the implicit
function theorem to the original system ®(y, «) = 0; that is, rank(d®),
would be n and not n — 1 as assumed in (3.2).

Second, one of the major problems in evaluating (3.19) lies in the computa-
tion of W, (0,0) and W, (0,0). We shall give specific formulas for these
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quantities below. The difficulty is that these formulas require inverting a
linear operator. However the computation of W, (0, 0) and W, (0, 0) is not
required in (3.19) if (d*®), , happens to be zero. This circumstance is not
unusual in applications, as often @ is an odd function; i.e.,

O(—y, o) = —D(y, a). (3.20)
If (3.20) is satisfied, then ®@,(0,0) = 0 and (d*®), , = 0. So the formulas
(3.19) reduce to
$.0,0)=0, ¢.,0,0=0  ¢,00) =0,
$42x(0,0) = (I — E)(d*®(vy, vy, vo)), (3.21)
$4,:(0, 0) = (I — E)(dD,(v)).

(Remark: The property of ® being odd is a specific instance of ® possessing
a certain symmetry; we shall study symmetry and its consequences in later
chapters, especially in Chapter VI. One point deserves comment here.
If an odd function has a singularity (i.e., if ®,(0, 0) = 0), then automatically
®,,(0,0) = 0 and ®,(0,0) = 0. We saw in §lI that the vanishing of these
derivatives was part of the characterization of the pitchfork. Thus in the
context of odd functions, the pitchfork is the minimally degenerate singu-
larity.)
Returning to the calculation, we claim that at x = ¢ = 0
() Wi(0,0) = —L™'E d*®(v, vo),
(b) W,(0,0) = —L™'E®D,(0, 0),

where L™': range L — M denotes the inverse of the linear map L|M. To
verify (3.22a), we differentiate (3.9), E®(xv, + W(xv,, a), &) = 0, twice with
respect to x and evaluate at x = « = 0; this yields

EL(W.(0,0)) + Ed*®(v, + W0, 0), vy + W(0,0)) = 0.

Recalling that W,0,0) = 0 and that EL = L we solve this equation for
W.(0, 0) to obtain (3.22a). Similarly, one verifies (3.22b) by differentiating
(3.9) with respect to «, and evaluating at x = o = 0.

To complete the calculation we will substitute (3.22) into (3.19) and then
use the resulting formulas in (3.11), g(x, ) = {v§, ¢(xv,, )). Carrying out
the above steps and recalling that <v§, (I — E)v) = (v}, v)> (cf. (3.12)), we
find that

(@ g.=0,

() gux = VE, d*®(vy, o)),

(©)  Grxx = 0F, B*D(vy, vy, Vo) — 3d*°D(vy, L™ Ed*D(vy, v,))>, (3.23)
) g,= § 0,),

(€) Yo = V5, dD,, vy — d*D(vo, L™'ED, ).

These are the formulas we were seeking.

(3.22)
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The principal difficulty in computing these derivatives lies in the evalua-
tion of the inverse of L. This difficulty is even greater when we generalize
to infinite-dimensional problems in Chapter VII, where inverting L requires
solving a differential equation. Thus any special circumstances which cause
some of these terms to vanish are most welcome. One such circumstance was
mentioned above; ie., if ®(y, «) is odd in y. Another occurs if y =0 is a
solution of the equation for all values of the bifurcation parameter aq = 4;
ie., if @0, x) =0 for any o of the form (4,0,...,0). In the latter case
®,(0,0) =0, so by (3.22b), W,(0,0) = 0. It follows from (3.19d) that
¢,(0,0) = 0, and moreover the troublesome d’®(v,, W,) in (3.19¢) drops
out of this equation.

EXERCISES

3.1. In §2 we reduced the equilibrium equations for (2.1),a 2 x 2 system of ODE, to the
single scalar equation (2.3). This is a particular instance of the Liapunov-Schmidt
reduction. Specifically, forma 2 x 2 system of equations of the form (3.1) by setting
the right-hand side in (2.1) equal to zero. Show that if we take

M =R{@©} N=R{®}
vo=(1), v§=0)

where a and b are appropriate constants, then the general reduction process leads
to (2.3).
3.2. Let ®:R? x R - R? be defined by

2u; — 2uy + 2u? + 2ui — lul)

=0.
Uy — Uy + uguy + ul — 3,

Oy, up, 4) = (

Using the Liapunov-Schmidt reduction, show that ® = 0 has a pitchfork bifurca-
tion in a neighborhood of the origin. (To check your answer, solve the second
equation in @ = 0 by the implicit function theorem and use implicit differentiation
to obtain

Uy = u; + 2u? — 3u A+ 6ud + .- (3.24)
Then substitute (3.24) into the first equation.)

3.3. (Discussion) Consider the finite element approximation of the Euler column
illustrated in Figure 3.2. It consists of three rigid rods of unit length connected by

Figure 3.2. A second finite element analogue of Euler buckling.
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pins which permit rotation in a plane. It is subjected to a compressive force A
which is resisted by torsional springs of unit strength at the two connecting pins.
This system is quite similar to the one illustrated in Figure 1.2; however the present
system has two degrees of freedom. The point of the exercise is to use the
Liapunov-Schmidt reduction to show that the qualitative behavior of the present
system is identical to that of Figure 1.2.

(a) Let x and y be defined as in Figure 3.2. Derive a 2 x 2 system of equations for
x and y, say

D(x, y,4) =0, i=12,

which characterizes equilibria of the model.
Hint: The easiest derivation is to use the potential function

V(x,y) = 3(x — 0)* + L(y + 0)*> + Acos x + cos 8 + cos ).

Here 0 is the angle the middle rod makes with the horizontal. Note that 0 is
not an independent variable—rather 0 is the following function of x and y:

6 = sin™![sin y — sin x].
This relation comes from requiring that the two end pins be at the same
height. Now let ®; = dV/0x and ®, = dV/dy.

(b) Note that x = y = 0 is a solution of the equations in (a) for any value of A.
Let (d®)o,o,, be the 2 x 2 Jacobian of the equations at this solution. Show
that (d®), o, ; is invertible for 0 < A < 1 and singular for 4 = 1. Show also
that (d®), o, ; has rank 1 when A = 1.

(c) Find the kernel and range of (d®), o, when 1 = 1.

(d) Show that if the Liapunov-Schmidt reduction is applied to the equations at
x=y=0, A=1, then the reduced bifurcation equation is equivalent to
x3 — Ax.

Hint: Verify (1.8), using (3.23) to perform the calculations. The calculations
are simplest if in (3.5) one takes

M=R(), N=RG).

§4. Asymptotic Stability and the Liapunov-Schmidt
Reduction

In this section we discuss how the stability of an equilibrium solution of an
ODE is affected by the Liapunov-Schmidt reduction. Specifically, let
F:R" x R**! - R" and consider the n x n system of ODE

y+ F(y,0) =0, 4.1)

where a = (oo, ..., o) is a vector of parameters. Equilibrium solutions of
(4.1) are characterized by the equation

F(y, ) = 0. 4.2)
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Suppose that F(y,, 0) (i.e., y, is a rest point of (4.1) when a = 0) and that
rank(dF),, o =n — 1. 4.3)

Since (dF),,, o is singular, the equilibrium solution of (4.1)at y = y,fora = 0
may split into several equilibrium solutions when o # 0. (Let us refer to these
by the term perturbed equilibrium solutions.) Using the Liapunov-Schmidt
reduction we may associate such perturbed equilibrium solutions of (4.1)
with solutions of a single scalar equation

g(x,a) =0, 4.4)

where g: R x R¥*! - R. The main conclusion of this section is that, under a
slight strengthening of hypothesis (4.3), the stability or instability of these
perturbed equilibrium solutions of (4.1) is determined by the sign of g,, the
derivative of the reduced function (4.4).

This section is divided into two subunits. In subsection (a) we review the
theory of asymptotic stability for ODE, and in subsection (b) we formulate
and prove our main result, Theorem 4.1.

In both §3 and §4 we have restricted ourselves to finite dimensions. We will
generalize the results of §3 to infinite dimensions in Chapter VII. Although
the results of the present section also have infinite-dimensional analogues,
they are more technical, and we shall not pursue them in this text.

(a) Asymptotic Stability

In defining asymptotic stability, let us temporarily suppress parameters in the
differential equation. Let F: R* — R", and suppose that y, is an equilibrium
solution of the ODE

y+ F@y) =0; (4.5)

i.e., suppose that F(y,) = 0. We shall call the rest point y, asymptotically
stable if every solution to (4.5) with initial condition close to y, decays to y,.
More precisely, y, is asymptotically stable if there are positive constants
¢ and M such that for any solution y(t) to (4.5) satisfying [y(0) — y,| < &
we have |y(t) — yo| <M and lim,, , y(t) = y,. Otherwise we call y,
unstable.

There is a useful sufficient condition for asymptotic stability in terms of the
eigenvalues of the Jacobian matrix (dF),,. We shall call y, linearly stable if
every eigenvalue of (dF),  has a positive real part, linearly unstable if at least
one eigenvalue has a negative real part. In Chapter 9, §§1 and 2 of Hirsch and
Smale [1974] it is shown that y, is asymptotically stable if it is linearly stable
and that y, is unstable if it is linearly unstable. (Remark: Note that this
apparent dichotomy is not complete: if every eigenvalue of (dF),, has a
nonnegative real part but at least one real part vanishes, then y, is neither
linearly stable or linearly unstable. In this situation there is no simple test for
asymptotic stability.)
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The intuition here can be obtained by looking for solutions of (4.5) of the
form

Wt) = yo + ez(t). (4.6)

On substituting into (4.5) and neglecting terms of order & or higher, we find
the equation for z(t)

i+ Lz =0, 4.7

where L = (dF),,. (This equation is commonly called the linearization of
(4.5) at yo.) Let u;, i = 1,..., n be the eigenvalues of L, and let v; be the
associated eigenvectors. Then the general solution of (4.7) has the form

Z(t) = zcie—“itl)i, (4'8)
i=1

where the ¢;’s are constants. (Equation (4.8) holds provided the u;’s are
distinct; a slight modification is required if there are repeated eigenvalues.)
If u; > Ofor alli, then z(t) — Oast — oo. The spirit of the theorem is that on an
appropriately small neighborhood of y,, the full equation (4.5) mimics the
behavior of the linearization (4.7). (Remark: With our convention of writing
F(y) on the left in (4.5), positive eigenvalues correspond to stability. The
opposite convention results from writing F on the right.)

Let us now return to (4.1); i.e., the case where the ODE depends on one or
more parameters. To simplify the notation we will suppose that y, = 0;
in other words, we are assuming that y = 0 is an equilibrium solution of (4.1)
when o = 0. (The discussion applies with trivial modifications to an arbitrary
rest point y,.) Let L = (dF),, ,. Asnoted above, linearization of the equations
yields no information about asymptotic stability if one eigenvalue of L is
zero and all the rest are positive. Of course our assumption (4.3) states
unequivocally that zero is an eigenvalue of L. Thus, the task of this section is
to analyze the stability of equilibrium solutions of (4.1) in the neighborhood of
a borderline case.

Let us expand on this point. Suppose that the eigenvalues y;, ..., u, of L
satisfy the following:

Uy =0, Rey; >0 for i=2,...,n 4.9)

(Equation (4.3) follows from (4.9), but not conversely.) As we remarked above,
the equilibrium solution of (4.1) at y = 0 for « = 0 may split into several
perturbed equilibrium solutions when a # 0. Now an equilibrium solution
(v, o) of (4.1) will be asymptotically stable if all the eigenvalues of (dF), ,
have positive real parts and unstable if at least one eigenvalue has a negative
real part. We claim that for (y, «) near (0, 0) the eigenvalues of (dF), , will be
close to those of (dF), . To prove this, let us write (dF), , as a perturbation of
(dF)o,0 = L:

(dF), , = L + [(@F), , — L].
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The perturbing term (dF), , — L is small if (y, @) is close to zero, and the
change in the eigenvalues tends to zero as the perturbation tends to zero. This
proves the claim. However, the eigenvalues of L satisfy (4.9). Thus by the
claim the last n — 1 eigenvalues of (dF), , will be bounded away from the
imaginary axis on an appropriately small neighborhood of (0, 0) and could
not cause (y, ) to be an unstable rest point of (4.1). In constrast, the first
eigenvalue (which we denote by u(y, «)) will be close to zero and might cause
such instability. Indeed an equilibrium solution (y, &) of (4.1) will be linearly
stable or unstable according as u(y, &) is positive or negative, respectively.
Our goal is to show that g,(x, «), where g is the reduced function from the
Liapunov-Schmidt process, has the same sign as u(y, a).

(b) Statement and Proof of the Main Result

Recall from §3 that several arbitrary choices are necessary when making a
Liapunov-Schmidt reduction. Specifically, in Step 1 one must choose
complements to ker L and to range L, and in Step 5 one must choose a non-
zero vector v, in ker L and a nonzero vector v¥ in (range L)*. We claim that
the assumption (4.9) implies that v, is not in range L. For suppose v, were in
range L,say v, = Lw. Then Lw # 0 and L?w = 0. Thus both v, and w would
belong to ker L?, so that dim ker L? > 2. This would contradict the as-
sumption (4.9) that zero is an algebraically simple eigenvalue for L.

Since v, does not belong to range L, v,, v§) # 0.In order for the reduced
equation g to give the correct stability information we need to match the
orientations of v, and v¥ by requiring that

{vg, vE) > 0. (4.10)

A choice of vectors satisfying (4.10) is said to be a consistent choice.

Theorem 4.1. Let z + Lz = Q be the linearization of y + F(y, o) = 0, and
assume that the eigenvalues of L satisfy (4.9). Let g(x, 1) be the reduced equation
obtained by a Liapunov-Schmidt reduction of F(y, «) = 0 using a consistent
choice of vy and v§. Then the rest point of y + F(y, o) = 0 corresponding to a
solution (x,a) of g(x,a) =0 is asymptotically stable if g.(x,a) > 0 and
unstable if g.(x, o) < 0.

Roughly speaking, the proof of Theorem 4.1 requires showing that the
quotient u/g,, where p is the first eigenvalue of dF, defines a smooth function
which is positive near the origin. We perform this division by means of the
following proposition. Both Proposition 4.2 and the techniques involved
in its proof will be used in later chapters. However, with the one exception of
Chapter VIII, §4, the remainder of this text is independent of the proof of
Theorem 4.1 itself. Thus the reader may omit this proof with no loss of
continuity.
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Proposition 4.2. Let ¢, y: R" — R be C* functions defined on a neighborhood of
zero which vanish at zero. Assume that

(@  Y(y) =0 implies ¢(y) =0,
(®) V¢(0) #0,  VY(0) # 0,

where V indicates gradient. Then a(y) = ¢(y)/W(y) is C* and nonvanishing on
some neighborhood of the origin. Moreover, sgn a(0) = sgn{V¢(0), Vi(0)).

We derive Proposition 4.2 from a preliminary result.

Lemma 4.3. Let Y : R" — R be a smooth function defined on a neighborhood of
0 such that Yy(0) = 0 and Vy(0) # 0. Then there exists a diffeomorphism
Y(y) such that Y(0) = 0 and Y(Y(y)) = y,, where y, is the nth coordinate
function of y = (Y1, - -+ 5 Yu)-

Proor. Since Vi(0) # 0 there is an index i such that dy/dy,(0) # 0. By
relabeling the coordinates, if necessary, we may assume that dy/0y,(0) # 0.
Consider the map

\P(Y) = (yln cees Yn-1s l//(y))

Observe that det(d¥), = dy/dy,(0) # 0. By the inverse function theorem
there exists a smooth mapping Y(y) satisfying Y(0) = 0 and W(Y(y)) = y.
Equating the last coordinates yields (Y (y)) = y, as desired. O

PROOF OF PROPOSITION 4.2. The property of being C* is, of course, invariant
under C*® changes of coordinates. Thus we may verify that a(y) is C* in any
coordinate system that simplifies the calculations. We choose the system of
Lemma 4.3. In other words, we assume without loss of generality that

Y(¥) = Yn-
The proposition is based on the fundamental theorem of calculus:
' , o
#07 — 60,0 = [ 09 @.11)
0 n

Here y' = (34, ..., Yu—1)- Now (¥, 0) = 0 by hypothesis (a) of the theorem,
since Y(y) = y, vanishes on the hyperplane {y, = 0}. We make the sub-
stitution s = ty, in (4.11) to obtain

Lo
wmwnﬂgmww @.12)

Thus ¢(y) = a(y)¥(y), where a(y) is the integral in (4.12). Clearly a is C*.
It remains to determine the sign of a(0). Differentiating the relation ¢ = ay
and recalling that /(0) = 0, we find that
V(0) = a(0)Vy(0).
Since V@(0) # 0, we deduce that a(0) # 0 and moreover that sgn a(0) =
sgn<V(0), Vi(0)). u
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PROOF OF THEOREM 4.1. In proving Theorem 4.1 we shall need some informa-
tion from §3 about the mechanics of the Liapunov-Schmidt reduction of
F(y, o) = 0. We record this information here for reference in the proof. We
continue to use the notation of §3 without comment. First, we rephrase (3.6):
If ue R", then

u=0 iff <v§,up=0 and Eu=0. (4.13)
Also, we rewrite (3.9) and (3.11) as
EF(Q(x, o), o) = 0, (4.14)
g(x, a) = <v§, F(Q(x, o), ), 4.15)
where Q: R x R¥*1 — R" is defined by
Q(x, o) = xvq + W(xvg, ). (4.16)

(This formula differs from (3.14) in that here we do not retain the a-co-
ordinate on the right-hand side.)

Let u(y, o) be the first eigenvalue of (dF), ,, as described above. We claim
that u is a smooth function of y and «. To motivate the proof, suppose
that the entries of (dF),, , vary smoothly with y and « and that the eigenvalues
of a matrix vary smoothly with its entries; composing these two smooth
dependences, we see that u is a smooth function of y and . Unfortunately, it is
not always true that the eigenvalues of a matrix vary smoothly with its entries:
this property fails precisely at multiple eigenvalues. However, by (4.9) zero is
a simple eigenvalue of (dF), o = L, so this difficulty does not arise here. This
proves the claim. Recall that the rest point of (4.1) corresponding to a solu-
tion of g(x,a) =0 is asymptotically stable or unstable according as
w(Q(x, o), ) is positive or negative. (We will abbreviate u(Q(x, a), ) to
w(Q, ).) Our task is to prove that u(Q, o) and g.(x, «) always have the same
sign. We do this by invoking Proposition 4.2 to show that u(Q, «) divided by
g,(x, o) is a positive C* function. To this end, we now prove that

g.(x,a) =0 implies u(Q, o) =0,

i.e., we verify condition (a) in Proposition 4.2.
Suppose that g.(x,«) = 0 for some (x,x)eR x R**!. Differentiating
(4.14) and (4.15) we see that

E-dF g 0. Q. =0,
<U?)‘a dFQ(x, a),o Qx> =0.

By (4.13),dF gy 4., - ©, = 0.In other words, zero is an eigenvalue of dF o, 4 «
associated to the eigenvector Q.. Thus u(Q, o) = 0, since all the other eigen-
values of dF, , are bounded away from zero.

In general it is not true that Vg, and Vu(Q) are nonzero. Thus condition (b)
of Proposition 4.2 is not valid, and the proposition cannot be applied directly.
However, we shall use an unfolding trick which allows us to apply Pro-
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position 4.2. Specifically, we insert an extra scalar parameter f§ into F by
defining F: R" x R*! x R — R",

F(y, 0, B) = F(y, @) + By.

We then define fi(y, «, f) to be the eigenvalue of (dF ),.,p that is close to zero.
Applying the Liapunov-Schmidt reduction to F, we obtain a reduced
function

gix, o, B) = <v§, FQ(x, o, B), o, B)>.
The argument above shows that
G.(x,a, B) =0 implies that (&, a, p) = 0.

To apply Proposition 4.2, we show that the gradients of these two functions
are nonzero. First consider §,. We have from (3.23¢)

G.5(0,0,0) = (v, d(Fp) - vo — d*F(vy, L™ EF))).
However F(0, 0, 0) = 0 and d(Fj) - v = v,. Therefore
440, 0, 0) = <vg, vo),
and since {v§, voy > 0 (i.e., v§ and v, were chosen consistently)
G.4(0,0,0) > 0.
Next we turn to the f derivative of i(Q, «, f). We claim that
00,0, 8) = 0. (4.17)

To see this, observe that F(0,0, ) = 0. Thus formula (4.17) satisfies
EF(Q(x, o, B), o, f) = 0, the analogue of (4.14), at points of the form (0, 0, f).
But Q(x, «, f) is obtained by solving this analogue of (4.14) for Q with the
implicit function theorem; thus Q is uniquely determined in the solution
process. This proves (4.17).

Now

(dF)o.o‘/f g = Loy + Pvg = By,

since Lv, = 0. Therefore 8 is an eigenvalue of (dF )o, 0., s> With eigenvector vy.
Since the other eigenvalues of dF are bounded away from zero, we must have

Combining this equation with (4.17), we see that
R, 0, p) = p. (4.18)
On differentiating (4.18) we conclude that
0

aﬁu(Q,O,O)= 1>0.
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We may now apply Proposition 4.2, obtaining

S, o, B) = a(x, a, P)j.(x, o, ), (4.19)
where 4 is a smooth function. Moreover,
J .
d0,0,0) = ——— > 0.
( ) gxﬂ(07 Oa 0)
Theorem 4.1 follows on setting = 0 in (4.19). O

Remark 4.4. From Theorem 3.2 we know that any two reduced equations g,
and g, obtained by different Liapunov-Schmidt reductions are essentially
equivalent. More precisely, we have that g,(x, 1) is equivalent to g, (ex, A)
where sgn 6 = sgn{v¥, v%) and sgn & = sgn{v,, v,). If v, v} and v,, v} are
both consistent choices (i.e., both satisfy (4.10)) then = ¢ and we have that
g2(x, 2) is equivalent to eg,(ex, A). In particular, g, , and g, , have the same
sign, since ¢ = + 1. Let us show, more generally, that if g and h are equivalent
then g, and h, have the same sign when g and h vanish. Indeed suppose

h(x, ) = S(x, Dg(X(x, 1), A(4)),
where S(0, 0) > 0, X,(0,0) > 0. Then
h,=S.9 + Sg,.X,.

If g = O the first term vanishes; thus h, and g, have the same sign. Of course,
our reason for requiring that S(x, A) > 0 and that X (x, A) > 0 in the defini-
tion of equivalence is to obtain this property.

EXERCISE

4.1. Check the stability of the steady-state solutions to the differential equation

du

T Fw =0,

where F is defined as in Exercise 3.2; i.e.,

F(uy,uy, 4) = (zul ™ 2+ 2+ 2 — Au‘).

Uy — uy + uguy + ui — 3,

BIBLIOGRAPHICAL COMMENTS

The various perturbations of the pitchfork described in §1 may be found in
Matkowsky and Reiss [1977]; it was proven in Golubitsky and Schaeffer
[1979a] that the unfolding of the pitchfork given in Figure 1.5 is universal.
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Further references to work on the CSTR are given in Balakotaiah and Luss
[1981]. Alternative treatments of the Liapunov-Schmidt reduction may
be found in Chow and Hale [1982], Ch. 5; Crandall and Rabinowitz
[1971]; Sattinger [1979], Ch. 3; Carr [1981], Ch. 1; and Chapter VII of the
present text. (Thompson and Hunt [1973] discuss the same procedure
under the name “elimination of the passive coordinates”.) Similarly,
alternative treatments of the stability of solutions obtained from the
Liapunov-Schmidt reduction may be found in the above references, in
Crandall and Rabinowitz [1973], and in Kielhofer [1976]; in particular,
these references study PDE, not just ODE as we have done in the text.



APPENDIX 1
The Implicit Function Theorem

(a) Finite Dimensions

The implicit function theorem in finite dimensions is concerned with a
system of equations of the form

SilXis ooy Xps gy e eey o) =0, i=1,...,n (ALD)

depending on the k parameters o;. Specifically, this theorem gives a sufficient
condition which guarantees that the system (A1.1) may be solved locally for
Xy, - - - X, as functions of the parameters «;. Note that the number of equa-
tions in (Al.1) equals the number of unknowns.

We reformulate (A1.1) using vector notation. Let x = (x,,..., x,) € R",
o= (0y,...,q)eR andf = (f},..., f,) € R~ Thus(Al.1)definesamapping
f:R" x R* —» R"which we assume is s-times differentiable, where 1 < s < .
For any (x, o) € R* x R* let (df), , denote the n x n Jacobian matrix

9
<6_xj (x, OO){J.: 1,...,n.

We shall work in a neighborhood of a fixed point (x,, #y) € R" x Rk

Implicit Function Theorem. Let f be as above. Suppose that f(x,, 0g) = 0 and
that

det(df )y, 20 # O

Then there exist neighborhoods U of x, in R" and V of o in R* and a function
X:V — U such that for every a. € V, (A1.1) has the unique solution x = X(a) in
U. Moreover, if f is of class C° so is X. In symbols we have

fX(@),0) =0,  X(ap) = Xo-
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For the proof of the implicit function theorem, we refer, for example, to
Chapter 8 of Taylor and Mann [1983].

Let us illustrate the use of the theorem with three examples. As a first
example we refer the reader to Chapter I, §1. Here we consider possible
bifurcation in an equation g(x, ) = 0 where g: R! x R! —» R'. We conclude
from the implicit function theorem that g.(x,, 4,) = 0 is a necessary con-
dition for a solution (x,, 4¢) of g(x, 4) = 0 to be a bifurcation point, for
otherwise we could solve uniquely for x as a smooth function of A.

As a second example, let us consider the special case

g(x, o) = x> — ax.

Observe that x = Ois asolution tog = 0for each «. Moreover, (dg)y,, = —a,
so that for o # O the implicit function theorem guarantees that x = 0 is the
only solution to g(x, «) = 0 near x = 0. However, a simple glance at the
set {(x, 4): g(x, 4) = 0} shows that the neighborhood on which the implicit
function theorem is valid shrinks to a point as o approaches 0.

As a third, less trivial, example we show that limit points are both isolated
and persistent to small perturbations. The point (x,, 4,) is a limit point for
g(x, 2) = 01if g(xo, Ao) = gu(xo, A0) = 0and g,,(xo, 4o) # 0, g:(xo, o) # 0.
To show that limit points are isolated, define a mapping f: R x R - R?,
where

J(x, 4) = (g(x, A), g, ).

At the limit point (x,, 4,) we have

= _gxxgll(xo,lo) # 0.

Ixx  Yxa (x0, 40)

det(df )y, 5, = det(gx 9a )

Thus the implicit function theorem, applied with k = 0, implies that (x,, 4)is
the only solution to g = g, = 0 on a neighborhood of (x,, 4¢)-
We next show that limit points are persistent to small perturbations. Let

G(x, A, &) = g(x, 1) + ep(x, A),

where p is any perturbation term and ¢ is small. The limit points of G(-, -, &)
must satisfy

F(x, A, &) = (G(x, 4, €), G.(x, 4, ¢)) = 0.

Observe that det(dF),, ;,.0 = det(df),,, ,, # 0. Thus the implicit function
theorem, applied with k = 1, guarantees that the solutions to F = 0 near
(%0, 49, 0) have the form (X(¢), A(e), &) where (X(0), A0)) = (x4, Ap). Thus
for each ¢ sufficiently small, G(-, -, ¢) has a unique limit point near (x,, 4¢).
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(b) Infinite Dimensions

In Chapter VII, we will need to apply an infinite-dimensional version of the
implicit function theorem which we formulate here. First we define a C*
mapping ®: & —» % between Banach spaces. The mapping ® is called
(Fréchet) differentiable at a point u € Z if there is a bounded linear mapping
L:% — % such that

1O + v) — @(u) — Lv| = o(|[v]l) (A12)

for v in some neighborhood of zero in . The linear operator in (A1.2) will be
denoted (d®),, the differential of ® at u. We will say that ® is of class C! if @ is
differentiable for every u €  and the mapping u — d®, is continuous in the
norm topologies. (Remarks: (i) The reader should understand that this
definition and the theorem below apply equally well to a mapping into %
defined on an open subset of & ; we ignore this generalization, as it complicates
the notation without adding insight. (ii) Mappings of class C* are defined in
Appendix A3.)

Let ®: % x % - % be a C' mapping between Banach spaces. Let
dD), ,: ¥ — Z denote the differential of ® (with respect to 4 only). Consider
the equation

D(u,v) =0 (A1.3)
near a fixed point, say (0, 0), such that ®(0, 0) = 0.

Implicit Function Theorem for Banach Spaces. Let @ be as defined above and
suppose that (d®)y o: & — & has a bounded inverse. Then (A1.3) may be solved
locally for u = ¥(v), where ¥: ¥ — & is a C! mapping.

A comprehensive treatment of the implicit function theorem in infinite
dimensions is given in Chapter 2 of Chow and Hale [1982].

In the applications of this theorem in Chapter VII, @ is typically a differ-
ential operator. For such an operator to be bounded it is essential to allow the
domain and range of ® to be different spaces. For example, the Laplacian is
bounded from C?*(Q) to C°(Q) but is not bounded operating from any Banach
space to itself.

EXERCISES

All. A function f: R" - R has a nondegenerate singularity at x if (df), = 0 and
det(d?f), # 0 where d°f is the Hessian matrix (8f/dx;dx;). Show that non-
degenerate singularities are isolated and persistent to small perturbations of f.

A1.2. The mapping F: R" — R" has a nondegenerate fixed point at x if F(x) = x and 1 is
not an eigenvalue of the n x n Jacobian matrix (dF),. Show that nondegenerate
fixed points are isolated and persistent to small perturbations of F.



APPENDIX 2

Equivalence and the Liapunov-Schmidt
Reduction

In this appendix we prove Theorem I,3.2. We recall the notation of that
theorem—g, and g, are two different reduced functions obtained by applying
the Liapunov-Schmidt reduction to (I,3.1). Each reduced function g,
i = 1, 2, depends on four arbitrary choices; viz., on subspaces M; and N; as in
(I,3.4) and (I,3.5), and on vectors v; and v¥ in ker L and (range L)*. Our task
is to show that, up to the + signs indicated in the theorem, g, and g, are
equivalent. We consider in turn the four cases where three of the four choices
needed for the reduction are the same for g, and g, but the fourth is different.
Since equivalence is a transitive relationship, the general case follows by
combining these four special cases. As it happens two of these four cases are
trivial to analyze, and we deal with both of these simultaneously in Case I
below.

Case 1. Suppose M; = M,, N, = N,, but possibly v, # v, and/or v} # v§.

This case is easy because the reduced equation ¢;:ker L x R— N,
i = 1, 2, obtained in Step 4 of the reduction is the same for g, and g, . (We will
therefore simply write ¢, omitting the subscript.) The only difference between
g; and g, is in the parametrization of ker L and N. We have v, = cv, and
v¥ = dv* for some coefficients ¢ and/or d, where ¢ # 0 and d # 0. Indeed
sgn ¢ = ¢and sgn d = §. Now

g2(x, A) = <dvl, P(exvy, A))
= dgl(cx, '{)

This equation yields the equivalence of g,(x, A) and dg,(ex, 4); specifically we
may take S(x, A) = |d|™!, X(x, A) = |c| 'x, and A(L) = 4 in (L1.6).
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For the remaining two cases we recall from Chapter I, §3(c) the geometric
view of the Liapunov-Schmidt reduction. Let

v; = {(y, ) E;®(y, 1) = 0}, i=1,2 (A2.1)

Each 77 is a two-dimensional submanifold of R" x R whose tangent space
at the orlgm is ker L x R. The submanifolds ¥; may be parametrized by

Qv, 1) = (v + W(v, 1), 4). (A22)
(Cf. (1,3.14).) Moreover
gi(x, ) = <v¥, @ Qxv;, 1)). (A2.3)
(Cf. (1, 4.15).)

Case I1. Suppose that N, = N,, v; = v,, v} = v} but possibly M, # M,.

The projection E; depends only on N;, and we have N, = N,. Thus in
(A2.1) we have ¥| = ¥,. However, the parametrization of ¥~ = ¥ = ¥, by
Q; in (A2.2) does depend on the choice of M;, and this point is the only
difference between g, and g,. This observation is the basis of our proof of
equivalence in this case.

Let us elaborate. Let 7,:R" x R — ker L x R be the projection with
kernel M; x {0}. We claim that Q- 7, |7  is the identity. It may be seen
from (A2.2) that for composition in the reverse order we have
7y 0 Q4(v, A) = (v, ), whence Q; o7, o Q (v, 1) = Q,(v, A). But Q, para-
metrizes ¥, so any point in ¥~ has the form Q, (v, 4) for some (v, 4). The claim
follows.

Since v; = v, and v¥ = v¥, we use a common subscript “zero” for these
vectors. (v without a subscript is a generic element of ker L.) We insert the
identity into the representation (A2.3) of g, as follows.

g = {v§, ® o Qy(xvy, 1))
= (0§, Do Q, o1, 0 Qy(xvg, 4)D.

We shall extract the required diffeomorphism from the factor 7, - Q,. Let
us elaborate. Since n, maps into ker L x R, there exists a smooth function
X such that

7y 0 Qy(x0g, 4) = (X(x, v, A). (A24)
Thus
g2(x, 4) = (v, @ Q;(X(x, Ay, 1))
= 91(X(x, 4), 2).

Hence g, can be obtained from g, by composition with a change of co-
ordinates, and it remains only to show that X/0x(0, 0) > 0. Applying the
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chain rule to (A2.4) we observe that 0 X/0x(0, O)v, equals the first component
of dmyodQ, - (vy,0), which we abbreviate to dn, -dQ,-v,. However by
(1,3.15) we have dW,/dx = 0, so dQ, - v, = vy. Moreover, dn, = m,, since
7, is linear, and =,v, = v,. Combining these, we conclude that
0X/0x(0,0) = 1.

Caselll. M, = M,, v, = v,, vf = v%, but possibly N, # N,.
The basic observation here is the following containment:

{0, D: 0y, 1) = 0} = V1075,

We deduce from this observation that for v ¢ ker L, ¢,(v, ) vanishes if and
only if ¢,(v, X) = 0; thus, introducing coordinates, we see that

gi(x, ) =0 iff g,(x,4) =0. (A2.5)

We now want to apply Proposition 1,4.2 to show that g,(x, 4)/g,(x, 4) is a
positive C* function near the origin. For this we need to show Vg; # 0,
i = 1, 2. We have from (I,3.23a) that dg;/dx(0, 0) = 0, but from (I,3.23d)

%1 0,0y = ( vz, 92 _ %9

Therefore, if either derivative is nonzero, then so is the other, and moreover
{Vg:,Vg,> > 0. Thus in this case

g2(x7 A) = S(X, A)gl(x: A)

for some positive, C* function S(x, 4); in particular, g, is equivalent to g,.

However, more commonly it will happen that Vg;(0, 0) = 0. We cannot
then apply Proposition 1,4.2 directly, but must resort to a trick. (Cf. the proof
of Theorem I, 4.1.) We “unfold” ®@ by introducing an additional parameter
B as follows. Define a function @: R* x R x R —» R",

®(y, 4, B) = Oy, 4) + pog.
Now apply the Liapunov-Schmidt reduction to ®, obtaining
fiker L x R x R — N,

asin (I,3.10) and g«(x, 4, B) as in (I,3.11). As before, the zeros of gi(x, A, B) are
in a natural one-to-one correspondence with the zeros of ®(y, 4, B). Likewise
define the solution manifolds ¥; = {(y, 4, B): E;®(y, A, f) = 0} and note that

{&)(y’ 4 B) =0} < 2% Vs
This fact implies, as in (A2.5), that

gi(x, 4, ) =0 ifand onlyif g§,(x, 4, f) = 0.
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We claim that (6/38)g (0, 0, 0) > 0. Indeed, applying (I,3.23d) we have

0g; oo

B 0,0,0) = <v’5, %> = (g, v§) >0

as claimed. Thus we may apply Proposition 1,4.2 to functions of the three
variables x, 4, and f to conclude that g,(x, 4, B) = S(x, 4, B)g.(x, 4, B) for
some C®, positive function S(x, 4, f). On restricting to f = 0 we obtain the
desired equivalence. O



CHAPTER 11
The Recognition Problem

§0. Introduction

In this chapter we consider a notion of equivalence slightly different from
that of Chapter I. We say that two smooth mappings g,h: R x R - R
defined near the origin are strongly equivalent if there exist functions X(x, 1)
and S(x, A) such that the relation

g(x, ) = S(x, (X (x, 1), 1) 0.1)

holds near the origin. This definition differs from our earlier version (I,1.8) in
that here we do not allow the bifurcation parameter A to be transformed. In
this definition we still require that

X(0,0) =0, X (x,2)>0, S(x,4) >0. 0.2)

Here and below we work in the neighborhood of the origin in R?; this is
merely for convenience, as we could equally well work near any given point.

This chapter is entitled “The Recognition Problem,” by which we under-
stand the following. Consider a smooth mapping h: R x R — R defined near
(0, 0). To solve the recognition problem for h means to characterize explicitly
the mappings which are strongly equivalent to h. For example, we will show
in this chapter that a mapping g is strongly equivalent to x> — Ax if

9(0, 0) = g,(0,0) = g,(0,0) = g,(0,0) = 0 (0.3a)
and
gxxx(os 0) > 03 glx(oa 0) < 0 (0'3b)

(Cf. (1,1.6).) In other words (0.3) solves the recognition problem for x> — Ax.
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In this chapter we present algorithms which lead to a solution of the
recognition problem for a rather general mapping h, and we carry out the
calculations required by the algorithms in a number of interesting special
cases, x> — JAx among them. This information is useful in applications, in that
one can test whether an equation g(x, ) = 0 coming from a specific applica-
tion is equivalent to another, presumably simpler, equation A(x, 1) = 0.
However, this information is incomplete, in that it does not tell how to derive
an appropriate h—throughout this chapter we assume that k is already given.
We shall refer to h as a normal form for the bifurcation problem. Typically h
will be the simplest representative from a whole equivalence class of mappings.

The issue of obtaining an appropriate normal form for a bifurcation
problem is one of the most subtle aspects of our theory. At this early stage of
the exposition, we limit ourselves to the following two simple remarks con-
cerning this issue:

(i) Given a specific mapping g(x, 1), it may be possible to compute which
of its derivatives vanish at the bifurcation point. Suppose we have a list

9 \k( )\

A natural choice for h is a linear combination of the lowest-order monomials
x*A! not on this list.

However, even in relatively simple examples, this procedure requires care
in its implementation. For example, the monomials associated to the list
(0.3a) are 1, x, A, x2; the lowest order monomials not on this list would seem
to be x4, A2, and x>. As (0.3b) suggests, we need only consider the x* and xA
terms in k. In many cases the classification theorem (Theorem 2.1 of Chapter
IV) eliminates the need for computation in carrying out this procedure—for
several of the simpler bifurcation problems, this theorem gives the normal
form associated to a list of vanishing derivatives such as (0.4). (Corollary 9.1 of
this chapter is a less complete result in this direction.)

(ii) Often in applications one has some idea of what kind of bifurcation
diagrams to expect. In the figures of Chapter IV, §4 we tabulate the bifurcation
diagrams associated to the normal forms considered in Theorem IV2.1.
Scanning this table and looking for the expected behavior of the applied
problem is another way to generate candidates for a normal form.

Of course these remarks are terribly sketchy. We refer the reader to the
Case Studies for a more complete presentation of how we choose normal
forms in specific problems.

At this point we present our solution of the recognition problem for
another example. We consider the normal forms h(x, A) = &(x? + 6A%), where
e¢and d equal +1.If 6 = — 1, the zero set of h consists of two crossed lines; if
0 = +1, it consists of the single point x = A = 0. Thus, the bifurcation
diagrams in these two cases are quite different, although algebraically the
two cases are quite similar. This example foreshadows some of the nuisance
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that plus and minus signs create. In Proposition 9.3 below we obtain the
following solution to the recognition problem for e(x* + 64?): if a mappingg
satisfies

9(0,0) = g(0,0) = g;(0,0) =0 (0.52)
and

9xx(0,0) # 0, det d?g(0, 0) # 0, (0.5b)

then g is strongly equivalent to &(x*> + d4%), where ¢ = sgn ¢,,(0, 0) and
& = sgn det(d*g(0, 0)). Here d*g stands for the Hessian matrix

2 xx  Yax
9 (g).x gu)

In the rest of §0 we attempt to give an overview of the contents of Chapter
I1. The discussion in the next paragraph starts this effort.

The most noteworthy feature of (0.3) and (0.5) is that these conditions only
involve a small number of the derivatives of g. We say that h is finitely
determined if we need compute only a finite number of terms in the Taylor
expansion of g when deciding whether g is strongly equivalent to h. Let us
explore some consequences of this fact. Consider, for example, the second case,
h = &(x? + 8A%). According to our solution of the recognition problem, if p is
any polynomial all of whose terms are of degree 3 or greater, then h + p is
strongly equivalent to h. For an arbitrary monomial x*', let us ask for what a,
if any, is h + ax*A! strongly equivalent to h? This question separates mono-
mials into three classes as follows:

(i) Low-order terms: The derivative (8/0x)%(9/dA)'g must vanish, so equi-
valence only obtains ifa = 0.
(ii) Higher-order terms: The derivative (/0x)*(9/04)'g nowhere appears in
(0.5), so equivalence obtains for all a.
(iii) Intermediate-order terms: Whatever terms are not included above.

In general, our solution of the recognition problem for a normal form h will
split monomials into three classes in this fashion. The exact definition of
higher-order terms is more complicated than is indicated in (ii); however, (ii)
does convey the essential spirit of the correct definition. For the specific case
of (0.5) the three classes may be related to degrees of homogenity as follows:

(i) Low order: degree < 1.
(ii) Intermediate order: degree = 2.
(iii) Higher order: degree > 3.

Usually the three classes will not mesh so nicely with degrees of homogeneity.

The main results of Chapter II are formulated in §8 where we describe the
algorithm which solves the recognition problem for a mapping h. This
algorithm has three parts, corresponding to the three kinds of monomials
mentioned above. The first part enumerates the low-order terms; this is a
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rather simple task. The second part provides an algorithm to characterize
the higher-order terms; the algorithm may be carried out even in rather
complicated bifurcation problems. The third part identifies the conditions
that the intermediate-order terms must satisfy for equivalence to obtain;
it will appear in Chapter V that these conditions can in general be rather
complicated, but in the present chapter, they will always have the form of
inequalities, as in (0.3b) and (0.5b).

In §9 we apply the results of §8 to derive normal forms for several im-
portant classes of bifurcation problems. Sections 11-12 contain the proofs of
results that either were too long to give earlier or were extraneous to the main
sequence of ideas.

Sections 1-7 develop the material needed for an efficient presentation of
our main results. In §1 we introduce the formalism of germs, which is a
notational convention incorporating the fact that all our results are only
valid in a sufficiently small neighborhood of some fixed point. The funda-
mental theoretical concept of the chapter, the restricted tangent space RT(g),
is defined in §2; loosely speaking, RT(g) consists of those mappings p such
that for ¢ small, h + ¢p is strongly equivalent to h, modulo error terms that are
O(t*). It is important to be able to compute R T(g) efficiently; §§3-7 are a unit
which addresses this issue. In §§3 and 6, we compute RT(g) for certain simple
and complicated examples, respectively. In §§4, 5, and 7 we abstract general
principles from the calculations of the earlier sections; we give these their
natural, algebraic formulation.

In §10, we consider the recognition problem in the context of general
equivalences; i.e., those where the bifurcation parameter may be trans-
formed. (This is to be contrasted with strong equivalences as defined in
(0.1).) Actually our principal interest lies with general equivalences, but the
mathematical development of the subject is simplified by considering strong
equivalences first. In any case, we use essentially the same techniques in
either context, and for simple normal forms the solution to the recognition
problem is the same in either context. In particular, (0.3) and (0.5) solve the
recognition problem for their respective normal forms in either context.

§1. Germs: A Preliminary Issue

The theory we are presenting is a local one; i.e., our results are valid only in a
sufficiently small neighborhood of some fixed point. The terminology of
germs provides a convenient way of formulating results in a local theory
which avoids infinite repetition of the phrase “in a sufficiently small neighbor-
hood of the origin.”

To better understand what it means that our theory is only local, let us
consider the function

g(x, A) = x> — Ix + ax*.
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(_ 2 4
3a’ 274

Figure 1.1. Solution set of x> — Ax + ax* = 0;a > 0.

Now g satisfies conditions (0.3), so by the results quoted above, g is strongly
equivalent to the pitchfork x* — Ax. However, the zero set of g, shown in
Figure 1.1 when a > 0, consists of the two curves x = 0 and 4 = x2 + ax3.
Intuitively, it is clear that x> — Ax + ax* can be equivalent to x> — Ax only
on a neighborhood which is not too large. Specifically, equivalence can
only hold on a neighborhood which excludes the limit point of 1 = x? + ax?
at (x, A) = (—2/3a, 4/27a%); such a neighborhood is indicated by the dotted
lines in Figure 2.1. (This intuition may be supported by a rigorous argument
based on counting solutions as in formula (I,1.9).) Moreover, the largest
disk on which equivalence obtains in fact shrinks to the origin as a — 0.
From this example we see that it is impossible to choose one fixed neighbor-
hood of the origin on which (0.3) would imply pitchfork-like behavior.

Given suitable bounds for higher-order derivatives of g it is possible to
estimate the size of the neighborhood on which an equivalence obtains.
However, the situation concerning such results is similar to the situation for
the implicit function theorem. This theorem (see Appendix 1) gives sufficient
conditions which guarantee that an equation F(x, y) = 0 may be solved for
x as a function of y, say x(y). We can estimate the exact domain of the
function x(y), but for most applications this is unnecessary, and usually
such estimates are hard to apply.

Moreover, to be completely explicit about the domains of functions can be
rather a nuisance. For example, if g(x, 2) is defined on U, a neighborhood of
the origin in R?, and if h(x, 4) is defined on V, then the sum g + h or product
ghisonlydefinedon U n V.But whatisthe relation of the restrictiong|U n V
to the original function g? For purposes of a local theory they are effectively
indistinguishable.

We shall say that two functions (defined near the origin, possibly on
different sets) are equal as germs if there is some neighborhood of the origin on
which they coincide. This definition applies to artificial examples such as
gi1(x, A) = x and
x ifi<l,
x4+ e VATD f ) >,

ga2(x, A) = {

since g, and g, coincide in the disk {(x, 4): x? + A* < 1}. More importantly,
this definition speaks to the question of the preceding paragraph: If g is
defined on a neighborhood of zero, then g and g|U n V are equal as germs.
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In general, if V; and V, are neighborhoods of the origin, then g|U n V; and
g|U n V, are equal in this sense.

Let &, , denote the space of all functions g: R* — R that are defined and
C* on some neighborhood of the origin. We shall identify any two functions
in &, ; which are equal as germs. We call the elements of &, ; germs. (In
more technical language, a germ is an equivalence class in &, ; with respect
to this identification. A similar issue concerning equivalence classes arises in
integration theory, where we want to identify functions that are equal almost
everywhere.) We shall sometimes write &, or simply & for this space—the
subscript “2” indicates the number of variables. Similarly, we will occasional-
ly need &,, germs of functions of n variables, and &,, germs of functions of A
alone.

Germ concepts allow us to shrink the domain of a function as needed. For
example, if ge &, , and ¢(0, 0) # 0, then 1/g € &, ;, since 1/g is defined and
smooth in some neighborhood of the origin. It does not matter if that neighbor-
hood is smaller than the original domain of g. Similarly, in formula (0.2) it
suffices to require that

X,(0,0) > 0, S(0,0) > 0;

by continuity these inequalities continue to hold in some neighborhood of the
origin, and what happens away from such a neighborhood is irrelevant.
In dealing with germs the reader should bear the following points in mind:

(i) Evaluation of a germ g at a fixed point (x,, 4,) different from (0, 0) is not
compatible with germ concepts, since for any such point (x,, 4¢) there
always exist smooth functions g, and g, which are equal as germs but
still satisfy g;(xq, A9) # g2(X0, Ao). On the other hand, any derivative of a
germ evaluated at the origin is well defined (See Exercise 1.1.)

(ii) Limit processes with germs are suspect, since the domains may shrink to a
point in the limit. Of course, finite processes such as addition and multi-
plication pose no such problem.

EXERCISE

1.1. (a) Letgbeagermin &,. Show that g(0)is well defined ; that is, choose two functions
fi and f, representing g and show that f;(0) = £,(0).
(b) Show that dg/0x; is a well-defined germ in &, , by showing that df;/dx; and
0f,/0x; define the same germs.
(c) Show that (9/0x,)* - - - (0/0x,)*g(0) is well defined.

§2. The Restricted Tangent Space

In this section we define the restricted tangent space of a germ g in &, ; this
definition is a fundamental theoretical concept that underlies most of Chapter
II. This concept arises naturally from the following question: “Given a
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germ g, for what perturbations p is g + tp strongly equivalent to g for all
small t?” Suppose that for some perturbation p the answer is affirmative;
then for all small ¢ there exist functions S(x, 4, t) and X(x, 4, t) such that

g(x, A) + tp(x, A) = S(x, 4, )g(X(x, 4, 1), A), (2.1)
where
X(©0,0,t) =0. 2.2)

Suppose further that S'and X vary smoothly in x, A and ¢ and thatat ¢ = 0, S
and X define the identity transformation on g; in symbols

S(x, 4,0) =1, X(x, 4,0) = x. (2.3)

(Remark: Because of (2.3) we need not assume explicitly that X (0, 0, ) > 0,
S(0, 0, t) > 0—this follows for small ¢ by continuity.) We differentiate (2.1)
with respect to t, set t = 0, and use (2.3) to simplify the right-hand side; this
yields

px, ) = 8(x, 4, 0)g(x, 1) + g.(x, HX(x, 4, 0),

where dot indicates a t derivative. Note that by (2.2), X,(0, 0, 0) = 0.

The restricted tangent space RT(g) is defined as the totality of functions
that arise through the above construction. Let us formalize this in the follow-
ing definition.

Definition 2.1. The restricted tangent space of a germ g, denoted by RT(g), is
the set of all germs p which may be written in the form

p(x, A) = a(x, Dg(x, ) + b(x, )g.(x, A), (24
where a, be &, ; and b(0,0) = 0.

We use the word “restricted” to indicate a construction associated with
strong equivalence. In the next chapter we shall consider an unrestricted
tangent space associated with ordinary equivalence. For our purposes here,
the restricted tangent space leads to a simpler theory.

It follows from the discussion above that p e RT(g) is a necessary con-
dition for g + tp to be strongly equivalent to g when ¢t is small. It is not a
sufficient condition, but we can prove the following theorem.

Theorem 2.2. Let g and p be germs in &, ;. If
RT(g + tp) = RT(g) forall te[0,1], 2.5)
then g + tp is strongly equivalent to g for all t € [0, 1].
This theorem is proved in §11. There we construct an appropriate S and X

to show equivalence by solving certain ODE. Moreover, we will use the ideas
involved in this construction later in the text.
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Let us show that if condition (2.5) is satisfied then p € RT(g). Indeed,
suppose

RT(g + tp) = RT(9) (2.6)

for just one nonzero t. Certainly g + tpe RT(g + tp), as we may choose
a = 1,b = 0in (2.4). Thus, by (2.5) we see that

g +tp=ag+ bg,
for some a,be &, ; where b(0, 0) = 0. Subtracting g from both sides and
dividing by ¢t we obtain
a—1
t

b
p= g+?gxa

which shows p € RT(g).

§3. Calculation of RT(g), I: Simple Examples

Our main purpose in this section is to calculate RT(g) for the following two
simple examples:

(@ g=x*>+ A4 (limit point),
(b) g =x>— Ax (pitchfork).

These calculations lead to general principles for determining RT(g) that are
an essential part of our theory.

G.1)

(a) Preliminaries Needed for the Calculation

According to Definition 2.2, a germ f € &, , belongs to RT(g) if it may be
written in the form (2.4). In this formula the condition that b(0, 0) = 0 is
something of a nuisance. We will use Lemma 3.1 below to obtain a more
convenient formula ; since we will usually prefer this reformulation of (2.4) to
(2.4) itself, we incoprorate the reformulation into Lemma 3.2 for later
reference.

Lemma 3.1. Let f(x) be a germ in &, with f(0) = 0. Then there exist smooth
germs ay, . .., a, in &, such that
f(x) = xlal(x) + -+ xnan(x)a

where X = (X4, ..., X,)-

We apply the lemma to reformulate (2.4) before giving the proof.
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Lemma 3.2. Let g€ &, ;. A germ f belongs to RT(g) if and only if there exist
germs a, b, ce &, ; such that

f =ag + (xb + Ac)g,. 3.2
PROOF OF LEMMA 3.2. If f has the form (3.2), then f also has the form (2.4),
since the coefficient of g in (3.2) vanishes at the origin. Conversely, suppose f

has the form (2.4). Then b(0, 0) = 0, so by Lemma 3.1 there exist smooth
coefficients b and ¢ such that

b(x, 1) = xb(x, 2) + Aé(x, A).
We obtain (3.2) on substituting this representation for b(x, 1) into (2.4) [

PRrOOF OF LEMMA 3.1. Suppose f is defined on some ball B, = R". For any
fixed x € B, define a function of one variable h(s) = f(sx), where 0 < s < 1.
Note that k(0) = f(0) = 0. Now

1

£(x) = h(1) — h(0) = f -‘% (s) ds.

0
By the chain rule

0
= Y 0

i=1 i

If we define
19
a0 = [ Loas
0 0x;
then we obtain the desired representation for f. O

It will be useful below to generalize Lemma 3.1. This generalization is just a
version of Taylor’s theorem; the new wrinkle in Lemma 3.3 is a specific form
for the remainder of order k which shows, in particular, that this remainder is
itself a smooth function. If f € &,, we use the following notation for the kth-
order Taylor polynomial of f at the origin (or k-jet, as it is often called):

. 1[0\
)= 3 _(a)f

le[<k o!

x%

x=0

Herea = (ay, ..., a,) is a multi-index of nonnegative integers and we observe
the standard conventions with multi-indices; thus

la| = oy + -+ + o, ol = (o)l (o),

o (O o (22
X=X ox)  \ox, 0x,)
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Lemma 3.3 (Taylor’s Theorem). Let f be in &,. For any nonnegative integer k
there exists coefficients a, € &,, indexed by multi-indices o. with || = k + 1,
such that

fG)=70) + ¥ a0)x (3.3)

le|=k+1

PROOF; The proof of Lemma 3.3 is by induction. Lemma 3.1 applied to f(x) —
f(0)starts theinduction when k = 0. We ask the reader to supply the inductive
step of the argument in Exercise 3.1. O

(b) Calculation of RT(g) for the Two Examples

For (3.1a) we will show that
RT(x* + A) = {f€&,,;: f(0,0) = £(0,0) = 0}. (34)

To see this we argue as follows. Observe from Lemma 3.2 that RT(x* + 4)
consists of all germs of the form

a(x® + 1) + (xb + Ac)(2x) = (a + 2b)x? + (a + 2xc)4, (3.5)

where a, b, ce &, ;. We claim that RT(x* + 1) may equally be characterized
as all germs of the form

ax? + B4, (3.6)

where o, B € &, ;. Certainly every germ with the form (3.5) has the form (3.6).
Conversely, given o, f€ &, ; we set

a=p, b = (x — p)/2, c=0; 3.7

on substituting these coefficients into (3.5) we see that ax® + B4 can be
expressed in the form (3.5), as claimed. We now derive (3.4) from the claim.
If f e RT(x? + A) then f may be written in the form (3.6), from which we
calculate that (0, 0) = £,(0, 0) = 0. Conversely, suppose (0, 0) = £,(0, 0)
= 0. Then applying Taylor’s theorem (Lemma 3.3) with k = 1, we see that
there exist coefficients a,,, a,, and a,, such that

f(x, 2.) e f)_((), 0)/1 + azoxz + a“lx + (10212. (38)
But (3.8) has the required form (3.6)—we may set
® = Qz9, B = £i(0,0) + a;;x + ag, A

This completes the verification of (3.4).
Passing to the second example, we claim that for (3.1b)

RT(x* — Ax) = {f €&,,;: f(0,0) = £,0,0) = £3(0,0) = f,(0,0) = 0}.
(3.9)
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The calculation is quite similar to the preceding case. First we apply Lemma
3.2 and regroup terms to show that RT (x> — Ax) consists of all germs of the
form

(@ + 3b)x® — (a + 2b — 3xc)Ax — cA?, (3.10)
where a, b, c € &, ;. Then we argue that every germ of the form (3.10) may be
written as

ax3 + PAx + pA?, (3.11)

where a, f, ye &, ;, and less trivially, every germ of the form (3.11) may be
written in the form (3.10); the important point here is that the linear system

a+3b=aqa
—a —2b + 3xc = B,
_c:’y’

is invertible. Finally we apply Taylor’s theorem to show that a germ may be
expressed in the form (3.11) if and only if

f0,0) = f0,0) = £3(0,0) = £,.(0,0) = 0.

This proves the claim.

(c) Afterthoughts

Let us examine the calculations of this section with an eye towards identifying
what is essential. We find that there are three basic ideas involved in the
calculation. In discussing these ideas we use the term generator as follows.
Consider an expression such as the right-hand side of (3.5),

a(x* + A) + b(2x?) + c(2Ax). 3.12)

This formula describes a linear combination with arbitrary germs as coef-
ficients of the three functions x2 + 4, 2x2, and 2Ax. We refer to x? + 4, 2x2,
and 2/x as generators in (3.12). Similarly, we call x? and A generators in (3.6);
x3, Ax, and A? generators in (3.11).

The following three steps in the previous calculations are of general
applicability.

(i) Casting out redundant generators. This was the first step in the cal-
culation for (3.1a). The third generator in (3.5), 2Ax, is a linear combina-
tion of the other two—specifically,

2Ax = 2x(x% + A) — A(2x2). (3.13)

Consequently there was no loss in (3.7) when we set the coefficient of the
generator 2Ax equal to zero. By contrast, in the calculation of (3.1b) there
were no redundant generators.
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(ii) Forming linear combinations of generators to simplify them. This idea
was used in both examples, to derive (3.6) from (3.5) and to derive (3.11)
from (3.10). More specifically, in deriving (3.6) we formed the following
two linear combinations of the generators in (3.5):

x? = 3(2x?),

A= (2 + ) — 220, (3.14)
Concerning the derivation of (3.11), in Exercise 3.2 we ask the reader to
identify the specific linear combinations of the generators in (3.10) that
are involved.

(iii) Passing from generators of RT(g) to a characterization of RT(g). By a
characterization of RT(g) we mean necessary and sufficient conditions
on a function f for f to belong to RT(g). These conditions involve f(0)
and of a finite number of derivatives of f at the origin. This step was
required in both examples.

In the next section we formalize the first two of these three steps in alge-
braic language that is natural for the problem. In particular, this leads to a
better understanding of when and why these techniques are effective. In the
following section, §5, we do likewise for the third step. The first section is a
fairly straightforward formalization of the remarks above. The second section
is far less obvious; some of the fundamental ideas of singularity theory first
appear there.

EXERCISES

3.1. Complete the proof of Taylor’s theorem.
(a) Show by induction that if j*g(x) = 0 then

gx)= Y ax)x (3.15)

la|=k+1

To do this observe that if j**!g(x) = 0 than a,(0) = 0 in (3.15). Then apply
Lemma 3.1 to each a,.

(b) To obtain (3.3) observe that j*g(x) = 0 where g = f — j*f.
3.2. Let g(x, 1) = x> — Ax. Find explicitly germs 4;, B;, C;(j = 1, 2, 3) such that:
x'= Ag + Ayxg, + A3 gy,
XA = Blg + B2xgx + B3'1gx7
2 =Cyg + Cyxg5 + C32gs.
3.3. Prove the following version of Taylor’s theorem. Let f(x, y) be a smooth, real-

valued function defined on a neighborhood of (0, 0) in R™ x R". Let Y: R" —» R"
be smooth, defined on a neighborhood of 0 in R™, and satisfy Y(0) = 0. Assume that
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f(x, Y(x)) = 0. Show that there exist smooth, real-valued functions a,(x, y),
..., ay(x, y) such that on some neighborhood of (0, 0)

f(xs y) = Zai(x7 y)(yl - Yl(x))’
i=1

where y = (y4,..., y,) and Y(x) = (Y;(x),..., Y,(x)) in coordinates. Hint: Adapt
the proof of Lemma 3.1 to the above situation by letting h(s) = f(x, sy + (1 — 5) Y(x)).

§4. Principles for Calculating R7{(g), I: Basic Algebra

(a) Terminology from Algebra

In this section we work with &,, germs of functions of n variables, although
for our intended applications we need only consider &,.

The set &, is a vector space, meaning that given any two elements f, g€ &,
we may form an arbitrary linear combination with scalar coefficients
¢, f + c,g, where c;e R. It is also possible to multiply elements of &,. The
mathematical name for a set admitting these two kinds of operation is a ring.

An ideal # in &, is a linear subspace with the following special property:

If pe &, and f € #, then ¢f € 4.

Concerning our intended application, if g € £, , then RT(g) is an ideal in
& .. ,- To see this, recall the characterization of RT(g) in Lemma 3.2 as the set
of all linear combinations

ag + bxg, + clg,, 4.1)

where a, b, ce &, ;. If f has the form (4.1) for some coefficients a, b, ce &, ,,
then for any ¢ € &, ;, ¢f also has this form, with coefficients ¢a, ¢b, and ¢c.
Similarly, if f; and f, both have the form (4.1), so does f; + f5.

The characterization (4.1) of RT(g) is a typical construction of ring theory.
More generally, if py, ..., p,are germsin &,, then the set of all linear combina-
tions,

aipy + 0+ &Py,
where g; € £, is an ideal in &,. We denote this ideal by <{p, ..., p>, and we

call py, ..., p the generators of the ideal. (This is consistent with our previous
use of the term.) In this notation, we may summarize Lemma 3.2 as

RT(g) = <g’ XG> Agx> (42)

An ideal such as (p,..., p,> which is generated by a finite number of
germs is called finitely generated. Although there are ideals in &, which are not
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finitely generated, all of the ideals we consider here will be finitely gener-
ated. (See Exercise 5.2 for an example of an ideal which is not finitely
generated.)

(b) Principles for Calculating R7(g)

In §3(c) we abstracted three principles for calculating R T(g) from the examples
of §3(b). The following two lemmas formalize the first two of these, using the
algebraic language above. We continue to work with ideals in n dimensions,
although (4.2) is the case we have in mind.

Lemmad.1. Let $ = {p,, ..., p> beanideal in &, with generatorsp, ..., py.
If pp = a1py + -+ + g 1Px— 1 for some germs a; € &,, then S is generated by
Pi>--+5> Dk—1-

Lemma 4.2. Let # = {py,...,pxy be an ideal in &,. Fori=1,...,k let
k
q; = z Q;i;Dj» (4.3)
j=1

where a;;€ &,. If the k x k matrix (of scalars)

{a;0):i,j=1,...,k}

is invertible, then £ is also generated by q, . . . , qy.

Before proving the lemmas, we apply them to rephrase the calculations of
§3(b). The argument leading up to (3.6) may be written compactly as

RT(x? + A) = {x* + 4, 2x%,2Ax) = {x? + 4, 2x*) = (X%, 4. (4.4)

The first equality here is the definition (4.2) of RT(g). The second equality
follows from Lemma 4.1, since, as noted in (3.13), the third generator is
redundant. To derive the last equality in (4.4) from Lemma 4.2 we express one
set of generators in terms of the other as follows:

x% + A 1 1) /x?
(%87 = o)(3) 8

Since the matrix in (4.5) is invertible for x = A = 0 (indeed for all (x, 1), since
it is constant), either pair of germs generates RT(x* + 1). (Remark: Equation
(4.5) is the inverse of (3.14).)

Similarly, the derivation of (3.11) may be written

RT(x?® — Ax) = {x® — Ax, 3x — Ax, 3x24 — A?) = (x3, Ax, A%). (4.6)
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The first equality is (4.2). To derive the second equality, observe that

x3 — Ax 1 -1 0\/x3
X3—Ax |=(3 -1 0| ix]. 4.7
3x24 — A? 0 3x —1/\A%
When x = A = 0 this matrix equals
1 -1 0
3 -1 0],
0 0 -1

which is nonsingular. The second equality in (4.6) follows from Lemma 4.2.
The proof of Lemma 4.1 is quite simple; we ask the reader to supply this
proof in Exercise 4.1.

PROOF OF LEMMA 4.2. We must show that {q,,...,q,> = <{py, ..., D. First
we claim that {(qi,...,q,> is contained in {p,,..., py. Certainly each
generator g; belongsto {py, ..., pi>,since by (4.3) g; is a linear combination of
Pi1s-.-» Dx- But any element fe<{q,,...,q,> is a linear combination of
q1,-- - qx; since an ideal is closed under such operations, f belongs to
{Pys .- -5 Pry, as claimed.

To obtain the reverse containment we invert (4.3). Let A(x) be the k x k
matrix with entries {a;(x)}. We recall Cramer’s rule:

-1 1 .
Al = det A adj(A), 4.8)
where adj(A) is the classical adjoint of 4 ; i.e., the matrix whose entries are co-
factors of A. By hypothesis det A(0) # 0, and by continuity det A(x) is non-
zero in some neighborhood of the origin. Thus it follows from (4.8) that the
entries of 47 1(x), like those of A(x), are smooth germs.

On inverting (4.3) we obtain

k
Di = Z bijqja
j=1

where b;; € &, is the i, j entry of 4~ '(x). Thus each generator p; is a linear
combinationofq,, ..., q,. Reversing the above argument we may deduce that
{py,---, Py 18 contained in {qy, ..., g;», Which proves the lemma. O

EXERCISE

4.1. Prove Lemma 4.1. Hint: Show that every linear combination of py, ..., p, may be
written as a linear combination of p;, ..., pr—1-
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§5. Principles for Calculating R7(g), II:
Finite Determinacy

In §3(c) we isolated three ideas used in the calculation of RT(g) for the
examples of that section. The third of these involved passing from generators
of RT(g) to a characterization of RT(g) by conditions on a function and its
derivatives at the origin. In this section we explore this third step more fully.
This exploration leads us into some fundamental ideas of the singularity
theory approach to bifurcation.

(a) More Terminology from Algebra

Let
M = {feé&,: f(0)=0} (5.1)

(We do not put a subscript on .# since usually the context indicates the
number of independent variables.) We ask the reader to show that .# is an
ideal in Exercise 5.3. We claim that ./ is generated by x4, ..., x,; in symbols

M= Xqy .0, XD

Certainly each generator x; belongs to .#. But by Lemma 3.1, if f € &, satisfies
f(0) = 0, then

) = x1a1(X) + -+ + x,a,(x)

forsomea; € &,. Thus f € {xy, ..., x,», which proves the claim. (Remark: We
use the letter # because . is a maximal ideal, in the following sense: For
any ideal # < &, either # < # or 4 = &,. See Exercise 5.4 for the proof of
this fact.)

Given two ideals # and . in &, there are standard constructions in ring
theory which leads to new ideals, the sum ideal .# + _¢ and the product ideal
S - #. The sum ideal # + # consists of all germs of the form f + g where
fe# and g € ¢#; the product ideal consists of all finite sums of the form

flgl + -+ fmgm’

where f; € # and g; € #.If .4 is generated by p,, ..., p, and ¢ is generated by
qis---,q;, then F + ¢ is generated by the k + [ germs

Pise-sDis Q1> q1» (5.2a)
and £ - ¢ is generated by the k - [ germs
pigi:i=1,...,k;j=1,..., 1} (5.2b)

We ask the reader to verify these statements in Exercise 5.6.
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Remark. These generators of 4 + ¢ and 4 - ¢ may be redundant, even
though there are no redundancies in either {p;} or in {g;} by themselves.

We give two examples of the product construction that are important in
the discussion below. If ge &, ,, then

M - RT(g) = <Xg5 Ag! ng.m Ang’ lng>.

These generators may be derived from (5.2b) on observing that # = <{x, y)
and RT(g) = {g, xg., Ag,». Note that the generator Axg, occurs twice in the
enumeration, as A(xg,) and x(4g,).

For the second example we return to n dimensions. Proceeding induc-
tively we define a sequence of ideals

M= M- M, M= M- M3, M= M- M3, ...
It follows from (5.2b) that .#* is generated by all monomials of degree k,
{x*:|a| = k}.

In Exercise 5.5 we ask the reader to derive the following, alternative character-
ization of .#*:

/ll“={feé",,: (%)3‘(0)=0f0r|a|sk— 1}. (5.3)

Let # < &, be an ideal. We shall say that two germs f, g € &, are equal
modulo #, in symbols

f =g (mod.g),

if f — ge 4. For example, using this terminology Taylor’s theorem (Lemma
3.3) may be rephrased

f = (mod.#**"). (54)

The algebraic operations in &, (i.e., addition, multiplication, etc.) preserve
this notion of equality. Thus if f; = f, (mod #) and g, = g, (mod .#), then
fi + 91 = fo + g, (mod f) and fig, = f,9, (mod J).

(b) Conditions for Membership in R7(g)

Let ge &, ;. Our goal in this subsection is to show that if some power of the
maximal ideal is contained in RT(g), then deciding whether a given germ
f €&, , belongs to RT(g) reduces to a problem in finite-dimensional linear
algebra. This conclusion follows simply from the lemma below. The purpose
of this lemma is theoretical; i.e., to derive the above conclusion. We do not
recommend the lemma for serious calculations, as we will introduce more
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efficient techniques below. In the lemma we adapt the multi-index notation
from n dimensions by defining

. 0\*[0\*
v (a> ()"
Lemma 5.1. Let g € &, ;, and suppose that for some k > 0, #**' = RT(g). A

germ f € &, belongs to RT(g) if and only if there exist polynomials a(x, 1),
b(x, A), c(x, A) of degree k or less satisfying the following system of equations:

D*[f — (ag + bxg, + c2g;)](0,0) =0 for |a]|<k. (5.5)
Prook. If f € RT(g), there exist germs @, b, ¢ € &, , such that
f — (ag + bxg, + ¢Ag,) = 0 for all x, A. (5.6)
Let a, b, c be the kth-order Taylor polynomials of &, b, &, respectively. Then
D*a(0, 0) = D%d(0,0) for |&| <Kk,

and similar formulas hold for b and c. Equation (5.5) results from combining
this observation with appropriate derivatives of (5.6).

Conversely, suppose f € &, , satisfies (5.5) for some polynomials a, b, c.
Let

r=f —(ag + bxg, + cAg,).
We see from (5.3) that r e #4**' = RT(g). Now the formula

f =(ag + bxg, + cig) +r
displays f as the sum of two terms in RT(g); thus f € RT(g). O
Lemma 5.1 reduces the question of membership in RT(g) to the solvability

of (5.5). We interpret (5.5) as a system of (k + 1)(k + 2)/2 linear equations for
unknown coefficients in the polynomials

a(x, A) = ), a,x"A=, etc. (5.7
la| <k
There are
3k(k + 1)/2 (5.8)

such unknown coefficients. Because of the terms D% (0, 0) in (5.5), this system
is inhomogeneous. It turns out that (5.5) cannot be solved unless the in-
homogeneity D*f(0, 0) satisfies auxiliary conditions; this is of course a
familiar situation in linear algebra.

Let us illustrate these ideas by relating them to the calculation of
RT(x* — Ax) in §3(b). First we claim that

M3 = RT(x® — Ax). (5.9)
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By (3.11), RT(x* — Ax) = {x3, Ax, A2). For each generator of .#> we have a
representation

x3=1-x3 Ax? = x . Ax,

Ax = A-Ax, A =1-2%

This shows that all generators of .43 belong to RT(x*® — Ax), which proves
the claim.

Now we unscramble (5.5) when g = x> — Ax, taking k = 2. Observe that
ifla] <2

i 3 _)=a0,0) ifa=(1,1),
Dfatx, Hx* = 4010, 0) = {0 otherwise.
In other words, only the first coefficient a, of a(x, 4) in (5.7) actually con-
tributes to (5.5), because x* — Ax already vanishes to fairly high order.
Similarly, for the other two unknown polynomials, only b, and ¢, contribute
to (5.5). Equation (5.5) written out in components becomes the following
inhomogeneous system of six equations in the three unknowns aq, by, cq:

0= £(0,0),
0 = £40,0),
0 = £0,0),
0 = £:x(0,0),

—ao — by = £;.(0,0),
= ¢o = f11(0,0).

Clearly this system is solvable if and only if

f©0,0) = f0,0) = £(0,0) = f,(0,0) =0,

which recovers our earlier result.

The exampleillustrates that, in general, formula (5.8) is a gross overestimate
for the number of unknowns in (5.5). Typically g vanishes to fairly high order,
and only the low-order coefficients of a, b, and c contribute to (5.5). Moreover,
there is substantial overlap between contributions of bxg, and cAg, which
further reduces the effective number of independent variables.

The following fact is of the utmost importance: The solvability condition
for (5.5) only involves a finite number of the derivatives of f at the origin. In
other words, if the derivatives of f of order k or less are such that (5.5) is
solvable, then f € RT(g) no matter what the higher-order derivatives of f may
be. Thus Lemma 5.1 begins to address the fundamental issue of finite deter-
minacy.
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(c) Nakayama’s Lemma

Lemma 5.1 above indicates the importance of being able to ascertain whether
some power of ./ is contained in RT(g). In this connection, a result called
“Nakayama’s Lemma ” is most useful—given an integer k, this result provides
a simple test for whether or not #* = RT(g). In this subsection we first state
without proof Nakayama’s lemma in the most relevant special case; then we
use the special case of the lemma to show .#* = RT(g) in two specific
examples; next we state and prove the general case of the lemma; and finally
we mention a corollary of the lemma.

Lemma 5.2. Let g€ &, ;, and let k be a positive integer. If

M* = RT(g) + M**1,
then M* = RT(g).

As our first application, let us derive (5.9) using this lemma. By definition
RT(x® — 2x) = {x3® — Ax, 3x> — Ax, 34x? — A*). (5.10)

We may express each of the generators of .3 in terms of the three generators
in (5.10), modulo errors in .#*, as follows:

x3 = —4(x® — Ax) + 3(3x3 — Ax),
Ax? = —x(x® — Ax) + ri(x, A),

( ) + 7(x, A) (5.11)
2x = —Ax3 — Ax) + ry(x, A),

A3 = —ABAx% — 2%) + r3(x, A),
where r; € #*. We see from (5.11) that
M3 < RT(x® — Ix) + M4,
so (5.9) follows from Lemma 5.2.
In general Lemma 5.2 simplifies the treatment of higher-order terms in a

bifurcation problem. To illustrate this, we consider the following perturba-
tion of the pitchfork:

g(x, A) = x> — Ax + ax*,
where a € R. (Cf. §1.) Specifically we will show that

M3 = RT(g). (5.12)
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Indeed, let us just repeat (5.11) for the present example. Since ax* € .#*, each
equation in (5.11) is merely perturbed by some element of .#*; in symbols

x> = —3g + 3xg; + Fo(x, A),
Ax? = —xg + Fi(x, A),
A’x = —Ag + Fa(x, A),

A% = —A(g,) + Fa(x, A),

where 7; € #*. Thus (5.12) follows from Lemma 5.2.

Remarks. (i) It is quite possible to derive (5.12) directly using the result in
Exercise 3.2.

(ii) The proof of Nakayama’s lemma has much in common with the proof
of Lemma 4.2. The advantage of Nakayama’s lemma is that it is not nec-
essary to be so explicit in specifying the relationship between two sets of
generators.

Lemma 5.2 is the special case of the following lemma which results from
taking # = #*, # = RT(g). Thus we only prove Lemma 5.3.

Lemma 5.3 (Nakayama’s Lemma). Let .# and ¢ be ideals in &,, and assume
that # = {py, ..., piy is finitely generated. Then $ < ¢ if and only if # <
F+ M-I

PROOF. Since ¢ is contained in ¢ + . - £, the “only if” part is a triviality.
Conversely, let us assume that # < ¢ + 4 -.#. This implies that each
generator p; of £ can be written

!
pi=fi + Zaijpja ' (5.13)
j=1

where f;€ ¢ and a;;€ &, satisfy a;0) = 0. The form of the second term in
(5.13) follows from the fact that .# - .# is generated by products of p; with

germs vanishing at the origin. Let A be the ! x I matrix with entries a;;; let I be
the | x / identity. We rewrite (5.13) in matrix notation
P1 h
a-a:)={:) (5.14)
b S

Now (I — A)(0) = I, so I — A is invertible in some neighborhood of the
origin. Inverting (I — A) in (5.14) and writing out components we find that

1
pi = Z bt_)f:]s
ji=1

where {b;} are the entries of (I — A)™". This shows that each p; is a linear
combination of the f;’s and hence belongs to #. Therefore 4 < ¢. d
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There are two useful consequences of Nakayama’s lemma which we
mention at this time.

Corollary 5.4. (a) Let # = {py,..., p,y be an ideal in &, and suppose that
qis---,qarein M - 5. Then J is also generated by py + qy, ..., + q;-

(b) If g is a germ such that #M* = RT(g), then g is strongly equivalent to its
Taylor polynomial j*g.

PROOF. (2) Since each g;e # - # < Fitfollows that p; + g; € .# whichin turn
implies that {p; + q;,..., p; + q;) = #. Conversely, each p; = (p; + q;) —
q;€<p1 + 41> .-, 1 + q» + M - #,implying that

Fclpi+4qy,...,p+aqp+ M-S

It follows from Nakayama’s lemma that 4 < {p; + qy,...,p + q
proving part (a).

(b) Let us write g = j*g — r, where re .#**'. (Note the minus sign.)
According to Theorem 2.2, to prove that g is strongly equivalent to j*g, it
suffices to show that

RT(g) = RT(g + tr)

for all real numbers ¢ satisfying 0 < t < 1. Now RT(g + tr) is generated by
g + tr, x(g, + tr,), and A(g, + tr,). Each of these generators differs from
the corresponding generators of RT(g) by an element of #**! < .4 - RT(g).
Thus by part (a) of the corollary, RT(g) = RT(g + tr). O

Part (b) of the corollary plays a fundamental role in issues of finite
determinacy. We shall expand greatly on this corollary in §8(b).

(d) Finite Codimension for Ideals

In this subsection we explore the concept of finite codimension. As shown by
Proposition 5.7 below, this concept is intimately related to the question of
whether an ideal contains some power of the maximal ideal .#. We use this
concept extensively in the rest of this chapter; the proofs of this subsection,
however, are less germane, and they may be skipped on a first reading.

Definition 5.5. Let .4 < &, be a vector subspace. If there exists a finite-
dimensional vector subspace V' < &, such that
S +V =26, (5.15)

we say that # has finite codimension. If no such subspace exists, we say that .#
has infinite codimension.

As the notation suggests, we will usually apply this concept to a vector
subspace .# which is in fact an ideal, at least in the present chapter.
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We consider some examples to clarify this definition. Let us show that for
any positive integer k, .#* has finite codimension. If f € &,, we may write

f=0 =71+

By (5.3) the first term here belongs to .#*, and the second term is a polynomial
of degree at most k — 1. Therefore

&, = M+ R{x* o] < k — 1}, (5.16)

where the second summand in (5.15) indicates all linear combinations of
monomials of degree k — 1 or less. It follows from (5.16) that .#* has finite
codimension for any k, as claimed.

As a second example, we claim that RT (x> — Ax) has finite codimension in
&, ;- Recall the characterization (3.9) of RT(x> — Ax). Forany f € &, , there
is a (unique) polynomial of the form

n(X) = ¢y + C23X + c3A + ¢, X%,
such that f — me RT(x* — Ax). Thus
6., = RT(® — Ax) + R{1, x, 4, x?}, (5.17)

which proves the claim.

Given a vector subspace # < &, of finite codimension, there are many
choices for a complementary subspace V (i.e. a subspace satisfying (5.15)).
For example, a possible modification of (5.17) for RT(x® — Ax) is indicated
in Exercise 5.8. It is natural to require, however, that ¥ have as small a
dimension as possible. This occurs if and only if

JnV={0},
in which case we say that &, is the direct sum of .# and V, written
E,=FDYV. (5.18)

The decompositions (5.16) and (5.17) are direct sum decompositions. (See
Exercise 5.9 for the proof.) These ideas lead to the following refinement of
Definition 5.5.

Definition 5.6. Let .# = &, be a vector subspace of finite codimension. The
codimension of .# is the dimension of any subspace V < &, which satisfies
(5.18); in symbols

codim £ = dim V.

Proposition 5.7. Let # < &, bean ideal. There is an integer k such that #* < S
if and only if . has finite codimension.

We prove this proposition below; first we state and apply a corollary.
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Corollary 5.8. If an ideal ¥ < &,, where n > 2, is generated by only one germ
p such that p(0) = 0, then # has infinite codimension.

This corollary is proved below. Before that, let us use the corollary to
construct two examples of a germ g such that RT(g) has infinite codimension.

Example 5.9a. We consider any germ of the form g(x, 1) = Aq(x, 1), where
qge&,.NowRT(g) = {g, xg,, g, and it is easily seen that A is a factor of all
three of these generators. Thus, RT(g) = (1), and it follows from Corollary
5.8 that RT(g) has infinite codimension.

Incidentally, germs of the form Ag(x, A) do not have the finite determinancy
property contained in Lemma 5.1. Indeed, the germs g(x, A) = 4 and

fx, ) =e "+ 1

have equal derivatives of all orders at the origin, but yet g and f are not
equivalent. To verify the latter statement, compare the zero sets of the two
germs as shown in Figure 5.1(a). Note that the number of solutions x as a
function of A is different for f and g.

Example 5.9b. We consider any germ of the form x?q(x, 4). In this case x is a
factor of all three generators of R7(g), so RT(g) = {x). Thus RT(g) has
infinite codimension. Notice also that the germs g(x, 1) = x* and f(x, A)
= x? 4+ e~ Y**5in(1/2) have the same Taylor expansions, but the zero sets
of g and f are very different indeed. See Figure 5.1(b).

Examples 5.9 show some of the difficulties which arise when RT(g) has

infinite codimension. Pathological behavior is the rule rather than the
exception.

Unperturbed (9) ——— _

Perturbed (f) > ﬂ&e*“,weﬁe,
(@) g(x, 4) =4, (b) g(x, ) = x?, .
fe, =24+ 17 f@x, A) = x2 + e~ V# sin(1/4%)

Figure 5.1. Perturbations of bifurcation problems of infinite codimension.
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PROOF OF PROPOSITION 5.7. If #* — .#, then
codim £ < codim A* < .

Conversely, assume that .# has finite codimension; say codim 4 =1 — 1.
Trivially, we have the inclusions

ScS+McI+ M cc I+ M I+ M.
Hence, reading back to front we have

1 = codim(# + #) < codim(# + A?) < --- < codim(F + A*)
<codim# =1-—1.

Equality must hold in at least one case here, because there are more in-
equalities than available integers. Thus, there exists an integer k < Ifor which

codim(f + #*) = codim(F + A**1).

However, # + #**! ¢ # + * These two ideals can have equal codimen-
sion only if they are equal; in symbols

I+ M=F + M

In particular, #* ¢ .# + .#** .1t follows from Nakayama’s lemma (Lemma
5.3) that .#* = .#. The proof is complete. O

PROOF OF COROLLARY 5.8. We assume that # has finite codimension and
derive a contradiction. By Proposition 5.7 there is a k such that #* <
J# < {p). It follows from Corollary 5.4 that p and its Taylor polynomial
j*p generate the same ideal since p = j*p + r where re . #**! < M {p).
Thus in proving Corollary 5.8 we may assume without loss of generality
that p is a polynomial of degree at most k—if it is not, we replace p by j*p.

Since p is a polynomial, we may extend p to a function on C". Moreover
p(0) = 0. Now in C", n > 2, the zero set of a polynomial is never an isolated
point; necessarily in any neighborhood of the origin there are infinitely
many points where p vanishes.

On the other hand, since .#* = {p), any monomial q of degree k may be
factored g = ap for some a € &,. Indeed, a must be a polynomial of degree
k or less. The factorization g = ap still holds over the complex numbers.
Thus, any such monomial g vanishes on {p = 0}. However, this contradicts
our remarks above, since the set of simultaneous zeros in C" of all monomials
of degree k is just the origin, an isolated point. O

We will need a technical result about finite codimension in §13 which we
present here.

Proposition 5.10. Let f(x, 2), g(x, A) be in &, , and assume that the ideal
{f, 9> has finite codimension. Suppose there exist o, f§ in &, ; such that

o(x, A)f(x, A) + B(x, Dg(x,A) =0 forall x, A.
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Then for each k there exists a germ Q(x, ) in &, ; such that
a(x, ) = —0(x, A)g(x, ) and P(x,1) = +Q(x, ) f(x,A) mod .4*1.

We shall not give a proof of this proposition in its full generality; this proof
depends on ideas from algebraic geometry. See Zariski and Samuel [1960],
p. 293. However, we do sketch the proof in the special case f(x, 1) = x2.

Suppose

ax, Dx? + PCx, Ng(x, ) = 0 for all x, A, (5.19)

and suppose that the ideal {x?, g(x, A)) has finite codimension. As observed
in the proof of Corollary 5.8, near the origin, the origin itself is the only
common zero of x* and g(x, 4). Evaluating equation (5.19) at x = 0 yields

B0, A)g(0, A) = 0 for all A.

Since g(0, 4) # 0 if A # 0 it follows by continuity that (0, 1) = 0 for all A.
Now apply Taylor’s theorem to see that

B(x, ) = xy(x, A).
Substitution into (5.19), division by x, and appeals to continuity yield
oa(x, Ax + p(x, Hg(x, 2) = 0. (5.20)
Iterating the above argument, we see that

7(x, ) = xQ(x, 1) and f(x, 1) = x*Q(x, ).
Substitution into (5.20) and division by x yield

(X(X, j') = - Q(xa A)g(xa '1)
as desired. O

EXERCISES

5.1. Let .# be a finitely generated ideal. Use Nakayama’s lemma to show that if
S = M-S then # = {0}.

52. Let.#® =&, 4

(a) Show that #* is an ideal and that .#* # {0}. (#* is called the ideal of flat

germs.)

(b) Show that #* = M - #* and conclude using Exercise 5.1 that .# is not
finitely generated.

5.3. Using only the definition of .# in (5.1), show that .# is an ideal. (The charac-
terization of # as {x,,..., x,» using Lemma 3.1 also shows that .# is a finitely
generated ideal.)

54. Prove that .# is the unique maximal ideal in &,. Hint: Suppose . is an ideal in
&, which contains a germ g such that g(0) # 0; use the fact that 1/g € &, to show
that1 =g-1/ge s
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5.5. Use Taylor’s theorem to verify (5.3).
5.6. Show that (5.2a, b) give generators for £ + ¢ and .# - ¢, respectively.

5.7. Show that every ideal of finite codimension is finitely generated. Give an example
of a finitely generated ideal of infinite codimension.

5.8. Show that &, , = {€™,sin x, A, 1 — cos x} + RT(x> — Ax).
5.9. Show that (5.16) and (5.17) are direct sums.

5.10. Use Exercise 3.5—with Y(x) = 0—to prove Taylor’s theorem with parameters;
that is, if f: R" x R™ — R is smooth, then

fx,y) EI Y. a(x)y* (mod .4%*1),

a| <k

where ./, is the maximal ideal (y,, ..., y,, in the y-variables, a = (ay, ..., &,)
is a multi-index and each a, is smooth. In fact one has the formula

1 9«

&—! gy;f(x, 0)

a,(x) =

§6. Calculation of R7(g), II: A Hard Example

In this section we calculate RT(g) when

glx, A) = x5 + Ax3 + A2 (6.1)

This is a somewhat academic example that we chose for its pedagogical value
rather than for any intended application. As in §3 we shall characterize

RT(x*> + Ax*> + A*)both by generators and by conditions for membership
on a function.
Specifically, our characterization of RT(g) by generators is

RT(x> + Ax3 + A%) = MO + M*Q) + MOP)
+ R{x> + Ax> + 4%, 5x° + 34x3}. (6.2

Let us compare (6.2) with (3.11), the corresponding formula for x> — Ax. To
facilitate this comparison we rewrite (3.11) in our present notation; we claim
that

RT(x® — Ax) = M3 + M. (6.3)

We see from (3.11) that RT(x® — Ax) is generated by the three monomials
x3, Ax, A%2. Now 43 + # {)) has generators x3, Ax?, A%x, A3, x4, and A>. We
use Lemma 4.1 to discard the redundant generators Ax?, A%x, A* from the
latter list, thereby proving (6.3). Part of the difficulty of the example (6.1) stems
from the fact that (6.2) is not generated by monomials.
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As our first step in deriving (6.2) we use Lemma 5.2 (the special case of
Nakayama’s lemma) to show that

MO < RT(x + 2% + 22). (6.4)
Now
RT(9) = <9, Xgx, 49>
= (x5 + X3 + A2, 5%% 4 343, SAxt + 342x%) (6.5
We must show that each generator of .#° (ie., x°, Ax>, ..., A) belongs to
RT(g) + 4. This is trivial for every generator except the first—we have
2
I = 5 (xg) + 1,

A2x* = x*g +ry,
3x3 = Ax3g + rs,
A*x? = A2x%g + r,,
Px = A3xg + rs,
A% = 2% + rs,
where r; e 4. After some finagling we find for the remaining generator
x® = Fsx%g + (3x — F5x?)(xg) — F5(Ag,) + 7o, (6.6)
where ro € #". Thus (6.4) follows from Lemma 5.2.

Remark. One might also use Lemma 5.1, but this is quite tedious.
As our next step in deriving (6.2) we show that
MLy = RT(x® + Ax® + A%). 6.7

Now #*{1) is generated by x*1, x312, ..., A. For each of these generators,
we have the representation

x*A = x(xg,) + 1y,
x*A% = x% +r,,
x2A3 = x?%g + rs, (6.8)
xA* = A%xg + ry,
A=A +rs,

were r; € #°. But #° < RT(g), so both terms on the right in (6.8) belong
to RT(g). This proves (6.7).
We argue similarly to show

MLA*y < RT(g); (69)
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specifically, we have
xA% = xg + ry,
A2 =g + 1,
where r,e M® + M*{1) = RT(g).
It follows by combining (6.4), (6.7), and (6.9) that
ME + MLy + MAPY = RT(g). (6.10)

To complete the derivation of (6.2) we must specify the elements of RT(g)
that are not contained in the left-hand side of (6.10). Now RT(g) consists of
the totality of germs of the form

ag + b(xg,) + c(4g.), (6.11)

where a, b, ce &, ;. Note that Ag, already belongs to the left-hand side of
(6.10); thus this generator will not contribute any new elements of RT(g).
Although g and xg, do not lie in the left-hand side of (6.10), we do have the
following:

xg, Ag, x(xg,), Mxg,) € M + M*Ay + MA*). (6.12)
For any ae &, ; we may write
a = a0, 0) + a,
where d € 4 ; thus
ag = a(0, O)g + dg,

and by (6.12) the term dg belongs to the left-hand side of (6.10). Similar
remarks hold for b(xg,). In conclusion, every germ of the form (6.11) may be
written as

a(0, 0)g + b(0, 0)xg + r

where re M°® + MLy + MLAP), which completes the proof of (6.2).

Let us reflect on the transition from (6.10) to (6.2). We know that .#° has
finite codimension in &, ;, so a fortiori the larger ideal #° + .#*(A) +
M {A*) has finite codimension in the smaller space RT(g) < &, ;; i.e., there
exists a finite-dimensional subspace V such that

RT(g) = [M® + M*A) + MAPH] D V.

In deriving (6.2) we showed that V is two dimensional, with g and xg, as a
basis.

We now derive conditions on a function which characterize membership
in RT(g). (Remark: Lemma 5.1 provides a straightforward but tiresome
procedure for doing this; here we use ad hoc methods that we will formalize
in the next section.) First we claim that f € RT(g) if and only if j° f € RT(g),



80 II. The Recognition Problem

where j° f is the fifth-order Taylor polynomial of f. To see this we observe
that

f=0Pf+ =7

by (5.3) the second term here belongs to .#° = RT(g), and the claim follows.
Let us write

Bf =Y axuin, (6.13)

la|<5

using multi-index notation. It follows from (6.7) and (6.9) that many of the
coefficients in (6.13) have no bearing on whether or not j°f € RT(g). Consider,
for example, a, ;, the coefficient of x*1. We observe that

Pf = G — a4, 1x*A) + a4, 1 x%A.

Because x*Ae#*{1y = RT(g), j°f belongs to RT(g) if and only if the sum
(6.13) with the x*A term omitted belongs to RT(g). On dropping in this way
all the monomials in (6.13) that are contained in .#*{A) + #{A*), we find
that j°f € RT(g) if and only if

(ago + a10X + az0Xx? + a30x> + agox* + asox°)
+ (ag; + ay % + a3, x* + a3, x*)A + a,, A% (6.14)

belongs to RT(g). Most of the coefficients in (6.14) must vanish for f to
belong to RT(g). Let us see why. The three generators g, xg,, Ag, of RT(g)
all satisfy

o\’
(5;) f(O’O)‘_“O’ ]=0a 1,2, 3a47

AYEAY .
(H)(&) f(O, O) = O, ] = 0, 1, 2,

and any combination of these generators as in (6.11) must also satisfy these
conditions. Thus f can belong to R7'(g) only if

Ago = Ao = dy9 = A3 = Qa0 = doy = A1y = a1 = 0. (6.15)
Assuming (6.15) holds, (6.14) reduces to the three terms
AsoX> + az3;x3A + ag, A%

This polynomial belongs to RT(g) if and only if it can be written as a linear
combination of the basis vectors x> + Ax> + A2 and 5x° + 3Ax3 in (6.2);
ie., if and only if

3050 - 5a31 + 2a02 = 0. (616)
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EXERCISE

6.1. Show directly that % + M*{A) + M{A*) = RT(x5 + Ax® + A?) using Naka-
yama’s Lemma. First verify that #° + #*(2) + M{A*) = (x5, x*A, xA?, 23D,
then show that each generator x°, x*1, xA2, A% is contained in

RT(x3 + Ax® + 22) + M7 + M3DY + M?*APD.

§7. Principles for Calculating R7(g), I1I:
Intrinsic Ideals

The ideas used in the calculation of RT (x> 4+ Ax® + A?) in the previous
section are generally applicable. In this section we formalize these ideas.
We will draw on the concepts described here in stating our main results
in the next section. Like §§4 and 5, the earlier sections entitled “Prin-
ciples for Calculating RT(g)...”, this section introduces some algebraic
concepts. In the earlier sections these concepts were a standard part of
algebraic terminology; by contrast the concepts here are quite specialized
to our task, and the terminology is not at all standard. In particular, these
concepts only apply to &, ,, rather than &, for arbitrary n, as now we deal
with equivalence transformations.

(a) Basic Ideas Concerning Intrinsic Ideals

We shall call an ideal # < &, , intrinsic if the following implication is valid:
Forallg,heé, ,,

geSf and h~g = hel,

where h ~ g means h is strongly equivalent to g. Alternatively put, an ideal
is intrinsic if, as a set, it is invariant under all strong equivalence transforma-
tions.

For example, in Exercise 7.1 we ask the reader to verify that .# and <{1)
are intrinsic ideals. Also, if .# and ¢ are intrinsic ideals, so are .# + # and
S - #.To see this for # + ¢, suppose that ge £ + ¢ and h = Sg(X, 1) is
strongly equivalent to g. We may writeg = g, + g, whereg, € # and g, € #.
Thus

h = 5(g1 + 92X, 1) = §g1(X, 1) + Sg,(X, A).

But Sg,(X, A) € 4, since £ is intrinsic, and similarly Sg,(X, 4) € #. Therefore
he 4 + #.Thisshows I + ¢ is intrinsic; the proof for .# - ¢ is similar. The
following proposition shows that the most general intrinsic ideal can be
obtained from the two basic examples, .# and {1), through these two opera-
tions.
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Proposition7.1. Let .# < &, ; be an ideal of finite codimension. Then £ is
intrinsic if and only if it can be written

I = M+ MY+ -+ MDD (.1

for some finite set of nonnegative integers k;, |;.

In (7.1) we use the convention that .#° = &, ,. We shall normally require
that

@ o0<li<l<- <l
(b) k>k1+ll>k2+lz>>ks+ls>0, (72)

so that each summand in (7.1) actually contributes something to .#. We will
prove this proposition in subsection (b) below.

Now let us argue that for any ideal .# in &, ; of finite codimension, there
is a largest intrinsic ideal that is contained in .#. By Proposition 5.7 there is
an integer k such that .#* < .#. It follows from Proposition 7.1 that there
are only finitely many intrinsic ideals ¢ such that

M g S (13)

The sum of all these is an intrinsic ideal which also satisfies (7.3); thus it
must be the largest intrinsic ideal contained in .#. We denote it Itr .#. Be-
cause of (7.3), Itr .# has finite codimension.

Formula (6.2) shows that in general RT(g) need not be an intrinsic ideal.
However, we may interpret the calculations of §6 in terms of this concept
as follows: First we found the largest intrinsic ideal contained in RT(g),
namely Itr RT(g) = M® + M*(Ly + M{A?), and then we characterized
what was left over. This is a generally applicable method; in the rest of sub-
section (a) we explore this method more fully.

Let # < &, ; be an ideal of finite codimension. We use the notation #*
for the finite-dimensional vector subspace of &, , spanned by the monomials
not belonging to % For example (.#**')* consists of all polynomials of
degree k or less. We claim that for any ideal of finite codimension

S+It=6,,. (1.4)

We derive (7.4) as follows. Since .# has finite codimension, Proposition 5.7
implies that there is an integer k such that .#**' = 4. For any feé, ;
we may write

f =7+ =i (7.5)

The second term on the right-hand side of (7.5) belongs to #**! = .#. Thus
to determine whether f is in 4 + #* we need only consider whether the
polynomial j*f is in # + #*. However, the set of monomials of degree less
than k + 1 divide into two sets: those in .# and those not in .#. Using this
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division we may write j*f = f; + f, where f; € .# and f, € #*. This proves
the claim.

In general, it is not the case that # n #* = {0} —the example {(x? + A2, Ax)
shows this. However, for intrinsic ideals the situation is different.

Lemma 7.2. If 4 is intrinsic ideal of finite codimension, then
évx’l = j @ fl.

PrOOF. In view of (7.4), one need only prove that .# n #* = {0}. This fact
follows directly from the next proposition, and the latter is proved in sub-
section (b) below. O

Proposition 7.3. Let . be an intrinsic ideal of finite codimension. A polynomial
p(x, 4) = ) a,x A%

belongs to £ if and only if for every o such thet a, # 0, the monomial x*'A*
belongs to 4.

Corollary 7.4. Let # < &, ; have finite codimension. Then
F=IrHYV, (7.6)
where V = # n (Itr £)*.

PROOF. Since V < (Itr £)4, it follows from Lemma 7.2 applied to Itr .# that
(Itr #£) n V = {0}. On the other hand, for any fe &, ; we may write f =
fi + f, where fieltr # and f, e(Itr £)*. If fe x, then f, €.#, since fe
Itr # = 4. Thus f, € £ n (Itr #)* = V. This shows that (Itr #) + V =
which completes the proof. |

Remark. The conclusion of this corollary, formula (7.6), is also valid if .# is

just a vector subspace of &, ; containing .#* for some integer k. See Exercise
7.3.

We noted above that the calculation of RT(g) may be divided into two
stages: First to determine Itr RT(g) and then to characterize the remaining
elements of RT(g). Corollary 7.4 sets a context for this second stage of the
calculation —specifically, it is required to find the subspace V in (7.6). For
example, it may be seen from (6.2) that for our example g(x, 4) = x°> +
x3 + A? we have

V = R{x> + Ax® + 2%, 5x° + 3Ax%};

in particular, dim V = 2. More generally, for any g € &,_, such that RT(g)
has finite codimension, (Itr RT(g))" is a finite-dimensional subspace of &, ;;
indeed, since the monomials provide a distinguished basis for (Itr RT(g))*,
this subspace is canonically isomorphic to R" for some N. Moreover, all
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calculations in determining ¥ may be performed within this space. In other
words, this part of the calculation of RT(g) only involves linear algebra.

(b) Further Study of Intrinsic Ideals

The primary task of this subsection is to prove Propositions 7.1 and 7.3
above. These proofs are based on the following lemma.

Lemma7.5. Let # < &, ; be an intrinsic ideal of finite codimension. If a germ
f belongs to #, then xf, and Af, also belong to #. In particular, if f € #, then
RT(f) = £.

Remark. The conclusion of Lemma 7.5 remains valid if f is a polynomial,
even if .# does not have finite codimension. See Exercise 7.4.

PROOF. Since £ has finite codimension, there is a k such that .#**! c .#.
By Taylor’s theorem

£002) = 5 G, A) + r(x, A),

where r e #**. Since xr, and Ar, certainly belong to .#**!  .#, we may
replace f by j*f in the lemma. Thus it suffices to prove the lemma when f
is a polynomial of degree k or less; in symbols, when f e (#**1)t N .7
Observe that f(tx, ) e (#** )t n # for all t > 0, since £ is intrinsic. It
follows that

f@x,2) — f(x, 4)

t—1

p(®) =

is in (#** )t  # for each t. However, £ N (#**1)! is a closed set, being
a linear subspace of the finite-dimensional space (.#** ). Hence lim,_, ; p(t)
isin (#** ')t A #; but this limit is just xf.(x, A).

Similarly f(x + t4, A)e # for all ¢ since £ is intrinsic. Differentiation
with respect to ¢t and evaluation at ¢t = 0 yields the germ Af,(x, 1), and this
is in .%. 0

PROOF OF PROPOSITION 7.3. It is trivial that p e .# if a, # 0 only when x*'A*
belongs to .#. To prove the converse, we consider an arbitrary multi-index
o = (I, m) such that a, # 0, and we show that x'A™e #. Choose a k such
that #**! = #.If | + m > k, then the desired conclusion follows trivially;
thus we assume that [ + m < k. As in proving Lemma 7.5, we may reduce
to the case that p is a polynomial of degree k or less. We group the terms in
p according to degree in x—say

p(x, 2) = po(A) + py(Dx + -+ + p(Ax~. (7.7)
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We claim that p(A)x’ is in .# for 0 < j < k. To prove this we observe, as in
the proof of Lemma 7.5, that

p(tx, A) = po(A) + tpy(A)x + - -+ + t*p(A)x*

is in # for every t > 0. Repeated differentiation with respect to t yields
germs still belonging to .#. Differentiating k-times, we see that the last term,
p(A)x*, isin .£. The claim follows from a simple induction argument proceed-
ing from the last term forward.

Now we focus on p(1), the coefficient of x' in (7.7) Let us write

piA) = by + biA+ -+ b AL (7.8)

This polynomial cannot vanish identically, since b,, = a, # 0. Let b, be the
first nonvanishing coefficient in (7.8); then 4 < m. Thus

pi(A) = A*q(4), (7.9)

where g(0) # 0; this means that 1/ge &, ;, so that (7.9) may be inverted.
Therefore

1
XA™ = ETMOAEXX™) = AT — pi(A) X™
"

But p(4)x™ € .# and .# is an ideal; therefore, x'A™ € .#. O

PROOF OF PROPOSITION 7.1. Clearly every ideal of the form (7.1) is intrinsic,
since sums and products of intrinsic ideals are intrinsic and .# and {41) are
intrinsic.

For proving the converse we use the following corollary of Lemma 7.5.

Corollary 7.6. If a monomial x'A™ belongs to .#, where # is an intrinsic ideal
of finite codimension, then M'(A™) = #.

PROOF OF COROLLARY 7.6. To show this we must prove that the generators
of #4'(A™) belong to £ ; in symbols

xAm xtmipmyll o Qltme g, (7.10)

But (7.10) follows from repeated application of A 9/9x to x'A™ as in Lemma 7.5.
O

PROOF OF PROPOSITION 7.1 (Continued). Assume that . is an intrinsic
ideal of finite codimension. We choose the smallest integer k such that
M* = #. Suppose that there are nonzero elements in # ~ #* (Note: Here
the symbol ~ indicates the difference of sets, not equivalence.) We may
take these to be polynomials. By Proposition 7.3 there are monomials x'A™
in # ~ #*. As noted above, if x'A™ e #, then 4'(J™) = #. Applying these
ideas to each of the finitely many monomials not contained in .#*, we con-
clude that .# is the sum of ideals of the form .#*(A"), as in (7.1). On elimi-
nating redundancies we obtain (7.2). O
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Remark 7.7. We have shown in this classification that intrinsic ideals are
invariant under all equivalences, not just strong equivalences. This follows
because .# and (1) are invariant under changes of coordinate in A of the
form A(A), as well as invariant under strong equivalences. See Exercise 7.2.
In the above proof we showed that the smallest intrinsic ideal containing

xk, xkiph L xks)ls (7.11)
is
ME A MBS e M, (7.12)

We incorporate that fact in the following definition.

Definition 7.8. Assuming (7.2) holds, we call the monimals (7.11) the intrinsic
generators of the ideal (7.12).

EXERCISES
7.1. Show that the ideals .# and (1) are intrinsic.

7.2. Show that the ideals .# amd (1) are invariant under all equivalences, including
those involving A.

7.3. Let £ = &, ; be a vector subspace containing .#* for some k.

(a) Show that #, + #, — # whenever .#,, .#, are intrinsic ideals contained in .£.
(It follows that Itr .# is well defined.)
(b) Prove that Corollary 7.4 is valid for 4.

7.4. Verify that the proof of Lemma 7.4 is valid assuming that fe€.# is a polynomial
and that .# is intrinsic, but not necessarily of finite codimension.

7.5. Prove the converse of Lemma 7.5. That is, show that an ideal .# of finite codimension
in &, , is intrinsic if for every p in #, RT(p) < 4.

§8. Formulation of the Main Results

As we indicated in §0, our algorithm for solving the recognition problem
splits monomials into three classes: low-, intermediate-, and higher-order
terms. We discuss the three classes in sequence: low-order first, then higher-
order, and intermediate-order last.

(a) Low-Order Terms

In describing the low-order terms we need to speak of “the smallest intrinsic
ideal containing a germ h.” Let us argue that such an object exists. If # and
# are two ideals in &, ,, then the intersection .# N ¢ is also an ideal —this
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statement and the ones following are easy exercises left to the reader. More-
over, if # and ¢ are both intrinsic, so is # N #. Indeed, for an arbitrary
collection of intrinsic ideals {.#}, the intersection ﬂa 4, 1s an intrinsic ideal.
Thus we may identify the smallest intrinsic ideal containing h as the inter-
section of all intrinsic ideals which contain h.

Definition 8.1. If he &, ;, we denote by &(h) the smallest intrinsic ideal
containing h.

The next proposition lists several properties of ¥ (h). Note that in spite
of the purely existential description of (k) above, part (b) of the proposition
characterizes & (h) explicitly.

Proposition 8.2. Let h € &, ; be a germ such that RT(h) has finite codimension.

(a) &(h) is an intrinsic ideal of finite codimension.

®) Fhy= Y M) D*h(O,0) # 0. (8.1)

a=(ay,az)
(c) If g is equivalent to h, then ¥(g) = S (h).

PrROOF. (c) Suppose g is equivalent to h. Since we have he %(h) and
since £ (h) is intrinsic, we deduce that g € #(h). (This holds even though we
consider general equivalences, not just strong equivalences—see Remark 7.7.)
In other words, &(h) is an intrinsic ideal which contains g; therefore #(g) <
& (h). Reversing the roles of g and h, we obtain the reverse containment.

(a) By construction #(h) is an intrinsic ideal; we need only show that
& (h) has finite codimension. We reduce to the case where A is a polynomial as
follows. Since R T'(h) has finite codimension, .#* = RT(h) for some integer k.
It follows from Corollary 5.4(b) that h is equivalent to j*h and from part (c)
of the present proposition that #(h) = % (j*h). Thus we may assume without
loss of generality that h is a polynomial.

To show that #(h) has finite codimension, we prove that RT(h) = F(h).
Indeed, each of the three generators of RT(h) belongs to & (h)—by definition
he &(h), and it follows from Exercise 7.4 that xh,, Ah, € S (h). Thus F(h)
has finite codimension.

(b) As in part (a) we may reduce to the case where h is polynomial.
(Thus the sum in (8.1) is effectively finite.) Since he &(h), it follows
from Proposition 7.3 and Corollary 7.6 that &(h) contains the right-hand
side of (8.1). For the reverse containment, we observe that the right-hand side
of (8.1) is an intrinsic ideal to which h belongs; since &(h) is the smallest
intrinsic ideal containing h, we see that #(h) is contained in the right-hand
side of (8.1). O
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We label the next result a theorem, in spite of the simplicity of its proof,
because it characterizes the low-order terms in the recognition problem for
h—Ilow order terms are those which belong to &(h)*.

Theorem 8.3. Let h be in &, ,, and suppose RT(h) has finite codimension.

If g is equivalent to h, then for every monomial x*'A*>e€ ¥ (h)*, we have
D*g(0, 0) = 0.

PROOF. Suppose x*'A*2e £ (h)* but D’g(0, 0) # 0. By Proposition 8.2(b),
x*A2 e F(g) = F(h), a contradiction. O

S (h) also yields some information about intermediate-order terms in the
recognition problem for h. Specifically, we have the following result. (We

remind the reader of Definition 7.8, where intrinsic generators are intro-
duced.)

Theorem 8.4. Let he &, ; and suppose RT(h) has finite codimension. If g
is equivalent to h, then for every intrinsic generator x*'A** of & (h), we have
D*g(0, 0) # 0.

Proor. Consider an intrinsic generator x*A' of &(h); we ask whether
x*A'e #(g). By Theorem 8.2

F(g) = Y{M*<X*=): D*%g(0, 0) # 0} (82

What summands in (8.2) might contribute a term x*A! to #(g)? By Theorem
8.3, D%9(0, 0) = O for all multi-indices o such that x*'A*2e &(h)*, so these
terms contribute nothing. Of the terms which remain, only .#*(1") can
contribute. By Proposition 8.3(c), x*A' € #(g), so this term must contribute

in (8.2); i.e.,
k 1
(6%) (;%) g(0,0) # 0. O

Let us illustrate the usefulness of these concepts on the pitchfork, h(x, ) =
x* — Ax. By Proposition 8.2(b), #(h) = 4> + M{Ly. Now

Ly = R{1, x, 4, x*},

and the intrinsic generators of #(h) are x* and Ax. From Theorems 8.3 and
8.4 we deduce that if g is equivalent to h, then at (x, 1) = (0, 0)

g9 =9x=9r=YGxx = 0’ GIxxx # 03 Jix 7& 0. (83)

As we saw in (0.3), this information provides essentially the complete solution
of the recognition problem for the pitchfork; only the signs of g,,, and g,,
are lacking. Of course, for more complicated normal forms the information
given by & (h) will not be so complete.
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(b) Higher-Order Terms

What do we mean by higher-order terms in the recognition problem for h?
This concept should meet the following requirements: If p is a higher-order
term, then h + p is equivalent to h. However, it turns out that a more useful
theory results if we strengthen this requirement, as follows: If p is a higher-
order term, then for any g equivalent to h, g + p is equivalent to g. In our
formal definition we make use of Theorem 2.2 to give this idea an algebraic
formulation.

Definition 8.5. If h € &, ;, we define 2(h) by the following condition: p € Z(h)
if for every g strongly equivalent to h and for every t e R

RT(g + tp) = RT(9).

In words, 2(h) is the set of higher-order terms in the recognition problem
for h. (We use the letter “p” for perturbation.) The following proposition
gives two properties of 2(h).

Proposition 8.6. (2) If p € Z(h) and if g is strongly equivalent to h, then g + p
is strongly equivalent to g.

(b) If RT(h) has finite codimension, then P(h) is an intrinsic ideal of finite
codimension.

Part (a) of the lemma follows immediately from Theorem 2.2; we merely
record it here for reference. Part (b) will be proved in §12 below.

The following theorem completely characterizes 2(h) in an effectively
computable way. It is the most important result of §8; indeed, of Chapter IL

Theorem 8.7. If RT(h) has finite codimension, then P(h) = Itr #(h), where

F(h) = {xh, Ah, x*h,, Ah,). 84

We prove Theorem 8.7 in §13.
The following is another formula for #(h):

#(h) = M -RT(h) + R{Ah,}. (8.5)

This result identifies the higher-order terms which cannot enter into the
solution of the recognition problem. To illustrate this let us apply it to the
pitchfork, x> — Ax. According to (6.3)

RT(® — Ax) = M3 + M.
Substituting into (8.5) and computing Ak, = 3x*A — A* we find
FO3 = 2x) = M+ MDD + G2 (8.6)

In this example we see that #(h) is already intrinsic, so Z(x*> — Ax) is also
equal to the right-hand side of (8.6).
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What are the consequences (8.6)? Consider, for example, the monomial
x* e 2(x* + Ax). By Proposition 8.6(a), if a germ f is strongly equivalent to
x* — Ax, then so is f + tx* for any teR. By varying t we can make
(6/0x)*f (0, 0) achieve any value whatsoever. In other words, (6/0x)*f (0, 0)
cannot enter into the solution of the recognition problem for x> — Ax. Similarly,
for higher-order derivatives with respect to x and for derivatives associated to
monomials in .#%{1) or {A*); e.g., (6/0x)*(0/0A) £ (0, 0), (3/04)* (0, 0), etc.
Of course, none of these derivatives appears in (0.3), our solution of the
recognition problem for x> — Ax.

More generally, we shall describe a bifurcation problem h as k-determined
if h + p is equivalent to h for every pe .#**!. (Thus x* — Ax is 3-deter-
mined.) For h to be k-determined, it is necessary and sufficient that .#**?
< P(h).

(c) Intermediate-Order Terms

Our treatment of intermediate-order terms is not so clean as our treatment
of low- and higher-order terms, for the following reason: A concise descrip-
tion of what is going on at this level requires fairly sophisticated mathematical
concepts from the theory of Lie groups, and some of the complexities of
representation theory for Lie groups play a significant role. We don’t address
these issues in a serious way in this text. In this subsection we limit ourselves
to the following three tasks:

(i) We complete the solution of the recognition problem for the pitchfork.
(i) We solve the recognition problem for x° + Ax® + A%, the example
considered in §6.
(iii) We sketch briefly what is required of intermediate-order terms in the
solution of the recognition problem in general.

The methods that we use for items (i) and (ii) are elementary, and they suffice
for all the examples we consider in §9. The discussion under item (iii) is
intended more as a focus for our thinking than as a guide for computing;
basically, this material is just a formalization of the methods used for the
examples. In Chapter V we will indicate by example some of the complexities
of the general case. There are many interesting theoretical issues needing to
be investigated more fully, but we do not pursue these.

Our first task is to complete the solution of the recognition problem for
the pitchfork. This is quite easy, given our results above. Let ge &, ; be a
germ strongly equivalent to x* — Ax. Combining the information in (8.3)
and (8.6) we see that

g(x, 1) = ax® + bix + p(x, A),
wherea # 0,b # 0,and p € (x> — Ax). By Proposition 8.6, g(x, ) is strongly
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equivalent to x> — Ax if and only if
g(x, A) = ax® + bix 8.7

is strongly equivalent to x> — Ax. We may transform § into ex® + dAx, where
¢ = sgn a and 6 = sgn b, by scaling transformations; specifically we have

1/2
X, i).

Because of the restrictions (0.2) on the sign of S and X, it is not possible to
change the sign of the two coefficients in (8.7) by an equivalence transforma-
tion. Therefore, g is strongly equivalent to the pitchfork if and only if a > 0,
b < 0; i.e, if (0.3) is satisfied. Our analysis also shows that reversing an in-
equality in (0.3b) merely changes a sign in the normal form + x* + Ax.

Next we solve the recognition problem for h(x, A) = x> + Ax> + A2. The
treatment of low- and higher-order terms here is the same as for the pitch-
fork; we have chosen this example for the new phenomena that appears in
the intermediate-order terms. By Proposition 8.2(b),

P(h) = M5 + M3 + (A2

b

all?
3 9
a

ex3 + dAx = 03 =

It follows from Theorems 8.3 and 8.4 that if g is strongly equivalent to h then
g(x, A) = ax® + bAx3 + cA? + p(x, A),
wherea # 0,b # 0, ¢ # 0, and
p(x, D) e M + MRy + M. 8.8)

Next we compute (cf. Exercise 8.2) that 2(h) is precisely the right-hand side
of (8.8), so g is strongly equivalent to 4 if and only if
g(x, ) = ax® + bAx® + cA? 8.9)
is strongly equivalent to h. We claim that the latter statement holds if and
only if
a>0, ¢>0, and a’c? = b (8.10)
(Remark: It follows from (8.10) that b > 0.) To show the sufficiency of (8.10),

let us consider the effect of a pure scaling equivalence on (8.9); i.e., an equiv-
alence of the form

S(x, 1) = a, X(x, A) = Bx.
We find

ag(Bx, A) = af’ax® + af bix® + acA’. (8.11)

By matching the three coefficients in (8.11) with those in &, we obtain three
equations for two unknowns, « and f; these equations have a solution with
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o > 0, § > 0if and only if (8.10) holds. In other words, (8.10) is a sufficient
condition for g to be equivalent to h. We leave the proof that (8.10) is also
necessary to the reader in Exercise 8.3. The basis of this part of the proof is
the fact that only scaling equivalences make a useful contribution towards
transforming (8.9) —higher-order terms in S or X only affect higher-order
terms in g. Expressing the above calculation in terms of g, we find that g
is strongly equivalent to hifand only if g = g, = gxx = Gxxx = Jxxxx = g5 =
9ix = Gaxx = O,

* (9. 9, s
( 51 ) ('_2_) = ( 3x'xx) > gxxxxx>07 g).l>0' (812)

It is instructive to contrast the above two examples. The solution (0.3) to
the recognition problem for the pitchfork consists of the equalities (0.3a)
and the inequalities (0.3b). All of the former came from consideration of
low-order terms; all of the latter, from intermediate-order terms. In (8.12)
most of the equalities came from the low-order terms, but one equality came
from the intermediate-order terms. In complicated examples the inter-
mediate-order terms often contribute equations as well as inequalities to
the defining conditions of a singularity. This is related to the issue of moduli
which we take up in Chapter V.

Let us attempt to describe the above treatment of intermediate level
terms in a general context. Consider the recognition problem for a normal
form h: Is a given germ g strongly equivalent to h? The essential idea in
the above calculation is the following: Having reduced g modulo 2(h) to
as few terms as possible, we perform explicit changes of coordinate on
g modulo 2(h) to determine precisely when g is equivalent to h. In symbols,
we attempt to find S and X such that

g = Sh(X, 1) mod 2(h). (8.13)

The “mod 2(h)” in (8.13) is of the utmost importance—modulo 2(h) equiv-
alence transformations simplify enormously. Without the “mod £(h)” the
unknowns S and X in (8.13) would be arbitrary functions; with the
“mod 2(h)” only finitely many terms in the Taylor series of X and S actually
contribute to (8.13). More specifically, if #**! < 2(h), only terms of degree
k or less in the Taylor series of S and X can contribute to (8.13), and usually
only a fraction of these actually contribute. Indeed, for the calculations above,
only the lowest-order terms contributed.

To conclude, our treatment of intermediate-order terms in the recognition
problem is an explicit calculation involving a finite number of undetermined
parameters. These calculations must be done on a case-by-case basis. The
information provided by Theorem 8.4 is most useful in starting these calcula-
tions. In elementary examples the intermediate-order terms only contribute
inequalities in the recognition problem; in more complicated examples they
may contribute one or more equalities as well.
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The natural context for these calculations is the theory of Lie groups.
For the benefit of readers familiar with Lie theory we describe the calcula-
tions in these terms. Consider the action of the group of strong equivalence
transformations on %(h); this action is a linear representation of the group.
Now £(h) is an invariant subspace of this action, so there is an induced
representation on #(h)/#(h), a finite-dimensional space. In this induced
representation, the infinite dimensional group of equivalence transformations
reduces to a finite-dimensional algebraic group. The treatment of inter-
mediate-order terms in the recognition problem for h may be summarized
as follows: A germ g is equivalent to h if and only if g belongs to the orbit of
h in ¥ (h)/2(h) under this action.

EXERCISES
8.1. Rederive Corollary 5.4(b) as a consequence of Theorem 8.7.
8.2. Compute #(x° + x31 + A%) and verify that
P + X3P+ A%) = MO + MLy + M.
8.3. Show that § in (8.9) is strongly equivalent to h(x, 1) = x> + x>1 + 4* precisely
when (8.10) is valid. Hint: Compute the general strong equivalence of h modulo

#(h).

8.4. We call a bifurcation problem g(x, 1) k-determined if g + p is equivalent to g for
every p(x, A) in #** !, Prove that g is k-determined if

MY < M -RT(g).

§9. Solution of the Recognition Problem for
Several Examples

In this section we illustrate the use of the theorems in the previous section by
solving the recognition problem for the following normal forms:

(@ ext+6A, k=2,
(b) ext+ dix, k>3,
(c) &(x? + 64%),

(d) ex® + 64%

©.1)

Here ¢ and 6 equal +1;i.e., we consider all possible signs in (9.1). Note that
(9.1a, b) are actually infinite sequences of normal forms indexed by k. In
particular, if k& = 3 then (9.1b) yields the pitchfork, which we already
analyzed in §8. Also we considered (9.1c¢) in the Introduction.
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We consider the four normal forms (9.1) in sequence in the four proposi-
tions below. In starting these propositions we use the following convention
concerning nondegeneracy conditions such as (9.2b): The equation ¢ =
sgn(A) includes the requirement that A # 0. Our proofs of the last three
propositions are much terser than the first, as all four proofs have much
the same character. The only exception to this is that the treatment of
intermediate-order terms for (9.1c) is a little more involved —in this case
more than just a simple scaling is required. (Indeed, this is a good example
to study in order to gain insight about the treatment of intermediate-order
terms in general.)

Proposition 9.1. A germ g€ &, ; is strongly equivalent to (9.1a), ex* + 84, if
andonlyifatx =1=10

a a k—1
= _ g=-++0.=[— = 9.2
g=-_9 <8x> g=>0, 9:2a)
and
o \* 0
£= sgn(a) g, 0 = sgn 6_,1g' (9.2b)

PrOOF. We prove the proposition in three stages, which correspond to the
divisions of §8.

For brevity let us write h(x, 1) = ex* + 4. First, we apply Proposition
8.2(b) to conclude that

L(h) = M* + {A).

It follows from Theorems 8.3 and 8.4 that if a germ g is strongly equivalent
to h, then

g(x, 2) = ax* + bA + p(x, 2), 9.3)
where a # 0, b # 0, and
peM T + M.

In particular, (9.2a) must hold.
Next, we compute that

RT(h) = {x* kx*=1, A = M* + ().
It follows from Theorem 8.7 that
P(h) = M1 + M.

In other words the remainder term p in (9.3) has no influence on whether or
not g is equivalent to h.
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Finally, we ask whether g(x, 1) = ax* + bA is strongly equivalent to h.
If (9.2b) is satisfied, then we have a simple scaling

1/k
3x"+5/1=—-1—g b x,A).
Ib]™ \ |a
If (9.2b) is not satisfied no such transformation is possible, because of
conditions (0.2). O

Proposition 9.2. A germ ge &, , is strongly equivalent to (9.1b), ex* + dAx,
ifandonlyifatx =1 =10

0 o\ ! 0
=b§g—"'—(5;) g=ag=0, (94a)
and
o\ 0 0
£ = sgn (a) g, 0= sgnaag. (9.4b)

PRrROOF. We have
F(h) = M* + MY
so that if g is strongly equivalent to h
g(x, A) = ax* + bix + p(x, A), 9.5)
where |
pe Mt + MY + (A, 9.6)

Now it turns out that 2(h) is precisely the right-hand side of (9.6), so that we
drop p(x, A) from (9.5). Finally, we may scale § to h if and only if (9.4b) holds.
(|

Proposition 9.3. A germ g € &, , is strongly equivalent to (9.1c), (x> + 64%),
ifand only ifatx = A =0
9x=9,=0, (9.7a)

and
¢ =sgng,., O =sgndetd’g, (9.7b)
where d*g is the 2 x 2 Hessian matrix of the second derivatives of g.

PrOOF. In this case we have & (h) = .#*%. From Theorems 8.3 and 8.4 we
may conclude that

g(x, A) = ax? + p(x, 4), 9.8)

where a # 0 and pe.#> + M {1). Unfortunately 2(h) = .#°, so that not
all possible remainders in (9.8) may be discarded. However, we may write

g(x, A) = ax?® + bix + cA? + p(x, A),
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where p e .#>. When is §(x, A) = ax? + bAx + cA? equivalent to h? Because
of the sign restriction (0.2), an equivalence transformation cannot change
sgn g, or sgn det d2g, so (9.7b) is a necessary condition. Let us perform
explicit changes of coordinates to show it is also sufficient. In this calculation
it is convenient to use the fact that the composition of two equivalence
transformations is also an equivalence transformation; therefore we may
reduce g to h in steps. If (9.7b) is satisfied, we first eliminate the cross term
Ax in § by considering

b
glx — —A, 1),
o=z
and then we reduce to h with scalings as in the preceding cases. O

Proposition 9.4. A germ ge &, , is strongly equivalent to the winged cusp
(9.1d), ex® + 6A%, ifand only ifat x = A =0

9=9x=9,=9xx=691x =0,

and

= SZN Gxxx>» 5 = 8gngj;-

PrOOF. Here (h) = M> + {A*) and P(h) = M* + M*{L). After elimina-
tion of the low- and higher-order terms, a simple scaling suffices to reduce
gtoh. . O

§10. The Recognition Problem: General
Equivalences

Lethe &, , be a germ such that RT(h) has finite codimension. In this section
we address the recognition problem for h in the context of general equivalence
transformations; ie., given ge &, ,, we ask whether there is a general
equivalence, possibly not a strong equivalence, which transforms g into h.
In answering this question we again consider low-, higher-, and intermediate-
order terms, as in §8; moreover, our treatment of low- and higher-order
terms is exactly the same as in the preceding case. More precisely, low-order
terms are those in &(h)*, higher-order terms are those in 2(h), and inter-
mediate-order terms are those which are left over. In §8(a) the important
results concerning &(h), Theorems 8.3 and 8.4 already apply to general
equivalences. In §8(b) we characterized 2(h) (i.e., those terms which may be
transformed away by a strong equivalence). Certainly these terms can be
transformed away by a more general equivalence. The only difference



§10. The Recognition Problem: General Equivalences 97

between the strong and general equivalence contexts is in the intermediate-
order terms; in the present case, there are a few extra parameters in the Taylor
series of A(4) that may help in the solution of (8.13). Even this difference
doesn’t change the solution of the recognition problem for many simple
examples; in particular, for all of the normal forms considered in §9, the
solution of the recognition problem is the same in either context.

Let us illustrate these remarks on two examples, the pitchfork and
x> + Ax3 + A2 First we discuss the pitchfork; suppose g is equivalent to
x3 — Ax. As before, we deduce from Theorems 8.3 and 8.4 that

g(x, ) = ax3 + bAx + p(x, A),
where a # 0, b # 0, and

peM* + MDY + (A2, (10.1)

Since 2(h) equals the right-hand side of (10.1), it follows that g is equivalent
to h if and only if ax® + bAx is equivalent to h. The only obstacle to this is
possible differences of sign. However, we require that A preserve orientation
(in symbols A'(1) > 0), so the additional flexibility provided by A does
not help. In other words, (0.3) is necessary and sufficient for g to be equivalent
to h.

Passing to the second example, we now suppose that g is equivalent to
h(x, X) = x> + Ax®> + A% As always, the question reduces to whether a
polynomial g(x, 1) = ax’ + bAx?® + cA? is equivalent to h. In this case A
provides a third scaling parameter that we may use to eliminate the compli-
cated equality in (8.12) that came from the intermediate-order terms. More
precisely, we can solve the equation

ad(Bx, pA) = x> + Ax® + A2,
with a, B, and y all positive if and only if

a>0, b >0, c>0.

Expressing this in terms of g, we conclude that g is equivalent to x> + Ax® +
A% if and only if

9 = 09x = Jxx = Ixxx = Jxxxx = 92 = Jax = Gaxx = 0,

Ixxxxx > 0’ Gaxxx = 0’ 9gir > 0.

Remark. In this example the complicated equality in (8.12) drops out of
the solution of the recognition problem when we consider general equiv-
alences. However, as we shall see in Chapter V, the solution to the recog-
nition problem for complicated singularities, even in the context of general
equivalences, may include such equalities.
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811. Proof of Theorem 2.2

Theorem 2.2 states that if
RT(g + tp) = RT(g) (11.1)

for all t€ [0, 1], then g + tp is strongly equivalent to g for all t€ [0, 1]. It
turns out that the following local version of the theorem is sufficient to derive
the full result.

Proposition 11.1. Let g, p € &, ; be germs such that (11.1) is valid for t near 0.
Then g + tp is strongly equivalent to g for all t sufficiently near 0.

PROOF OF THEOREM 2.2 (Assuming Proposition 11.1). Define ¢, and ¢, in
[0, 1] to be equivalent if g + ¢,p is strongly equivalent to g + t,p. We claim
that Proposition 11.1 implies that equivalence classes of ’s in [0, 1] are open.
If the claim is valid, then it follows from either the compactness or connected-
ness of [0, 1] that there is exactly one equivalence class. Hence g + tp is
strongly equivalent to g for all t € [0, 1].

To verify the claim let h = g + t,p for some ¢, € [0, 1]. Then

RT(h + sp) = RT(g + (s + to)p) = RT(g) = RT(h)

for all s sufficiently near 0. It follows from Proposition 11.1 that h + sp
is strongly equivalent to & for all s near 0. Thus g + tp is strongly equivalent
to g + top for all ¢ near t,, and the equivalence classes of ¢’s are open. The
claim is verified. O

The main step in the proof of Proposition 11.1 is to construct the strong
equivalence between g + tp and g by solving certain ODE’s. The following
lemma specifies the precise information from hypothesis (11.1) that we need
to formulate the ODE’s.

Lemma 11.2. If (11.1) is valid for all t near O, then there exist coefficients
aand be &, ; , such that

p(x, ) = a(x, 4, 1)G(x, 4, t) + b(x, 4, )G (x, 4, 1), (11.2)
where G(x, A, t) = g(x, A) + tp(x, A). In addition b(0, 0, t) = 0.

Remark. For each fixed ¢ the validity of (11.2) follows directly from (11.1),
since (11.1) implies that pe RT(g) = RT(g + tp). The point of Lemma 11.2
is that a and b can be chosen to vary smoothly in ¢.

PROOF. Assume that (11.1) is valid for t = t, where ¢, # 0 is near 0. Assump-
tion (11.1) implies that each generator of RT(g + t,p) may be written as a
linear combination of the generators of RT(g). Let us elaborate. Recall that
RT(g) is generated by g, xg,, and Ag,, and RT(g + t,p) is generated by
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g + toDs Xgx + toxp,, and Ag, + toAp,. Thus there exist germs A4;, B;, C;
(i =1, 2, 3) such that

g+ top = A1g + Bixg, + CiAg,,
X9 x + toxPx = AZQ + Bzxgx + CZAgxa (113)
gy + toApy = A3g + B3xg, + C3Ag,.

We may rearrange the terms in the system (11.3) to obtain a matrix equation

P g
xp, | = Q| xg, ), (11.4)
Apy gy

where Q is a 3 x 3 matrix whose entries are smooth germs in &, ;. Now
for any germ h, we introduce the notation v(h) for the column vector

h
v(h) = | xh, ).
Ah,
Using this notation, we rewrite (11.4) in the form
u(p) = Qu(g). (11.5)
Recalling that G = g + fp, we have
v(g) = v(G) — tv(p). (11.6)
Substituting (11.6) into (11.5) and rearranging we find
d + tQ)(p) = Qu(G). (11.7)

Observe that (11.7) is a system of equations with smooth dependence on ¢.
Since I is invertible, it follows that for sufficiently small ¢, I + tQ is an
invertible 3 x 3 matrix. Thus (I + tQ)~! is a 3 x 3 matrix whose entries
are smooth germs in &, ; ,; in particular, these germs are smooth in ¢. The
invertibility of I + tQ and (11.7) imply

v(p) = (I + tQ)~ *Qu(G). (11.8)
Equating the first components on each side of (11.8) yields the equation
p = ag + BxG, + yAG,,

where a, f§, and y are in &, , ,. Finally, one obtains (11.2) by setting a = «
and b = xf + Ay.

PROOF OF PROPOSITION 11.1. Lemma 11.2 states that (11.2) is valid for germs;
hence this relation holds on some neighborhood of (0, 0, 0) in xAt-space.
Choose intervals K, L, M such that (11.2) is valid on K x L x M.



100 II. The Recognition Problem

We wish to prove that G(, -, t) is strongly equivalent to g for each ¢
sufficiently near 0. Specifically, we will construct mappings X(x, 4, ¢) and
S(x, 4, t) varying smoothly in ¢ and satisfying

@) S(x, 4, HG(X(x, 4, 1), 4, t) = g(x, A),
(b) X©0,0,6)=0, X(x,40)=x (11.9)
© S(x,4,0)=1.

The functions X and S are found by solving certain ODE’s. Specifically,
consider

(a) %(x, A t) = —b(X(x, A, t), 4, 1), (11.10)

(b) X(x,4,0) =x,

and
ds
@ - 0640 = —alX(x 20,4 (x4 1), (11.11)

(®) S(x, 4,0 =1,
where a and b are the coefficients in (11.2).

To understand the reason for this choice of coefficients, let us assume for
the moment that (11.10) and (11.11) have solutions on K x L x M and
differentiate the left-hand side of (11.9a) with respect to t. This yields:

‘% [S(x, 4, )G(X(x, A, t), A, £)] = S,(x, 4, )G(X(x, 4, 1), A, t)

+ 8(x, A, )G(X(x, 4, ), A, )X (X, 4, 1)
+ S(x, 4, )GLX(x, 4 £), A, ©). (11.12)

The right-hand side of (11.12) simplifies considerably using the facts that
X and S solve the ODE’s (11.10) and (11.11) and that G = g + tp. Setting
y = X(x, 4, t) we obtain

% [SCx, 4, )G(y, 4, )] = S(x, 4, )[—a(y, 4, )G(y, 4, 1)
_b(y, As t)Gx(y’ /1, t) + P(y, A)] (1113)

It follows from (11.2) that the right-hand side of (11.13) is identically zero.
Hence

S(x, 4, )G(X(x, 4, t), 4, t) = S(x, 4, 0)G(X(x, 4, 0), 4, 0)
= g(x, 4).
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In other words, (11.9a) follows if X and S satisfy (11.10) and (11.11), respec-
tively.

We claim that the initial conditions (11.9b) and (11.9c) also follow if X
and S satisfy (11.10) and (11.11). Of course, the second equation in (11.9b)
is just the initial condition (11.10b), and (11.9c¢) is just the initial condition
(11.11b). Thus we need only show that X(0, 0, t) = 0. However, by Lemma
11.1, b(0, 0, t) = 0, so the function X(0, 0, t) = 0 is a solution of (11.10). By
uniqueness of solutions, it is the only solution.

We end our proof by discussing why the ODE’s (11.10) and (11.11) have
solutions on K x L x M. We may, in fact, have to shrink K and L, but this
will not disturb the argument above.

As we observed above, X(0, 0, £) = 0 is a solution to (11.10) for all ¢ and
thus for all ¢ in M. The standard existence theorem for ODE’s with smooth
dependence on parameters states that the interval in ¢ on which one can
solve an ODE like (11.10) varies continuously with the parameters. Cf.
Hirsch and Smale [1974], p. 169. Thus there exist intervals K, L containing
0 and an X defined on K x L x M solving (11.10).

Once X has been defined, the ODE (11.11) is linear and as such has a
solution for all ¢t. 0O

EXERCISES

Exercises 11.1-11.5 form a block of material covering the basic determinacy
results for elementary catastrophe theory.

11.1. Let f and g be germs in &,. We call f and g right equivalent if there exists a germ
of a difftfomorphism ¢: R” — R" with ¢(0) = 0such that g(x) = f(¢(x)). Compute
the restricted tangent space RT,(f) of the germ f under right equivalence. More
precisely, let

Jx) = f(d(x, 1)),

with ¢(0, t) = 0. Compute all possible tangent vectors (d/dt) f(x)|,=o. Answer:
RT(f) = M - J(f) where J(f) = {0f /0xy, ..., 0f/0x,). (Note: J(f) is called the
Jacobian ideal of f)

11.2. Prove that if p(x) is in RT,(f) and

RT(f+ tp) = RT(f) forallt,
then f + p is right equivalent to f. Hint: Mimic the proof of Theorem 2.2.

11.3. The germ f in &, is called k-determined with respect to right equivalence if f + p
is right equivalent to f for every p € #**!, Using Exercises 11.1 and 11.2, prove
that if

ﬂk#—l = aﬂz.’(f),

then f is k-determined with respect to right equivalence.
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11.4. A germ f'in &, has a singularity at 0 if df/6x,(0) = Ofor 1 < i < n. This singularity
is nondegenerate if the hessian matrix

2
@ = (324 0)

is nonsingular. Using Exercise 11.3, show that if f has a nondegenerate singularity
at the origin then f is 2-determined with respect to right equivalence. (This is the
classical Morse lemma.)

11.5. Show that x> + xy? (the elliptic umbilic) and x> — xy? (the hyperbolic umbilic)
are 3-determined with respect to right equivalence.

§12. Proof of Proposition 8.6(b)

Proposition 8.6(b) states that for a normal form h of finite codimension the
higher-order terms Z2(h) constitute an intrinsic ideal of finite codimension.
Recall that 2(h) is defined to be the set of those germs £ for which RT(g + tp)
= RT(g) for all ¢t in R and all g which are strongly equivalent to h. We
subdivide our proof of Proposition 8.6(b) into three parts. We first prove
that 2(h) is an ideal, then that 2(h) is intrinsic, and finally that 2(h) has
finite codimension.

Lemma 12.1. 2(h) is an ideal.

PROOE. To prove that 2(h) is an ideal we must verify two points. First, if
p; and p, are in 2(h) then so is p; + p,, and second, if pe Z(h) and f €€, ;
then fp € 2(h).

Suppose p;, p, € Z(h) and that g is strongly equivalent to h. We must
compute RT(g + t(p; + p,))- Since p, in 2(h) we know that § = g + tp,
is strongly equivalent to g and hence to h. (Cf. Proposition 8.6(a).) Since
p, € Z(h) it follows that RT(§ + sp,) = RT(g) for all s. Setting s = t implies
RT(g + t(p, + p,)) = RT(g + tp,) = RT(g), the last equality following
from the fact that p, € (h). Thus p; + p, is in Z(h).

Next, we show that fp € Z(h) whenever pe #(h) and fe &, ;. We do this
in two parts. First we use Taylor’s theorem to write f as

f(x, A) =5 + k(s, A),

where s = f(0,0) and k(0, 0) = 0. Then, using the addition property for
2(h) proved above, we may show that fp e 2(h) by proving that sp € 2(h)
and kp € Z(h) separately. The first step is easy. Observe that

RT(g + t(sp)) = RT(g + (ts)p) = RT(g)
since p € Z(h). Thus sp € Z(h).
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We shall prove that kpe 2(h) by use of Nakayama’s lemma. Since
RT(g + p) = RT(g), it follows that the generators of RT(g + p) are also
in RT(g). This implies, in particular, that

p, xp, and Ap,e€RT(g). (12.1)
A direct calculation using the fact that k € .4 shows that
kp, x(kp), and A(kp).€ #RT(g).
It follows by Corollary 5.4(a) that
RT(g + tkp) = <g + tkp, xg, + tx(kp), Ag + tA(kp)»>

= {9, XGx, 29>
= RT(g).
Thus kp € 2(h). O

In the second step of the proof of Proposition 8.6(b) we show that the
ideal 2(h) is intrinsic. This proof proceeds most smoothly after the intro-
duction of some notation and the proof of a preliminary lemma. The question
we addressis: How are RT(g) and RT'(h) related when g and h are equivalent ?
The answer is given in Lemma 12.2 below.

Consider the change of coordinates

O(x, 1) = (X(x, ), A(A),
where @(0, 0) = (0, 0). Define the pull-back mapping ®*: &, ; - &, ; by
D*(g)(x, 4) = g(D(x, A)). (12.2)
The map ®* has several useful properties; namely
(@) @*(g + h) = D*(g) + P*(h),
(b) ®*(g - h) = D*(g) - D*(h). (12.3)

In words, (12.3) states that ®* is a ring homomorphism.
We are interested in invertible changes of coordinate, so that @ is a local
diffeomorphism. This means that ®@* is invertible; in fact

(@)~ = (@ H* (12.4)

If # is a vector subspace of &, ;, let ®*(#) denote the vector space of all
germs of the form ®*(g) for g in #£. Let us show that if .# is an ideal, so is
®*(#). By (12.3a), ®*(#) is closed under sums. Suppose g€ .# and fe &, ;.
Then (®1)*(f)-g e 4. Applying (12.4), we deduce that f - ®*(g) € D*(#).
Thus ®*(#)isanideal. In particular,if # = (p,, ..., p,>isafinitely generated
ideal, then ®*(.#) is the ideal <®*(p,), ..., D*(p\))-
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An equivalence transformation y consists of a diffeomorphism ®(x, 1)
= (X(x, 1), A(A)) as above plus a pre-multiplying function S(x, ). We can
think of y as a mapping

'}’: éﬂx,l - gx,/l
defined by
Y(h) = S(x, Dh(D(x, 4))-

We make two observations about the mapping y. First, y is invertible, and
y~ ! is also an equivalence. Explicitly

7 g) = g(@~'(x, 4)).

1
S(®(x, A)
Second,

WSI) = ©*(H),

whenever .# < &, , is an ideal. This property holds even though 7 is not a
ring homomorphism—the analogue of (12.3b) fails because

g -h) = S~ 'y(g) - v(h).
We denote the identity equivalence (S = 1, X = x, A = 1) by L.

Lemma 12.2. Let g and h be equivalent, where the equivalence vy is given by

g(x, ) = S(x, H(D(x, 1)) = y(h), (12.5)
and O(x, 1) = (X(x, 4), A(1)). Then
RT(g) = y(RT(h)) = ®*(RT(h)). (12.6)

Remark. This lemma may be proved either algebraically (by verifying (12.6)
directly with the aid of Nakayama’s lemma) or geometrically (using the fact
that RT(g) is a tangent space). We prefer the latter, as that proof will be useful
in other contexts. A sketch of the algebraic proof is given in Exercise 12.5.

PROOF OF LEMMA 12.2. We define a smooth curve of strong equivalences 9, to
be a pair S(x, 4, t), X(x, 4,t), both of which depend smoothly on t. In
addition, we demand that d, = 1. The restricted tangent space RT(h) may
be defined abstractly using curves of strong equivalences as follows: p is in
RT(h) if and only if there is a curve of strong equivalences J, (with §, = 1)
such that

d
=g (12.7)

0

We use this representation to verify (12.6). First let us show that

WRT(h) = RT(g). (12.8)
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Suppose p € RT(h). Then from (12.7)

d
¥p) = (v 7 o(h)

>. (12.9)
t=0

However yis independent of t and may be brought through the differentiation.
Thus we have

d d . _
W) = 2900 | = 2900 o(h) (12.10)

t=0

t=0

But y(h) = g; let us define 5, = 5,7~ '. Rewriting (12.10), we see that

d .
¥ p) = T 0/9)

t=0

Now §, is itself a smooth curve of equivalences, so by (12.7), y(p) € RT(g).
Similarly, by interchanging the roles of g and & we may show that

"X RT(g)) = RT(h). (12.11)
The lemma follows from combining (12.8) and (12.11). O

We now complete the second part of the proof of Proposition 8.6(b).

Lemma 12.3. The ideal 2(h) is intrinsic.

PROOF. Let p be in 2(h) and let y: &, ; — &, , be a strong equivalence. We
must show that y(p) € 2(h). Suppose g is strongly equivalent to h. We have

RT(g + ty(p)) = RT(y(y™ '(g9) + tp))
= yRT(y™'(g) + tp), (12.12)

the second equality in (12.12) following from Lemma 12.2. Now y~(g) is
strongly equivalent to g and hence to h. Since p € Z(h)

RT(y™'(9) + tp) = RT(™ '(9))-
Combining with (12.12) we see that

RT(g + ty(p)) = yYRT(y~'(9)) = RT(g), (12.13)
the second equality in (12.13) following from Lemma 12.2. Equation (12.13)
implies that y(p) € 2(h), as desired. O

In the final part of the proof of Proposition 8.6(b) we show that if RT(h) has
finite codimension then 2(h) is an intrinsic ideal of finite codimension.
More precisely, we prove:

Lemma 12.4. Itr # - RT(h) < 2(h) if codim RT(h) < co.
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We claim that Lemma 12.4 completes the proof of Proposition 8.6(b). If
RT(h) has finite codimension, then .#* < RT(h) for some k. (Cf. Proposition
5.7.) Thus #**! < Itr M - RT(h) = 2#(h) by Lemma 12.4, and hence 2(h)
has finite codimension.

Before proving Lemma 12.4 we state and prove the next lemma.

Lemma 12.5. Let 4 be an intrinsic ideal. Assume that RT(h + p) = RT(h)
forallpin #. Then ¥ = P(h).

Remark. The point of lemma 12.5 is that if .# is known to be an intrinsic
ideal, we do not have to compute RT (g + tp)for all g strongly equivalent to h.

PRrOOF. Let p be in £, let t be in R, and let g be strongly equivalent to h. We
must show that RT(g + tp) = RT(g).
Let y be the strong equivalence satisfying y(h) = g. Then

RT(g + tp) = RT(y(h + y~ (tp))
= yRT(h + y“(tp)), (12.14)

the second equality in (12.14) following from Lemma 12.2.
Observe that tpe . since .# is an ideal, and that y~ '(tp) € .# since £ is
intrinsic. Thus

RT(h + y~(tp)) = RT(h).
Combining with (12.14), and using Lemma 12.2, we see that
RT(g + tp) = RT(g). -

PROOF OF LEMMA 12.4. Let # = Itr 4 - RT(h). By Lemma 12.5, to prove
£ < P(h) it suffices to show for each pe.# that RT(h + p) = RT(h). We
do this by Nakayama’s lemma in the form of Corollary 5.4(a).

Let p be in £. Since . is intrinsic and of finite codimension, Lemma 7.5
implies that xp, and Ap, € £. Since # < . - RT(h), we see that p, xp,, and
Ap, € M - RT(h). We now use Corollary 5.4(a) to conclude that

RT(h + p) = <h + p, xh, + xp, Ah, + Ap,) = <h, xh,, Ah.>
= RT(h).

EXERCISES

12.1. Prove: If £ is an ideal and ®(x, 1) = (X(x, 1), A(2)) is an invertible coordinate
transformation, then

Itr £ = Itr ®*(S).
12.2. Prove that if g, h€ &, , are equivalent then codim RT(g) = codim RT(h).
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12.3. Let £ < &, ,; be an ideal. Prove that
Itr & = ) O*(F),
[

where the intersection is taken over all diffeomorphisms ®.

124. Let he & ,. Use Exercise 12.3 to prove

Itr RT(h) = () {RT(g): g ~ h},
g9

where ~ indicates strong equivalence.
12.5. Complete the algebraic proof of Lemma 12.2. (Hint: Show that
O*(RT(h)) = {D*h, D*(xh,), @*(Ah,)) = (@*h, x(®*h)., (D*h),).)

§13. Proof of Theorem 8.7

We divide the proof of Theorem 8.7 into two parts:
(@) Itr g(h) = 2(h),
(b) Zh) < ltr g(h).

The complete proof of part (b) is much more technical than the proof of part
(a). Moreover, only part (a) will be used in applications. Part (b) gives a
more elegant “if and only if” result, but its proof may be omitted without
loss of continuity.

(a) Proof that Itr #(h) < 2(h)

The ideas needed for part (a) have already been introduced. In Lemma 12.4
we proved that . - RT(h) = 2(h). Recall that # - RT(h) = {xh, Ah, xh,,
Axhy, A*h.y while #(h) = {xh, Ah, x*h,, Ah.>. The only new issue here is
how to deal with the term Ah, which belongs to #(h) but not .# - RT(h).
Because of the following lemma, the same techniques in fact suffice for this
term, too.

Lemma 13.1. Suppose he # has a singularity of finite codimension at the
origin. If p e Itr #(h), then Ap,€ M - RT(h).

Remark. Note that the operator 4(9/0x) is nilpotent on &, ,/.#* for any
k—this operator preserves the degree of homogeneity of any monomial
but substitutes a power of 4 for one of x. We do not use this fact in any way
in our proof, but it provides motivation for why Ap, might be different
from xp,.
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PRrOOF. First we dispense with the case where h,(0, 0) # 0. (We assume that
h,(0, 0) = O—otherwise h would not have a singularity.) We claim that

F(h)= M -RT(h) if hy0,0)+#0, (13.1)

so that the lemma follows trivially in this case. Since RT(h) has finite co-
dimension, h is strongly equivalent to g = +x* + 1 where k > 2. We
compute that

M -RT(g) = M1 + M.

Denote the strong equivalence between g and h by y; that is, h = y(g). Using
Lemma 12.2 and that fact .# and .# - RT(g) are intrinsic we have

M -RT(h) = M - (RT(9)) = (M -RT(g)) = M - RT(g).

As noted above, h (0, 0) = 0. Hence Ah, € M#{1), so #(h) = 4 - RT(h), as
claimed.

We now prove Lemma 13.1 assuming that h,(0, 0) = 0. We claim that if
peltr #(h), then xp, and Ap, also belong to Itr #(h). To see this, note that
RT(h) has finite codimension, so that #(h) also has finite codimension.
Thus Itr #(h) is an intrinsic ideal of finite codimension. Therefore the claim
follows from Lemma 7.5.

Since we have

Xpy, Apz € Itr #(h) = #(h) = {xh, Ah, x*h,, Ah.),
there exist smooth coefficients a, f, y, d such that

(@) xpx = ah + ph,,

(13.2)
(b) Apx = yh + oh,,
where
(@) «(0,0) = B(0,0) = B.(0,0) =0,
(b) 7(0,0) = 6(0,0) = 6,(0,0) = 0.
We will prove further that
0,(0,0) =0. (13.3)

It may then be seen from (13.2b) that Ap, € # - RT(h).
To prove (13.3) we multiply (13.2a) by 4, (13.2b) by x, and subtract,
obtaining
(Ao — xp)h + (A — x)h, = 0.
However, h and h, generate an ideal of finite codimension—in particular,

RT(h) < <h, h.). It follows from Proposition 5.10 that there exists a smooth
germ Q such that

(@) Ax — xy = —Qh, mod ¥,
(b) AB—x6=0h mod ¥,

(13.4)
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where k is as large as we like. We take the mixed partial derivative with
respect to x and A of (13.4b) and evaluate at the origin. This yields

5}.(0, O) = - Q(O, O)hxl(oa 0)9
where we have used the relations
B0, 0) = h(0, 0) = h,(0, 0) = h;(0, 0) = 0.

On differentiating (13.4a) with respect to A, evaluating at the origin and
eliminating terms which vanish, we see that

Q(O, O)hx).(oa 0) = 0:
from which (13.3) follows. The proof of Lemma 13.1 is complete. O

PROOF THAT Itr _#(h) = 2(h). Our proof is based on an application of
Lemma 12.5. The main step is to show that for any p € Itr #(h),

RT(h + p) = RT(h). (13.5)

It then follows from the lemma that Itr #(h) = 2(h). (Remark: The idea we
use to prove (13.5) already occurred in Lemma 11.2.)
If p € Itr #(h), then by Lemma 7.5

Xpx, Apy € Itr F(h) = #(h).
Thus there exist smooth coefficients such that
p = A,h + Byxh, + CyAh,,

xp, = Ayh + Byxh, + C,Ah,, (13.6)

Ap, = Ash + Byxh, + C34h,,
where

A;0,0) = B(0,0) =0, i=1,273

Moreover by Lemma 13.1, C5(0, 0) = 0. We may write (13.6) in a matrix

notation
p h
(xp,,) = Q(xhx), (13.7)
Aps Ah,

where Q(0, 0) is strictly upper triangular; i.e., upper triangular with zeros
along the diagonal. Adding 4 to both sides of (13.7) we have

h+p h
x(h + p)x | = I + Q)| xh, |-
Ah + p), Ah,,

But I + Q is invertible in some neighborhood of the origin, since Q(0, 0) is
upper triangular. Thus the generators of RT(h) and RT(h + p) are related
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by an invertible linear transformation; in other words, (13.5) follows by
Lemma 4.2. O

(b) Proof that (h) < Itr #(h)

The idea behind our proof is the calculation in §2 with which we motivated
the definition of RT(h). (This calculation occurs several times above, but we
repeat it here.) Suppose p € Z(h). By Proposition 8.6(a), for any t, h + tp is
strongly equivalent to h. Moreover, the equivalence transformation varies
smoothly with ¢ and equals the identity when ¢t = 0. Thus we have

h(x, 1) + tp(x, A) = S(x, 4, (X (x, A, t), 4), (13.8)
where
X(0,0,t) = 0. (13.9)
On differentiating (13.8) with respect to t and setting t = 0 we find
p(x, 2) = S(x, 4, 0)h(x, A) + h(x, ) X(x, 4, 0). (13.10)
The crux of the present proof is to show that
5(0,0,0) = X,(0,0,0) = 0. (13.11)

It will then follow from (13.10) that p € #(h). In other words, verifying (13.11)
will show that 2(h) = #(h); since 2(h) is intrinsic, this will show that
P(h) < Itr #(h), as desired.

In verifying (13.11) we shall in fact prove that

S(0,0,1) =1, X(0,0,¢t) = 1. (13.12)

(Henceforth we shall suppress the dependence of S and X on ¢.) The intuition
behind our analysis is as follows. Equation (13.8) states that the equivalence
transformation (S, X) applied to h may change the higher-order terms
(represented by p), but only higher-order terms are affected. Our strategy is to
isolate two “lower-order terms” in h and to extract (13.12) from the fact that
S, X does not change these lower-order terms. One of these terms is easy to
identify; the following simple lemma is useful in this task.

Lemma 13.2. (a) 2(h) = <(h).
(b) The intrinsic generators of &(h) do not belong to 2(h).
Proof. We already know that

P(h) = RT(h) = S (h),

which verifies part (a). For part (b), suppose x*A' is an intrinsic generator of
& (h) which also belongs to 2(h). By Proposition 8.6(a), h + tx*1'is equivalent



§13. Proof of Theorem 8.7 111

to h for any ¢t € R. Yet there is a choice of ¢ which makes the derivative

a\fo\
(a) ('a) (h + tx"l’)

vanish. By Theorem 8.4, h + tp for this choice of t is not equivalent to h.
This contradiction proves the lemma. O

We identify the first of the ‘“low-order terms” in 4 as follows. Since 4 has
finite codimension, there is an integer k such that
h(x,0) = ax* mod .#**?,

where a # 0. Then x* is an intrinsic generator of &% (h). However, according
to Lemma 13.2, x*¢ 2(h). In other words, if p € 2(h), then p(x, 0) e A** 1.
Let us compute the coefficient of x* on the left and the right in (13.8). On the
left we have

LHS(x, 0) = ax* mod %1,
while

RHS(x, 0) = aS(x, 0)X*(x, 0) mod .4**1.

But

X(x,0) = X(0,0)x mod .#?
so that X**1 e #**! and

X¥(x,0) = X%0, 0)x* mod .4**1.
Therefore matching coefficients of x* in (13.8) yields the relation
S(0, 0)X*%(0, 0) = 1. (13.13)

We need to identify a second lower-order term in h and to extract a relation
analogous to (13.13). This requires very little effort if &#(h) has at least two
intrinsic generators; i.e., if the decomposition

L(h) = M* + MY + - + MDD (13.14)

according to Proposition 7.1 contains at least two distinct terms. Thus at this
juncture we split the proof into two cases.

Case 1. In (13.14),s > 0.
Case 1. #(h) = "

Case I. Let x*12"" be an intrinsic generator of #(h) as indicated in (13.14). By
matching the coefficients of x¥*A" in (13.8) we shall show that

S(0, 0)X*(0,0) = 1. (13.15)

Since k; # k, (13.12) then follows from (13.13) and (13.15).
In deriving (13.15) we introduce an appropriate notion of higher-order
terms. Let 5 be the ideal

Ho= MO L Iyt (13.16)
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this is the largest intrinsic ideal that does not contain x*:A!. In particular,

the other intrinsic generators of £ (h) all belong to #, and we may deduce
from Lemma 13.2 that 2(h) < . Thus we have in (13.8)

LHS = bx*4"  (mod #),
where b # 0. Moreover, since # is intrinsic we also have
RHS = bSX* A"  (mod #),
and
Xkl = x50, 0)x*1A  (mod #).
Therefore (13.15) follows by matching the coefficients of x*'A' in (13.8).

This completes the analysis of Case I.

CaseIl. In the present case where ¥(h) = .#*, it does not seem to be
possible to prove that (h) < Itr #(h) by working with h directly; rather we
work with a carefully constructed germ g that is equivalent to h. Specifically,
we will show for this g that 2(g) < Itr #(g). To obtain the desired conclusion
that 2(h) < Itr #(h), we need to know that Z(h) = #(g) and

Itr Z(h) = Itr #(g).
The first equality is obvious from the definition of 2. The second equality we

state here as a lemma; the proof is given at the end of this section.

Lemma 13.3. If g, he &, , are equivalent, then
Itr #(g) = Itr #(h).

We now show how to construct g from h, and then we prove that

P(g) < Itr #(g)

for this g.
Order the monomials in .#* by

xR xRTIA AR xR xR L AR k2
If g is any germ equivalent to h, then we may write
g = ax* + bx* A" + ..., (13.17)

wherea # 0,b # 0,and - - - refers to later terms relative to the above ordering
of terms. Let us justify (13.17). Since ¥(g) = #(h) = #*, all monomials
appearing in the Taylor series of g must be of degree at least k, and the
coefficient of x* cannot vanish. Moreover, there must be at least one more
monomial with a nonvanishing coefficient; otherwise g, and hence h, would
have infinite codimension. Indeed we may refine the argument to obtain an
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upper bound on k, + [, as follows. Suppose .#X < .# -RT(h). Then
M < Ttr M -RT(h), so by Lemma 12.4

MK <= P(h) = P(g).

Now if g were equal to ax* + p where p € .#X, then g would be equivalent
to ax*, contradicting the hypothesis of finite codimension. In other words in
(13.17) we must have k; + I; < K. The existence of this a priori bound on
k, + 1; makes the following construction possible: among all g’s equivalent
to h, choose g so that the first nonzero term after x* in (13.17) has maximal
degree with respect to the above ordering.

The verification for the g just defined that

P(g) < Itr #(g) (13.18)

proceeds in much the same way as the calculations for Case I. More precisely,
if pe #(g), differentiate the relation (13.8) expressing the equivalence of
g + tp with g. Our task is to derive (13.11). In fact we prove that (13.12) is
valid.

We will verify (13.12) by matching low-order terms in (13.8), replacing
h by g. By low-order terms we mean terms not belonging to the intrinsic
ideal s defined by (13.16). For reference below we note that

x*V¢H ff p+v<k +1;+1 and v<lI +1. (13.19)
We claim that 2(g) = #. We prove this by showing that
xkiAl ¢ 2(g) (13.20)

and recalling that # is the largest intrinsic ideal not containing x*:A". To
prove (13.20) we argue by contradiction. If x*'A" € 2(g), then g — bx*'A"
would be equivalent to g, and its first nonzero term after x* would occur
further along in the ordering than x*!1"t. This contradicts the construction
of g, thereby proving (13.20).

Let us begin to match low-order terms in (13.8). Since p € #(g) = # we
have

LHS = ax* + bx*'A" mod #; (13.21)
because S is intrinsic, x*A € # iff X*A*e A, so
RHS = aSX* + bSX*'A"* mod #. (13.22)

It is easy to match the coefficients of x* by restricting to A = 0 and computing
modulo .#**!. Indeed this argument was carried out above; it yields the
conclusion (13.13); i.e.,

S(0, 0)X*(0, 0) = 1. (13.23)

It is tempting to differentiate (13.21) and (13.22) /, times with respect to A and
match coefficients of x*. It seems this would lead to the relation

S(0, 0)X%1(0, 0) = 1, (13.24)
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which could be combined with (13.23) to yield (13.12). In fact, (13.24) is a
valid equation and the proof of Theorem 8.7 does indeed emerge from these
considerations as indicated, but the justification of (13.24) is considerably
more subtle. The difficulty is that the naive argument above overlooks the
possibility that X* might contribute to the coefficient of x*'A". For example,
if ky + 1, = k (i.e, if both terms in (13.21) have the same degree) and if
X(x, A) = x + cA, then the expansion of X* includes a term in x*'A". As it
turns out, this possibility does not actually occur, for the following reason:
for all monomials not belonging to #, the coefficients in (13.21) and (13.22)
must match, not just for x* and x*'1"1. However this must be shown; we do so
in the lemma below. (Remark: It is shown in the proof of this lemma that
k, # k so that (13.23) and (13.24) are actually independent relations.)

Lemma 13.4. The coefficient of x*'A'* in (13.22) equals
bS(0, 0)X*:(0, 0). (13.25)

ProOF. It is clear that (13.25) represents the contribution of the second term
in (13.22) to the indicated coefficient. We must show that the first term does
not contribute.

First, we claim that k; < k — 2. For suppose otherwise; i.e., suppose
k, > k — 1.If, in fact, k; > k, we may transform away the term x*1"* by an
equivalence transformation on the range,

-1
{1 - éx"‘“"l"} g = ax* mod #,
a

which contradicts the construction of g. If k; = k — 1 we may transform
x¥121 away by an equivalence transform on the domain,

g<x - kg/l", /l) = ax* mod #,
a

which is again a contradiction. Thus
ki <k-—-2 (13.26)

In the proof we wili need the following assertion: Let ¢,, ¢, € 4 be two
germs such that ¢, = ¢, mod .#* where u > 1; then

k= o¢% mod . artr1,

This assertion is proved by writing ¢, = ¢, + r where r € #* and expanding
(¢, + r)* by the binomial theorem. We leave this to the reader.
The main task of the proofis to show that there is a germ Y such that

X(x,4) = xY(x,A) mod M*+1"k+2 (13.27)
Given (13.27), it follows from the above assertion that

X* = x*Y* mod Mk ThTL
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so that in (13.22), X* cannot contribute to the coefficient of x*! A",
We prove (13.27) by induction. Suppose that

X =xY mod .4’ (13.28)
for some j satisfying
j<ki+1 —k+2 (13.29)

(We may trivially start the induction withj = 1,since X(0, 0) = 0.) Modifying
Y if necessary, we deduce from (13.28) that

X =xY +cA mod 4! (13.30)
for some ¢ € R. By the assertion above
X* = (xY + cA) mod .+,
and, moreover,
(xY + cA) = (xY ) + k(xY )~ *(cA/) mod{i¥)

We may deduce that x*~'A/ ¢ # by operating on (13.29), using (13.26), to
obtain the criterion (13.19). Thus the coefficient of x*~ 14/ in (13.22) equals

aS(0, 0)X%(0, O)c.

Equating this to zero, the value of the corresponding coefficient in (13.21),
we see that ¢ = 0. Thus, comparing with (13.30) we see that the induction
continues. This completes the proof of Lemma 13.4 and of Theorem 8.7. [

We end this section by proving Lemma 13.3. We begin by observing that
F(h) is a “tangent space” under a restricted form of strong equivalence.

Definition 13.5. A #-equivalence is a strong equivalence defined by a pair of
functions S(x, 4) and X(x, A) satisfying

S(0,0) =1,  X(0,0) = 1. (13.31)

It is an easy exercise to show that if , is a curve of £-equivalences satisfying
0o = 1 then

d
p= o,(h) - (13.32)
is in #(h). In fact #(h) consists of all germs defined according to (13.32).
Thus #(h) is the tangent space to h obtained by considering #-equivalences.

Remark. The essence of the above proof that #(h) < Itr #(h) was to show
that if p € 2(h) then the equivalence between h + tp and h must be a ¢-
equivalence for each t. Differentiation with respect to ¢t then shows that

pefgh).
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Lemma 13.6. Let y be an equivalence (not necessarily a §-equivalence)
operating on &, , and let y(h) = g. Then
F@g) =150).

The proof of Lemma 13.6 is identical to the proof of Lemma 12.2, except
that one uses a curve of £-equivalences rather than a curve of strong
equivalences. The details are left to the reader.

PRrOOF OF LEMMA 13.3. Let g = yh. By Lemma 13.6 we have

Fg) = y(F(h).

Therefore

Itr #(g) = Itr y,#(h) = Ttr #(h)

since intrinsic parts are invariants of equivalences. O
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CHAPTER III
Unfolding Theory

§0. Introduction

As we saw in Chapter I, bifurcation diagrams may change their form drama-
tically when the defining equation is subjected to a small perturbation. The
study of such changes is often termed “imperfect bifurcation™. In this chapter,
we address the general problem of imperfect bifurcation, using the theory
of universal unfoldings as the main tool. The construction of universal
unfoldings is now a standard procedure in singularity theory; we adapt this
method to the specific context of bifurcation theory.

Our goal is to present an algorithm allowing us to enumerate, up to equiv-
alence, all perturbations of a given bifurcation problem g(x, A) = 0. This
algorithm divides neatly into two parts, an analytic part and a geometric
part. Both of these have been described, by example, in Chapter I. We recall
the following two points from Chapter I, §1 for reference below:

(A) Equation (I,1.13) gives a formula for a universal unfolding of the pitch-
fork.

(B) Perturbations of the pitchfork are enumerated in Figure I,1.5. This
includes both the diagrams shown in the open regions of Figure I,1.5
and the transition diagrams (i.e., those which occur between regions
in Figure I,1.5) that are sketched in Figures 1,1.6 and 1,1.7.

These two points correspond to the division of this chapter into an analytic
and a geometric part, as mentioned above. Before continuing, let us attempt
a definition of “universal unfolding.” Roughly speaking, a universal unfolding
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of g is a parametrized family of mappings G(x, 4, ), where « lies in a parameter
space RF, satisfying the following two conditions:

(@) G(x,4,0) = g(x, 4).

(b) Any sufficiently small perturbation of g is equivalent 0.1)
to G(-, -, ) for some a near 0.

(Remark: We call any parametrized family satisfying (0.1a) an unfolding of
g; this is our description for perturbations of g.)

As we have indicated above, the algorithm given in this chapter divides
into two parts. These extend points (A) and (B) above to a general normal
form. The first four sections of the chapter present the analytical part of the
algorithm; the last six present the geometric part. The principal result from
the first part is the Universal Unfolding Theorem, Theorem 2.3; the principal
result from the second part is Theorem 6.1 which shows that perturbed
bifurcation diagrams can be enumerated by certain open regions in parameter
space. The mathematical techniques presented in these two parts are quite
different. In the first part we continue to use the algebraic constructions of
Chapter II; in the second part we use methods from differential topology
in deforming bifurcation diagrams.

We now summarize the contents of this chapter section by section.
Sections 1-4 together show how to find and work with universal unfoldings.
In §1, we give precise definitions of unfoldings and universal unfoldings.
In §2, we state the Universal Unfolding Theorem, which gives a necessary
and sufficient condition for an unfolding to be universal. Interestingly, the
necessity of this condition is found by considering only traditional one-
parameter perturbations. This derivation leads to a basic concept in our
theory, the tangent space to g, denoted T(g). We defer the proof of sufficiency
until Volume I1, as it is quite technical. One important aspect of this theorem is
that it characterizes the precise number of unfolding parameters needed to
capture all possible perturbed behavior. This number is called the codimen-
sion of the germ g. There are several different ways of defining the codi-
mension of g; the equivalence of these definitions is shown in Corollary 2.4.
In §3, we apply the theorem to compute unfoldings for several normal forms;
the guidance provided by the theorem makes the calculations elementary.
In §4, we extend the universal unfolding theorem in a way that is useful for
applications. Specifically, let G be an unfolding of a germ g, where g is equiv-
alent to a normal form h; we show how to decide when G is universal. We
call this the recognition problem for universal unfoldings. As with the
recognition problem for a normal form in Chapter II, our solution only
depends on G and finitely many of its derivatives at the origin. This is import-
ant for applications, where an explicit formula for G is often unavailable or
unwieldy.

Before describing the second half of Chapter III, we make two comments
about the tangent space T(g) and the universal unfolding theorem.
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(i) Consider a normal form h such that RT(h) has finite codimension.
Once RT(h) has been computed, only straightforward linear algebra is
required to compute T'(h). In fact, for any such germ h there is an integer |
such

T(h) = RT(h) @ R{h,, h;, Ahy, ..., I'h,}.
See §2(b).

(ii) The universal unfolding theorem states that finding a universal unfolding
of h is equivalent to finding a basis for a complementary subspace of
T(h)in &, ;. It is a pleasant fact that the unfolding theorem is relatively
easy to apply, even though it is difficult to prove. The hardest aspect of
applying the theorem is determining R7(g), and we dealt with this issue
in Chapter II.

The second half of Chapter III deals with the geometric part of our
algorithm. The main idea is to show that certain bifurcation diagrams are
unchanged, up to equivalence, by small perturbations; we call such diagrams
persistent. More precisely, we show that a diagram is persistent if its only
singularities are limit points and if no two limit points have the same A-
coordinate. This result leads to an enumeration analogous to Figure L 1.5
of the qualitatively different perturbed bifurcation diagrams. The highlights
of this derivation are as follows. First, we classify the kinds of nonpersistent
behavior. Then we show that the set of parameter values in R* for which
nonpersistent obtains is a finite union of (possibly singular) hypersurfaces
in R*. For example, in Figure I,1.5 nonpersistent behavior occurs along the
two curves o; = 0 and «; = «3/27; the associated bifurcation diagrams are
shown in Figures I,1.6 and 1,1.7. In the general case, as in Figure I,1.5, these
hypersurfaces divide R* into finitely many regions. Any two choices of para-
meter from within one such region give equivalent bifurcation diagrams—
the diagrams must be equivalent, since one parameter may be deformed
into the other without encountering any nonpersistent behavior. Thus these
regions in R* enumerate the different perturbed diagrams.

Section by section, the second half of the chapter breaks down as follows.
Nonpersistent behavior is classified in §§5 and 10; the latter section deals
with the case where singularities may cross the boundary of the neighbor-
hood under consideration. The main theorem is stated in §6. In §§7 and 8,
we apply the algorithm of §6 to a simple example and a complicated example;
the pitchfork and the winged cusp, respectively. In §9, we sketch a proof of
the main theorem from §6. This section is primarily to convey the ideas in-
volved; in a careful treatment we prove the main theorem of §6 as a corollary
of a more global theorem, which we state in §10 and prove in §11. The proof
sections, §§9 and 11, use techniques from differential topology.

Finally, in §12, we describe the path formulation for bifurcation problems.
This pictorial formulation connects bifurcation theory with elementary
catastrophe theory. It has proven useful in finding organizing centers in
certain applications and in analyzing certain specific bifurcation problems.
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We have frequently emphasized that our theory is a local one. Neverthe-
less, often seemingly global properties of bifurcation diagrams can be
derived by studying degenerate local bifurcation problems and their per-
turbations. Already in the model studied in Chapter I, §2 we obtained such
apparently global information. Understanding what the definition of un-
foldings means sheds light on this paradox. We address this point at some
length in §1.

§1. Unfoldings and Universal Unfoldings

In this section we define the basic concepts of unfolding theory, and we
discuss how these definitions relate to germ concepts. The intent of this
discussion is to clarify how a local theory can lead to information about
global behavior.

First we define “unfolding.” This concept is the notion of perturbation
with which we work. Let g be in &, ; ; a k-parameter unfolding of g is a germ

Ge&8, ;.. Wherea = (ay,...,04)€ R¥, such that for « = 0
G(x, 4, 0) = g(x, 4). (1.1)
Here G is a germ in all the variables: x, 4, a,, ..., o. Thus G is defined and

C* on a neighborhood of zero in R*¥*2. The restriction to o = 0 in (1.1) is
compatible with germ concepts.

Let G(x, 4, o), « € R* and H(x, 4, B), € R’ be unfoldings of a germ g,
where | and k need not be equal. Suppose that for each e R, H(,, -, B) is
equivalent to some member of the unfolding G; in symbols,

where 4: R' — R¥. In such a case we would say that all the perturbations in
H are contained in G. Let us formalize this in the following definition.

Definition 1.1. Let G(x, 4, «) and H(x, 4, f) be unfoldings of a germ g. We
say that H factors through G if there exist smooth mappings S, X, A, and A
such that

H(x, 4, p) = S(x, 4, B)G(X(x, 4, B), A(4, B), A(B)), (1.3)

where for § = 0 the following hold: S(x, 4, 0) = 1, X(x, 4, 0) = x, A(4,0) =
A, and A(0) = 0.

We make two comments about this definition.

Remarks 1.2. (a) Since G and H are both unfoldings of the same germ g,
it is natural to require that when f = 0 the equivalence of g with itself in-
duced by (1.3) be the identity equivalence. This is the reason for the conditions
on S, X, A,and A when 8 = 0.
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(b) We do not require that (X(0, 0, 8), A0, B)) = (0, 0); i.e., when B is
nonzero, the equivalence need not preserve the origin. We shall amplify
this point considerably in our discussion below.

An unfolding H may factor through another unfolding which contains
fewer parameters. For example, consider the one-parameter unfolding

H(x, A4, B) = x> — Ax + Bx (1.4

of the pitchfork. Observe that H factors through the zero-parameter unfold-
ing of the pitchfork G(x, A) = x* — Ax; indeed we may let A(4, f) = 1 — B.
The point at wnich the pitchfork bifurcation occurs moves from (x, ) =
(0,0) to (x,4) = (0, f). From a qualitative point of view, this change is
insignificant.

Rather remarkably, for most germs g there are special unfoldings G of
¢ which contain all perturbations of g, up to equivalence. More formally,
such an unfolding G has the following property: Every unfolding of g may
be factored through G. This property is by far the most important property
of a universal unfolding, but is is not quite the definition—we reserve the
term “universal” for an unfolding with this property such that there is no
redundancy in the parameters. The following definition formalizes this most
important concept.

Definition 1.3. An unfolding G of g is versal if every other unfolding of g
factors through G. A versal unfolding of g depending on the minimum number
of parameters possible is called universal. That minimum number is called
the codimension of g.

We augment this definition with the following convention: If g does not
possess a versal unfolding we say that g has codimension infinity.

The following formula gives a versal unfolding of the pitchfork which is
not universal because there is a redundant unfolding parameter. (Cf. (I, 1.13).)

G(x,A) = x> — Ax + oy + a3 x + azx%

As with (1.4), the term «, x may be absorbed into a change of the A-coordinate
and is therefore redundant.

In the next sections we consider how to find universal unfoldings. The rest
of this section is a theoretical discussion expanding on Remark 1.2(b)
above; viz., in (1.2) when § # 0 the equivalence (X, A) need not preserve
the origin in R%. We have already seen a simple illustration of why this is
appropriate in the unfolding (1.4) of the pitchfork. However, the issues
here are far more important than this; in particular, they relate to the
possibility of obtaining apparently global behavior from a local theory.

First let us discuss how such global information may emerge from local
considerations. A single degenerate singularity may split, upon perturbation,
into several less degenerate singularities. For a specific perturbed bifurcation
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Figure 1.1. The winged cusp and a perturbation.

diagram the exact way in which these less degenerate singularities are
connected yields global information about that bifurcation diagram. For
example, we recall from Chapter I, §2 that perturbation of the winged cusp
x* + A% can lead to the bifurcation diagram shown in Figure 1.1(b). Note that
this perturbation of the winged cusp contains four limit points, two of which
are connected to form an isola (i.e., an isolated solution branch). It would
indeed be impossible to understand this behavior merely from a local study
of one point on the perturbed diagram in Figure 1.1(b), but this behavior
follows naturally in a local analysis of the degenerate diagram and its per-
turbations. The point is that as the size of the perturbation tends to zero, all
four limit points in Figure 1.1(b) collapse into a single degenerate singularity;
in other words, for sufficiently small perturbations, the interesting portion
of the bifurcation diagram will be completely inside any given neighborhood
of the degenerate singularity.

Let us relate these ideas to germ concepts. One important aspect of germs
is that they have base points; i.e., a germ is defined locally in the neighbor-
hood of some given point. (For convenience we have set the base point of
germs in &, ; at the origin.) In the unperturbed bifurcation diagram of
Figure 1.1(a) there is indeed a distinguished point which may serve as the
base point of a germ. However, in the perturbed diagram Figure 1.1(b) there
are several, and vital information would be lost by focusing on one to the
exclusion of the others. In other words, for a # 0 in an unfolding, it is of
the greatest importance not to have a base point. But how is this compatible
with germ concepts? The difficulties here are resolved by a careful definition
of unfolding. The simplicity of this definition is deceptive. We defined an

unfolding as a germ in R**2; thus the point x = A=o0; =--- =, =0 is

distinguished, and no other. In conclusion, it might seem that the two notions
(l) Ge éax, Ao

and

(i) (Vo)G(,a)€é,;

are virtually indistinguishable, but this is far from true; because of problems
with base points, the second notion would be wholly unsatisfactory for our
purposes. In fact, historically, this distinction was of importance in the
development of singularity theory.
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§2. A Characterization of Universal Unfoldings

The main objective of this section is to formulate a necessary and sufficient
condition which characterizes precisely when an unfolding is universal.
This result, Theorem 2.3, is stated in subsection (b). In subsection (a), we
present a motivating discussion that in fact leads to a proof of necessity.
In subsection (b), besides stating the main result, we also derive three corol-
laries from Theorem 2.3. Subsection (c) is concerned with how to use the
theorem to derive a universal unfolding of a germ g. Specifically, we show
that only linear algebra is needed to apply the thorem, once RT(g) has been
determined.

(a) Motivation of the Theorem

Suppose that G(x, 4, «), « € R, is a universal unfolding of a germ ge &, ;.
This means, in particular, that all one-parameter unfoldings of g may be
factored through G. In this subsection, we explore the implications of this
factorization.

For any g€ &, ,, consider the one-parameter unfolding of g

H(x, 4, &) = g(x, A) + &q(x, 4).
Since G is universal, H factors through G. Thus we may write
H(x, 4, &) = S(x, 4, &) - G(X(x, 4, &), A(4, &), A(¢)), 2.1

where
S(x, 4,0) =1, X(x, 4,0) = x, A4, 0) = 4, A0)=0. (22

On differentiating (2.1) with respect to ¢ and evaluating at ¢ = 0, we find

o, 3) = $ 105 1, X5, €, AGh )]

e=0
ko 0G

+ 2 Al0) 5 (x 4,0), (2.3),
i=1 o;

where A(e) = (A4,(¢), . . . , Ai(¢)) in coordinates and dot indicates a derivative
with respect to e. The first term in (2.3) is strongly reminiscent of what oc-
curred in the derivation of RT(g) in Chapter II, §2. However, there are the
following two important differences:

(i) Before we had A(4, &) = 4; here A can be any smooth germ;
(ii)) Before we had X(0, 0, &) = 0 for all ¢; this is not required here.

Our treatment of this term is similar to that of Chapter II, §2. We apply the
chain rule to the first term in (2.3) and use (2.2) to obtain

S(x, 2, 0)g(x, ) + g.(x, HX(x, 4, 0) + g,(x, HA(, 0). (24)
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In the following definition we define the tangent space to g as the set of all
germs that can arise from this construction.

Definition 2.1. The tangent space to a germ g in &, ; denoted by T(g), con-
sists of all germs of the form

ag + bg, + cg;,

where a, b, € &, ; and ce &;.

Remark 2.2. Unlike the restricted tangent space, T(g) is not an ideal. The
difficulty lies with the term c(4)g,(x, 1) —multiplication of this term by an
arbitrary germ in &,_; does not preserve its form. This fact is a consequence
of our assumption that changes of coordinates in A are independent of
x. In subsection (c), we discuss how this difficulty affects computations with

T(g).

We now derive a necessary condition for G to be a universal unfolding
of g. We showed above that any germ g€ &, ; admits the representation
(2.3). The first term here is just an element of T(g). The second term is an
element of the vector subspace of &, ; spanned by the k germs

G oG
E(x, 2, 0), ...,égk(x, 1, 0)

since the coefficients A4;(0) are scalars. Thus if G is a universal unfolding of
g, then

G G
E.,=T R<{— ey T . .
X, A (g) + {aal (x’ /l’ 0)7 ) adk (x’ A’ 0)} (2 5)

(b) Statement of the Results

The main theorem in this subject states that the necessary condition (2.5) is
also sufficient.

Theorem 2.3. (Universal Unfolding Theorem). Let g be a germ in &, ;, and
let G be a k-parameter unfolding of g. Then G is a versal unfolding of g if and

only if
G 0G
=T — vy T . 2.
éaJc, A (g) + R{aal (x! As 0)9 ’ 6ak (xa A-& O)} ( 6)

We defer the proof of sufficiency in this theorem until Volume II.

According to Definition 1.3, a versal unfolding G of a germ g is universal
if G contains the minimum number of parameters. The above theorem leads
to a convenient characterization of this minimum number. Specifically,
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the minimum number of parameters in a versal unfolding of g is the minimum
number for which equation (2.6) can hold. But the latter number is precisely
the codimension of T(g), as defined in Definition I1,5.6. We record this fact
in the following corollary.

Corollary 2.4. A versal unfolding G of a germ g is universal if and only if the
number of parameters in G equals the codimension of T(g).

The following special case of the above results is the version we will
most commonly apply.

Corollary 2.5. Let g be a germ in &, of codimension k, and suppose there

exist k germs py, ..., py € &, ; such that
Ee2=T@ @ R{py,....p}- 27
Then
k
G(x, 4, @) = g(x, A) + ) a;pfx, 4) (28)
ji=1

is a universal unfolding of g.

Above we observed that codim g, as given in Definition 1.3, equals
codim T(g), as given by Definition II,5.6. In the last corollary of this sub-
section we show that both these notions of codimension are equal to a third
notion of codimension that we now introduce.

Let ge &, ; be a germ of finite codimension. By the orbit of g we mean
the set of all germs f € &, , that are equivalent to g; in symbols,

(9g= {fegx,l:f ~g}

We think of @, as a “submanifold” of &, ,. Suppose we apply the methods
of Chapter II, §10 to characterize germs equivalent to g by a set of defining
conditions

P(f,Df,....,D")=0 at x=4=0; i=1....,K, (29

and a set of nondegeneracy conditions (i.e., inequalities). Our third notion
of codimension is K — 2, where K is the number of equations in (2.9). This
definition is in analogy with the definition of codimension of submanifolds
in finite dimensions. In a N-dimensional space a system of K equations
(typically) defines a manifold of dimension N — K, or codimension K. Here
we regard @, as the solution set in the infinite dimensional space &, ; of
the K equations (2.9). The minus two arises from the fact that in Chapter II
we considered equivalence of germs with a fixed base point, whereas in the
present context we allow translations in x and A. (Alternatively, given the
fact that every singularity satisfies g = g, = 0, we may regard K — 2 as the
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number of defining conditions beyond these basic two.) In the following
proof it will turn out that because of finite determinacy, the infinite-dimen-
sional set (U, can in fact be analyzed with finite-dimensional techniques.

Corollary 2.6. If g is a germ of finite codimension in &, ,, the following three
integers are equal:

(i) codim g (Definition 1.3).
(ii) codim T'(g) (Definition I1,5.6).
(iii) (the number of defining conditions for g) — 2.

PRrROOF. As noted above, the equality of the first two integers is a direct con-
sequence of Theorem 2.3. To prove equality of the last two we apply some
techniques from Lie groups. The reader not familiar with these concepts
may skip the proof without loss of continuity. Let I" be the group of all
equivalences acting on &, ;/%(g). Since I' is an algebraic group, the orbit
of g in &, ;/P(g) is a smooth submanifold. The tangent space to this orbit
at g is just (RT(g) + &,{19,})/?(g)); that is, those vectors in T(g) generated
by curves of diffeomorphisms (X(x, 1), A(4)) which fix the origin. Thus the
codimension of the orbit of g is codim T(g) + 2. The number of defining
conditions is just the number of equations which specify the orbit of g; this
number is the codimension of the orbit of g. This proves the second equality.

O

(c) Computation of Universal Unfoldings with
Linear Algebra

In Remark 2.2 above, we noted that T(g) is generally not an ideal, in contrast
to RT(g). This means that many of the algebraic techniques of Chapter II
are not directly applicable to T(g). However, in this subsection we show how
these techniques may be adapted to the present context. More specifically,
suppose we wish to find a universal unfolding of a germ g € &, , and that we
have already determined RT(g). In this subsection we show that the calcula-
tions needed to apply the universal unfolding theorem may be divided into
the following three stages, each of which requires only linear algebra:

(i) Determine an integer [ such that

T(g) =RT(Q)® R{gxa 9gas lg}., R} llgl}' (210)
(ii) Decompose T(g) in the form
T =r Tl @V, 2.11)

where V, = T(g) n [Itr T(g)]*
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(iii) Find a basis for a complement to ¥, in the finite-dimensional space
[Itr T(g)]*; in symbols, find linearly independent germs p, ..., p, in
[Itr T(g)]* such that

(Itr T(g)]* = V, ® R{py, ..., pi}- (212)

Then (2.8) provides a universal unfolding for g. In §3 below we compute
universal unfoldings for several examples following these steps. In the present
subsection we prove in general that the various constructions above are
possible and lead to the desired goal; i.e., a universal unfolding for g.

The next lemma, due to J. Damon [1980] is the first step in this program.

Lemma 2.7. RT(g) has finite codimension if and only if T(g) has finite co-
dimension.

Since RT(g) = T(g), one direction of the implication is automatic. We
sketch the reverse implication at the end of this subsection.

Let g€ &, ; be a germ with finite codimension. Let us show that there is
an integer [ such that (2.10) holds. We recall that a typical germ in T(g) has
the form

a(xa A)g + b(x’ A’)gx + c(l)gl
Such a germ is in RT(g) if both b(0, 0) = 0 and ¢(4) = 0. Thus

T(g) = RT(g9) + R{g,.} + &:{9.}- (2.13)

By Lemma 2.7, RT(g) has finite codimension, which implies that A°e€ RT(g)
for all sufficiently large s. Hence A°g, € RT(g). Since RT(g) is an ideal there
is a unique [ satisfying

Xg,¢RT(g) and A'"'g,eRT(g). (2.19)

Equation (2.10) follows from (2.13) and (2.14). (Remark: In many simple
examples (2.10) is satisfied with [ = 0. In particular, this is always true for
quasi-homogeneous polynomials—see Exercise 2.1 for a definition and
further exploration of this topic.)

Concerning (2.11), we repeat the construction of Chapter II, §7 to show
that T(g) has a well-defined intrinsic part. By Lemma 2.7, RT(g) has finite
codimension, so by Proposition I1,5.7, RT(g) contains .#* for some k. T(g),
being larger, also contains .#*. It follows from Proposition I1,7.1 that there
are only finitely many intrinsic ideals .# such that

M= F < T(g).

The sum of all these is the largest intrinsic ideal contained in T'(g), denoted
Itr T(g).

In Corollary II,7.4 we showed that a decomposition of the form (2.11)
is possible for any ideal of finite codimension, and Exercise I1,7.3 extended
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this result to subspaces which contain .#* for some k. Thus this earlier work
shows that the decomposition (2.11) is possible.

Let py, ..., px € [Itr T(g)]* be chosen as in (2.12), where k = codim T(g).
It follows from (2.11) that condition (2.7) holds; thus by Corollary 2.4,
(2.8) is a versal unfolding of g. Since p,, ..., p; are linearly independent,
(2.8) is, in fact, a universal unfolding.

SKETCH OF PROOF OF LEMMA 2.7. We assume that 7'(g) has finite codimension
and show that RT(g) also has finite codimension, reasoning by contradiction.

The first step in Damon’s [1980] proof is to reduce the case where g
is a polynomial. This allows us to consider the equations

g=9¢.=0 (2.15)

over the complex numbers; i.e., as two equations for two unknown complex
scalars.

Suppose that the ideal(g, g, has infinite codimension. This is equivalent
to assuming that RT(g) has infinite codimension since

{9,9x> 2 RT(g9) oM -<g, 9,

If RT(g) has infinite codimension then the solutions of (2.15) are not isolated ;
indeed (2.15) defines a nontrivial algebraic variety in C2. The curve selection
lemma (Milnor [1968], p. 25) allows us to quantify this “nonisolatedness.”
This result states that the solution set of (2.15) contains a nonconstant
smooth curve X(t), A(t), where t is a real parameter, such that X(0) = A(0)
= 0; in symbols,

(@ g(X(@), A@®) =0,

(2.16)
(®) g(X(@®), A®) = 0.
Differentiating (2.16a) with respect to ¢t and applying (2.16b) yields
9:(X(@®), A@®)) - A'(t) = 0. (2.17)

By continuity, either g (X(¢), A(t)) = 0 or A'(t) = 0. The first case coupled
with (2.16) shows that the ideal <g, g,, ¢, > has infinite codimension. Since
this ideal contains T'(g) we have a contradiction. Hence A'(t) = 0.

Since A(0) = 0, we see that A(t) = 0. Thus (2.16) implies

g9(X(@), 0 =0, gX(),0)=0. (2.18)
Now consider the ideal ,# spanned by T(g) and A. It is easy to compute that
F =<g(x, 0), g«(x, 0), 1. (2.19)

Since # o T(g), # must have finite codimension. However, it follows from
(2.19) that ¢ hasfinite codimension precisely when the ideal {g(x, 0), g.(x, 0)>
has finite codimension in & . Thus x = 0 is the only common zero of g(x, 0)
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= g,(x,0) = 0. This means that in (2.18) we must have X(t) = 0, contra-
dicting the choice of (X(¢), A(t)). Thus the ideal (g, g,) must have finite
codimension.

EXERCISES
2.1. We say that g is quasi-homogeneous if there exist positive integers a, f, y such that
g(t*x, tPA) = t'g(x, 1). (2.20)

Let g(x, 1) € &, ; be quasi-homogeneous. Show that g, € RT(g) and that T(g) =

Hint: Differentiate (2.20) with respect to t and evaluate at t = 1.)

2.2. (Discussion) Consider bifurcation problems g(x, ) which are constrained to have a
trivial solution; that is, bifurcation problems such that g(0, 1) = 0. We call two such
bifurcation problems g and h t-equivalent if g and h are equivalent and the equiva-
lence preserves the trivial solution; more precisely, if

9(x, ) = S(x, Hh(X(x, 1), A(2)),

where (X, A, S) is an equivalence, then we require X(0, 1) = 0.
By Taylor’s, theorem, a bifurcation problem with a trivial solution may be
written in the form

g(x, 1) = xf(x, A). 21

Compute T,(g), the formal tangent space to g under t-equivalence. Answer: If g
has the form (2.21), then

T(g) = [{fs x> + {3 1{x} 222)

2.3. (Discussion) Let g(x, A) be a bifurcation problem such that g(0, 1) = 0. If there is a
finite dimensional subspace V of &, ,{x} such that

Eaix} =T@®Y,

we say that g has finite t-codimension, and we define codim, g = dim V. It can be

proved that a t-universal unfolding of g may be constructed from a basis for V.

(Cf. Theorem 2.3.)

(a) Show that x? — Ax has t-codimension zero. (Remark: This singularity is
persistent to perturbations preserving the trivial solution.)

(b) Show that x> — Ax has t-codimension one and that x3 — Ax + ax? is a t-
universal unfolding. Graph the resulting bifurcation diagrams.

§3. Examples of Universal Unfoldings

In subsection (a) we compute universal unfoldings for two simple examples:
the pitchfork and limit point singularities. For these examples we perform
explicitly the steps described in §2(c) above. In subsection (b) we list universal
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unfoldings for several examples considered in Chapter II, along with some
highlights of the computation. Finally in subsection (c) we study further the
three singularities of codimension one that occur in subsection (b). (In fact
these are the only singularities of codimension one.)

(a) Two Simple Examples

We begin this subsection by showing that both
@ G(x, 40 p) =x*—Ax +a+ px? and -
(b) H(x,A,a,p)=x>—Ax +a+ A G.D

are universal unfoldings of the pitchfork, h(x, 1) = x> — Ax. The first step
is to compute T(x*> — Ax). Recall from (I1,6.3) that

RT(x® — Ax) = M> + M{A).
Now observe that
A, = xAe ML) = RT(x® — Ax).

It therefore follows from (2.10) that

T(x® — Ax) = (M> + MLAY) @ R{3x? — A, x},
which is already in the form (2.11), Itr T(x* — Ax) ® V,. Since

[Itr T(x® — Ax)]* = (M3 + M) = R{L, x, 4, x*},
we need only find a basis for a complementary subspace to
V,=R{3x* — 4, x} in R{l,x 4 x*}.

It is easy to see that either {1, x?} or {I, A} form such a basis. Applying
Corollary 2.4, we see that both unfoldings in (3.1) are universal and that the
codimension of the pitchfork is two.

Next we consider the simplest singularity h(x, ) = x? + A. Recall from
(11,3.4) that

RT(x? + 2) = M?* + {A).
A short calculation using (2.10) shows that
T(x* + A) = &4, ;.

Hence the codimension of the limit point is zero and the limit point is its
own universal unfolding. A consequence of this fact is that any small pertur-
bation of the limit point is equivalent to the same normal form. This is the
property of persistence which we will study below; indeed we will show
that the only persistent singularity is the limit point. (Remark: Using the
unfolding theorem to prove that limit points are persistent is a wasteful
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use of mathematical power. In Appendix 1 we give a much simpler proof
based on the implicit function theorem.)

(b) A Tabulation of Some Simple Universal Unfoldings

We list the universal unfoldings and codimensions of several germs in Table
3.1

The calculations involved in completing Table 3.1 are now all elementary.
The main computations are summarized in Table 3.2.

We have shown above that once RT(g) has been computed, the computa-
tion of universal unfoldings uses only linear algebra. We illustrate this by
performing the calculations for one of the cases in the tables; viz., our
academic example g(x, 1) = x°> + x*A + A%, Recall from (IL,6.2) that
RT(x> + x*A + A?) is the entry given in Table 3.2. Next observe that

22g,(x, A) = x3A% 4+ 243 € RT(g).
Thus by formula (2.10)
T(x® + x3A + 23 = (MO + M*Ay + MAP))

@ R{xs + x31 + 2'23 st + 3x31, 9x> 955 Ag}.}

Table 3.1. Universal Unfoldings for Several

Examples.
g codim g Basis for V
1) x"+2 =2 n-2 X, x2, ..., x" 2
2 xX"+ix n=3) n-1 L,x%x3 ..., x" !
(B) X2+ A2 1 1
@ x>+ A2 3 1, x, xA
6) x5+ x31+ A2 6 1, x, x2, A, Ax, Ax>

Table 3.2. Summary of Computations.

g RT(g) T(9)

A x"+12 (=2 M+ M1+ (AD) @ R{1}

Q x"+ix m=3) M+ MDD (A" + MAY) ® R{nx""1
+ 4, x}

3) x*+ A2 M M

@ x*+ A M+ (A7) (M + A%)) @ R{x?, A}

(5) x°+x34+ A% MO+ M + MO M5+ MDD + AP

+ R{x® + x31 + 42, 5x°
+ 3534

+ R{5x* + 3x24, x*
+ 24}
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Observe that the vector space spanned by
x5 4+ x34 + A2, 5x° + 3x3A,and Ag,; = x3A + 242
is the same as the vector space spanned by
x5, x34, and A2

These monimials when added to #° + #*{i) + M{A*) generate the
intrinsic ideal #° + #3*{1) + {A%). The formula for T(x> + x31 + A?)
in Table 3.2 follows from the comment that g, = 5x* + 3x?Aand g, = x> +
24

To complete our calculation of the universal unfolding of x> + x31 + A2
we note that

(M3 + MLy + A = R{1, x, x%, x3, x*, A, Ax, Ax?} (3.2)

whose dimension is 8. To find a universal unfolding for x° + x31 + 4% we
need only find a basis for a subspace of (3.2) which is complementary to
R{g., g,}- Such a complement is six dimensional, and we have chosen a
particular basis in Table 3.1(5).

(c) Singularities of Codimension One

We end this section with a discussion of the universal unfoldings of the three
types of codimension one singularities which appear in Table 3.1; namely,
x2 — 22, x2 4+ 2%, and x3 + A. In Chapter IV, we shall prove that these are,
in fact, the only codimension one singularities. These singularities of co-
dimension one are important in the second half of this chapter. Unlike the
limit point considered above, they definitely are not persistent—a small
perturbation yields a diagram with different qualitative behavior, as can be
seen from the figures.

We call the normal form x> — A? simple bifurcation as it is the normal
form for the simplest bifurcation problem (in the sense of lowest codimension)
in which bifurcation in the classical sense occurs. The bifurcation diagrams
contained in the universal unfolding x> — A> + « are given in Figure 3.1.

The bifurcation problem x? + A2 is called an isola center. This bifurcation
problem was first brought to our attention by E. L. Reiss who observed that
such bifurcation problems appear frequently in the chemical engineering

— X OC

a<0 a=0 a>0

Figure 3.1. Simple bifurcation x2 — A% + a = 0.
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O . no solutions

a<0 a=0 a>0

Figure 3.2. The isola center x> + A% + a =

5//

a=0

Flgure 3.3. The hysteresis point x> — A + ax = 0.

literature. Our discussion of the CSTR in Chapter [ supports this observation.
The bifurcation diagrams contained in the universal unfolding of the isola
center x? 4+ A2 + « appear in Figure 3.2.

We call the bifurcation problem x* — 1 a hysteresis point. The bifurcation
diagrams contained in the universal unfolding x* — A + ax = 0 are pre-
sented in Figure 3.3. The justification for this terminology was given in our
discussion of the pitchfork in Chapter I, §1(e). We note that hysteresis points
yield (when o < 0) the S-curve frequently observed in combustion theory.

§4. The Recognition Problem for
Universal Unfoldings

In this section we consider the following situation which often arises in
applications: Let G(x, 4, ) be an unfolding of a germ g, where g is equivalent
to some normal form h. Is G a universal unfolding of g? We call this the recog-
nition problem for universal unfoldings. Theorem 2.3 provides a way to
answer this question, but an attempt to apply this theorem directly often
leads to unwieldy calculations. In this section we show how to reduce the
calculations, taking advantage of the simplicity of the normal form A, to one
very specific task. More precisely, we show that G is a universal unfolding of
g if and only if a certain m x m determinant is nonzero, where m is the co-
dimension of Itr T'(h). The entries of this determinant are various derivatives
of G. For example, if G is a one-parameter unfolding of a singularity g which
is equivalent to the hysteresis point x> + A, then G is a universal unfolding
of g if and only if

g). 9ix
4.1
det( G, Gu) # 0, 4.1)

whenx =A=a =0.
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This section is divided into three subsections. In subsection (a) we present
some theoretical facts needed to justify our method. We analyze three
explicit normal forms in subsection (b): hysteresis points (mentioned above),
the pitchfork, and winged cusp. For each of these we obtain a characteriza-
tion of universal unfqldings analogous to (4.1). In the last subsection we
briefly summarize the method in general.

(a) Theoretical Basis of the Method

As above, let G be a k-parameter unfolding of g, where g is equivalent to a
normal form h. Combining Theorem 2.3 and formula (2.11) we see that G
is a universal unfolding of g provided

Ea=IrT@@@®V,® R{E(x, 40),..., Qg(x, A O)}. 4.2)
’ 0oy 0oy,

The following lemma provides the first simplification of the calculations.
(Cf. Lemma I1,12.2 concerning the analogous result for RT(g).)

Lemma 4.1. If g and h are equivalent germs in & ;,
Itr T(g) = Itr T'(h).

We prove this lemma at the end of subsection (a).

We will show below that the validity of (4.2) can be tested by calculations
performed in the finite-dimensional space [Itr T(h)]*. Now by Lemma 4.1,
¥, is already contained in [Itr T(h)]*. However, the third summand in (4.2)
is not contained in [Itr T(h)]*. To deal with this difficulty let us construct
explicitly the projection

J: 6, ;> [ltr T()]* (43)
associated to the decomposition
&, = Itr T(h) @ [Itr T(h)]*-. 4.4
We claim that for any f €&, ;
’ 1 -3 ay ja2
Jf=§:me(0,0)x A%, 4.5)

where ) indicates the (finite) sum over monomials x*'4*2 not belonging to
Itr T(h). Certainly Jf e [Itr T(h)]* and (f — Jf) € Itr T(h), so the claim
follows. (Remark: If by chance Itr T(h) = .#**!, then Jf = j*f. This is the
reason for using the letter J in (4.3).)

Lemma 4.2. Let G be a k-parameter unfolding of a germ g of codimension k.
Formula (4.2) is valid if and only if

[tr TW]* =V, + R{J gg(x, A0),...,J gg(x, 4,0)r. (4.6)
Ooty Ooy
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Remark. It follows by counting dimensions that if (4.6) holds, the sum (4.6)
is in fact a direct sum.

Lemma 4.2 provides the foundation for our solution of the recognition
problem for universal unfoldings with linear algebra calculations; i.e., to
prove that G is a universal unfolding of g it suffices to verify (4.6). Now (4.6)
can be verified by computing that a certain determinant is nonzero. However,
to show this, it is necessary to choose a basis for ¥, and this can only be done
on a case by case basis. Let us elaborate. V, may be characterized as the image
of T(g) in [Itr T(g)]* under J. It follows from Definition 2.1, the definition
of T(g), that V, is spanned (as a vector space) by the germs

J(x"2g), J(x"Xg,), J(Xg,), (4.7

where r, s > 0. Of course, by finite determinancy only finitely many of the
terms in (4.7) are nonzero. Even so, there remains the problem of which ones
to select to obtain a basis for V. In attacking this problem, we use information
about the recognition problem for normal forms to make this selection in a
way that requires less computation. However, we prefer to discuss this issue
by example first; thus we consider three specific examples in the next sub-
section, and in subsection (c) we return to a theoretical discussion of this
method.

ProOOF OF LEMMA 4.1. Since g and h are equivalent, there exist S, X, and A
satisfying
h(x, 2) = S(x, 4) - g(X(x, 4), A(2)). (4.8)

Moreover, we can think of the triple (S, X, A) as being a fixed equivalence y
and define the action y(g) of y on g by the right-hand side of {4.8). Since y is
an equivalence, there is an inverse equivalence, which we denote by y~*. In
particular,

1
S(@~'(x, 4)
where @(x, 1) = (X(x, 1), A(1)).

Now suppose p is in Itr T(g). It follows that y~(p) is in Itr T(g) = T(g).
Upon recalling the definition of the tangent space T(g), we conclude that

there is a curve of bifurcation problems g,(x, 1) with go(x, 1) = g(x, 1)
satisfying

y i) = -h(@7(x, A)),

'd_tgt

[IP%L]
t

=77'(p). (4.9)
t=0

(Remark: Here subscript merely indicates another variable on which
g, depends, not a partial derivative.) Applying the equivalence y, which is
independent of ¢, to (4.9) yields

(4 _d @)
p—’y dtgt =0 _dt’ygt t=0'
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Since y(g,) = 7(g) = h, it follows that y(g,) is a curve of bifurcation problems
based at h and that p is in T'(h). Hence Itr T(g) < Itr T'(h). Interchanging
the roles of g and h yields equality. O

ProoF OF LEMMA 4.2. This proof proceeds most naturally by a quotient
space argument. Let

. éax,;‘ b d gx’}_/ltr T(h)
be the standard projection. Then
nolJ =m (4.10)

We introduce 7 for the following reason: A subspace W is a complementary
subspace (to Itr T(h) in &, ;) if and only if (W) = &, ,/Itr T(h).

Now let W =V, + R{G,,, ..., G, }. In this notation the lemma states
that W is a complementary subspace if and only if J(W) = Itr T(h)*. How-
ever, we see from (4.10) that W is a complementary subspace if and only if
J(W) is a complementary subspace. Since J(W) < Itr T(h)* and

&, , = Itr T(H)®[Itr T(h)]*

it follows that J(W) is a complementary subspace if and only if J(W) =
[Itr T(h)]*. O

(b) Three Examples

In this subsection we solve the recognition problem for hysteresis points,
the pitchfork, and the winged cusp, in that order. We treat the first case in
some detail; since all three calculations are rather similar we are somewhat
briefer with the last two.

Proposition 4.3. Suppose g is equivalent to h(x, A) = +x*> + A, and let G
be a one-parameter unfolding of g. Then G is a universal unfolding of g if and
only if

9, Yix
4.11
det(Gm G.. ) #0 (4.11)

atx=A=a=0.

Remark. Since for a = 0, we have G(x, 4, 0) = g(x, 4), in the first row of
(4.11) we could replace g by G.

PRrROOF. To avoid cumbersome notations, we display only the normal form
h(x, A) = x> + A; consideration of the other possible signs is no different.
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We carry out the steps outlined in subsection (a) above. From Table 3.2 we
see that

T(x3 + ) = (M? + ) ® R{1}.
Therefore
[Itr T(g)]* = [Itr T(h)]* = R{1, x}.

The projection J in (4.5) reduces to

‘If = f(05 0) + fx(O’ O)X, (4.123)
or in components
Jf = (f(0,0), £(0, 0)). (4.12b)
According to Lemma 4.2, G is a universal unfolding of g if and only if
R{l,x} =V, + R{J%g}- (4.13)

Now we must choose a basis for the (one-dimensional) space V, from the
list (4.7). At this stage we use information about the recognition problem for
germs. Specifically, since g is equivalent to x* + A we know that

g=9:=9,=0 at x=1=0.
Substituting into (4.12) we see that
Jg =0, Jg, =0, J(29,) = 0.

In other words, on the list (4.7) only the term Jg, is nonzero. Thus, Jg; is a
basis for ¥, and we may rewrite (4.13)

R{1, x} = R{Jg,, JG,}. (4.14)

To conclude, G is a universal unfolding of g if and only if (4.14) holds.
Writing these two vectors in terms of components as in (4.12b) leads imme-
diately to (4.11). O

Remarks. (i) Note that (4.11) contains the derivative g,, which does not enter
into the solution of the recognition problem for the normal form x3 + A.
This is typical—terms which are higher-order in the recognition problem
for normal forms may not be higher order in the recognition problem for
universal unfoldings.

(i1) Since x> + A + ax is a universal unfolding of x> + 4, it is tempting
to think that G is a universal unfolding of g if G,,, # 0. However, we see from
(4.6) that this statement is valid only if g,, = 0. Although g,, = 0 for the
normal form x3 + 4, g,, is not zero for every g equivalent to x> + A.
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Proposition 4.4. Let G(x, A, a, B) be a two-parameter unfolding of a germ g
equivalent to h(x, J) = +x* + Ax. Then G is a universal unfolding of g if and
only if

0 9xa Gxxx
9ax  YGar  YGaxx
Ga Gax Gai. Gaxx
GB Gﬁx Gﬁ}. Gﬁxx

0
0
det #0 (4.15)

atx=A=a==0.

ProoF. We display only the case h(x, 1) = + x> — Ax. From Table 3.2 we see
that

T(x® — Ax) = (M> + ML) @ R{3x? — A, x}.
Thus
Jf = £(0,0) + £(0,0)x + £,(0,0)4 + 3 f(0, 0)x>. (4.16)
According to Lemma 4.2, G is a universal unfolding of g if and only if
R{1, x, 4, x*} = V, + R{JG,, JG4}. 4.17)

To choose a basis for ¥, from the list (4.7), we recall that if g is equivalent to
the pitchfork, then

9=9x=91=0xx =0 (4.18)
at x = A = 0. Therefore
Jg=0, Jxg)=0, J(gy)=0, J(4g)=0.
In other words, only Jg, and Jg, are nonzero in (4.7). We rewrite (4.17) as
R{1, x, 4, x*} = R{Jg,, Jg,, JG,, JG4}. 4.19)

We obtain (4.15) on writing (4.19) in components and using (4.18) to elim-
inate some terms which are zero. Od

Proposition 4.5. Let G(x, A, o, B, y) be a three-parameter unfolding of a germ g
equivalent to h(x, A) = +x* + A% Then G is a universal unfolding of g if
and only if

0 0 Gxxx Gxxa

0
0 0 9ar Yaxx Yixa
det] G, G, G, G,., G, |#0 (4.20)
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PrROOF. We display only the case h(x, ) = +x> + A% From Table 3.2 we
see that

T(x* + %) = (M> + (3)) @ R{x?, A}
Thus
Jf = £(0,0) + £0,00x + £:(0, 0% + 710, 0x* + f3,(0, 0)Ax.
G is a universal unfolding of g if and only if
R{1, x, 4, x%, Ax} = V, + R{JG,, JGg, JG,}. 4.21)

To choose a basis for ¥, from the list (4.7), we recall that if g is equivalent to
the winged cusp, then

9=9x=91=0xx=9ax =0
at x = A = 0. Therefore
Jg=0, J(xg)=0, J(4g,) =0, J(4g,) =0.
We rewrite (4.21) as
R{L, x, 4, x?, Ax} = R{Jg,, Jg;, JG,, JG;, JG,},
from which (4.20) follows. O

(c) Summary

Let us summarize the above method for solving the recognition problem
for universal unfoldings. Let G be a k-parameter unfolding of a germ g,
where g is equivalent to some normal form h. We assume that h has codimen-
sion k. The recognition problem for h must be solved before applying the
present method;in particular, we regard Itr T'(h) as known. The method leads
to a m x m determinant characterizing the universality of G, where m is
the codimension of Itr T'(g).

We isolate the following three conceptual steps in applying the method;
only the second requires actual computations:

(1) Given Itr T'(h), construct the projection J as in (4.5).

(ii) Use the recognition problem for h to eliminate linearly dependent
germs in the list (4.7); this leads to a basis for ¥, say Jp,, ..., Jp, where
l=m—k

(iii) Expand the m vectors

Ip1s oo s ID1 Gy o5 JGyy

in the monomonial basis for [Itr T(h)]* to obtain the desired m x m de-
terminant. Often some of the elements of this matrix are zero, because
of defining conditions in the recognition problem.
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§5. Nonpersistent Bifurcation Diagrams

With this section we begin the second major theme of Chapter III. Sections
1- 4 dealt with the first theme; viz., how to find or recognize universal un-
foldings. The second theme is how to enumerate perturbed bifurcation dia-
grams, given a universal unfolding.

In carrying out the enumeration we focus on the following question:
Which of the perturbed bifurcation diagrams in the universal unfolding of
g would remain unchanged (in the qualitative sense of equivalence) if
subjected to an additional small perturbation? We call such diagrams per-
sistent. Actually, we focus on nonpersistent diagrams. We will show that there
are three sources of nonpersistence; namely, bifurcation, hysteresis, and
double limit points. (See Remark 5.2(i) below concerning the isola center.)
In Figure 5.1 we sketch these three phenomena, along with small perturba-
tions which demonstrate their nonpersistence. In each case, note that the
indicated perturbation changes the number of solutions x as a function of A.

More formally, let G: R x R x R* - R be a universal unfolding of a
germ g: R x R —» R. We isolate the above nonpersistence phenomena in
the following definition.

Definition 5.1.

(@) # = {aeR*:3(x, ) e R x Rsuchthat G = G, = G, = Oat (x, 4, ®)}.

(b) o = {aeR*: 3(x, )eR x Rsuch that G = G, = G, = 0 at (x, 4, a)}.

©) 2= {aeR:3I(x;,x,,)eR x R x R, x; # x, such that
G=G,=0at(x,4a),i=12}

d) Z =% v H uD = transition set.

The following remarks relate this definition to the codimension one bi-
furcation problems studied in §3(c).

Remarks 5.2. (i) We have grouped both simple bifurcation and the isola
center into the set 4, since the recognition problem for each involves exactly

f DC L.,

Bifurcation Hysteresis Double Limit Point

-

Figure 5.1. Nonpersistent phenomena.
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the same equations; viz.,

g=9.=9,=0. 5.1

Only the nondegeneracy conditions are different for these two singularities,
and we have ignored nondegeneracy conditions throughout in Definition
5.1.

(ii) Double limit points did not appear in §3(c) because they are quasi-
global in the following sense: two distinct points are involved in the con-
ditions defining 2. (By contrast, # and 4 only involve one point.) However,
double limit points can occur in arbitrarily small perturbations of a degen-
erate singularity; in this sense this phenomenon is actually a local one.
Consider the example h(x, 1) = x* — 4 — ex? If ¢ = 0, h has a generalized
hysteresis point at the origin, while if ¢ > 0, h has a double limit point at
Ay = —3&2/16. Thus, the global notion of double limit points is necessary
in any local theory which handles small perturbations.

We now argue, at least heuristically, that each of the three sets in Defini-
tion 5.1 is described by a single scalar equation Yo, ..., o) = 0, where
the subscript i equals %, #, or 2. Consider, for example, the defining equa-
tions for 4:

G(x, A, a) = G(x, A, ) = G,(x, 4, a) = 0. (5.2)

If we solve two of the equations in (5.2) for x and A as functions of « and then
substitute the result into the third equation, we obtain a single equation for
o as claimed. Similar considerations apply to ## and 2.

This analysis is subject to three caveats. First, it seems conceivable that
the three scalar equations in (5.2) are not indpendent, which would of course
spoil the argument. However, as it turns out, the hypothesis that G is a
universal unfolding preculudes this possibility, at least in a suitably small
neighborhood of the singularity. We shall not prove this assertion in general;
we will however derive it explicitly for each of the specific examples we
consider.

The second caveat is that the elimination process may introduce singulari-
ties into the defining equation ;. For example, the bifurcation set of the
unfolded singularity

x2 = A 4o + oyl

o, 2_ o, 3
2] \3)°
(See Exercise 5.1.)

The third caveat comes from the fact that we are working over the real
numbers; it may happen that in eliminating x and A certain inequalities

is the cusped curve
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among the o’s appear. For example, consider the following hypothetical
system where k = 2:

x> — o, =0, A=0, o, = 0;
in eliminating x and A from this system one obtains
®Ay = 0, al > O,

a half line in the plane. A second, less academic, example comes from the
double limit point set of x* — A. (This was hinted at above; see Chapter
IV, §3 for more details.)

These ideas have the following simple but noteworthy consequence:
for almost every o € R* the bifurcation diagram

{(x, 1): G(x, 4, a) = 0} (5.3)

consists of nonintersecting regular curves whose only singularities are
limit points. This may be seen by combining the following three facts:

(1) The bifurcation diagram (5.3) consists of nonintersecting regular curves
ifoa¢AB.
(i1) The only singularities which appear on (5.3) are limit pointsifo ¢ Z U .
(iii) & and # are (possibly singular) surfaces in R¥ of dimension k — 1.

We summarize the above discussion in the next theorem. Let us change
coordinates so that G is a polynomial in all its arguments; this is possible
because g has finite codimension. In the theorem, we refer to the following
concepts from algebraic geometry (i.e., the study of polynomials and their
zeros). An algebraic variety S in R¥ is a set which can be expressed as the
simultaneous zeros of a finite number of polynomial equations:

S ={aeR"Pfoy,...,) =0,i=1,..., I}

Loosely speaking, the codimension of S is the smallest number of equations
which may be used naturally in such a representation of S. In particular,
a variety of codimension one is a hypersurface; however this hypersurface
may have certain types of singularities such as self-intersections or cusps. A
semi-algebraic variety is a subset of an algebraic variety which verifies certain
additional polynomial inequalities, say

S'={2eS: Q@ =0,j=1,...,J}.

Theorem 5.3. Let g: R x R — R be a polynomial map of finite codimension,
and let G(x, A, ) be a universal unfolding, also a polynomial. The set Z of Defi-
nition 5.1 is a semialgebraic variety in R* of codimension 1.

It follows from this theorem that R¥ ~ X has finitely many connected
components. We don’t prove either the theorem or this corollary in general,
although we derive both in all specific cases we study. We do remark, however,
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that the equation describing the union £ = # U & U @ comes from the
product

YW (@) o(a) = O,

where y; = 0,i = %, #, or 2, describes the surfaces 4, #, or 9, respectively.
In addition, several inequalities may be needed to characterize X.

EXERCISES
5.1. Find the transition set for the universal unfolding x? — A* + a; + a, 4.
5.2. Find the transition set for the universal unfolding x> — Ax + o; + o, 4.

5.3. Let the I-parameter unfolding H(x, 4, f) factor through the k-parameter unfolding
G(x, 4, o). That is, let

H(x, 4, B) = S(x, 4, )G(X(x, 4, ), A4, B), A(B)),

where S >0, X, >0, A, >0. Show that A:R'— R* satisfies A(%y) < B,
A(H#y) © Hg,and A(Dy) = D, where B, #, 2 indicate the bifurcation, hysteresis,
and double limit sets of Definition 5.1, subscripted by the appropriate unfolding.

54. Let G:R x R x R* be a universal unfolding of some singularity. Show that for

each o € X, the qualitative type of the bifurcation diagram {(x, 1): G(x, 4, o) = 0}
may be changed by an arbitrarily small perturbation.
(Discussion.) Suppose a € . If G(-, -, @) is equivalent to +x> + 42, then the result
is trivial to prove—we know from §3(c) that +x* + A% has the stated property,
and we may use the Universal Unfolding Theorem to deduce itfor G(-, -, &). However
G(-, -, o) might have a very degenerate singularity whose behavior is very difficult
to analyze; how do we know that G still has this property? To show this, we ask
the reader first to prove that if o € 48, then for small # # O the function

G(x, 4, o) + n(x* + A%)

has a singularity equivalent to +x? + 42, and then to perturb G + n(x* + 4%) to
obtain the desired result. The analysis for « € # and « € @ is similar and is also
left to the reader. (Remark: The conclusion of this exercise still holds even if we
restrict to perturbations in the given unfolding.)

§6. Statement of the Main Geometric Theorem

For the most part, in this book we have formulated our results in terms of
germs. With this formalism one may often avoid specifying explicit neighbor-
hoods on which a theorem is valid; this can simplify the statement of results.
The formalism works out best in cases where all calculations are performed
in the neighborhood of some fixed point (x,, 4,); for example, this is the case
with results about 2(g), the higher-order terms associated with a given
germ g. In such cases we have considered in our equivalences only diffeo-
morphisms (X, A) which fix (x,, 4,). However, in cases where we must
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consider diffeomorphisms which leave no point fixed, the formalism of
germs is less satisfactory. Such transformations occur in Definition 1.1, the
definition of one unfolding factoring through another; nonetheless, germ
concepts are still adequate for that topic. In the present section, however,
the germ formalism must be temporarily abandoned.

Let us briefly discuss what goes wrong with germs in the present context.
Suppose g(x, 4) is a germ of finite codimension with universal unfolding
G(x, 4, o), « € R¥. Define X as in Definition 5.1, and let W be an appropriate
neighborhood of zero in R*. In loose terms, the main result of this section
states that if «,, o, belong to the same connected component of W~ X,
then G(, -, @;) and G(, -, a,) are equivalent to one another. In other words,
for each pair a;, a5 in a given component of W ~ X, there is an appropriate
equivalence transformation linking G(-, -, «;) and G(-, -, «,). Since none of
these diffeomorphisms need leave any points fixed, it seems impossible to
pin down the situation adequately with germ concepts.

Nevertheless, the result we seek does follow from local analysis. (We
surely could not hope to prove the global equivalence of G(-, -, a;) and
G(, -, a;) on R x R, even for a; and «, near the origin in R¥.) We will choose
a carefully constructed neighborhood ¥V of the origin in R x R, and then
we will prove equivalence of G(., -, a,) and G(,, -, «,) on V (for suitable a,,
oy € W, as above.) Because we consider diffttomorphisms (X, A) where A
does not depend on x, it is most convenient to take V to be a rectangular
neighborhood of (0, 0); i.e., a neighborhood of the form ¥V = U x L where
U and L are closed intervals. We will say a function g: U x L - Ris C® if
g admits a C*® extension to an open neighborhood of U x L.

We now begin the presentation of our main result. Let g(x, 1) have a
singularity of finite codimension at the origin. We first choose an appropriate
neighborhood U x L of the origin on which to formulate this result. Speci-
fically we will choose U x L such that

(a) g and g, do not vanish simultaneously on (U x L).
(b) g does not vanish on (0U) x L (the top and bottom 6.1)
faces).

Why is this possible? First, since the ideal <{g, g,> has finite codimension,
we may conclude from Corollary I1,5.10 that the origin is an isolated solution
to the pair of equations

g(x, 4) = g,(x, ) = 0.

Thus any sufficiently small rectangle containing the origin will satisfy (6.1a).
To verify (6.1b) we observe that by finite codimension

g(x,0) = ax' + O(x'*1)

for some integer / and some a # 0. In other words, the origin is an isolated
zero of g(x, 0). Let U be a small (closed) interval containing zero such that
no other zero of g(x, 0) belongs to U. Then g is nonzero on U x {0}; by
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continuity we may choose an interval L so small that g is nonzero on (0U) x
L, thus verifying (6.1b).

Let G(x, 4, ®), « € C* be a universal unfolding of g. Now G(-, -,0) = g,
which satisfies conditions (6.1a, b) above. By continuity we may choose a
neighborhood of zero W <= R such that for any o € W

(a) G and G, do not vanish simultaneously on (U x L).
(b) G does not vanish on (8U) x L. (6.2)

In constructing the bifurcation, hysteresis, and double limit point sets
associated to G, we modify Definition 5.1 by restricting (x, 4) to U x L; for
example we take

B ={aeW:3(x,1)eU x Lsuchthat G = G, = G, = 0at (x, 4, ®)},
6.3)

with similar changes for 5# and 2. Recall that the transition set X is # U
H U D.

Theorem 6.1. Let g, G, U, L, W, and X be chosen as above. If o, a, belong to
the same connectec component of W ~ X, then there is a diffeomorphism
(X(x, A), A(A)) mapping U x L onto itself and a positive function S(x, 1)
such that

G(x, 4, ay) = S(x, )G(X(x, 4), A(D), ay).

The diffeomorphism maps each edge of U x L onto itself.

In other words, the persistent bifurcation diagrams in the unfolding G
are enumerated by the components of W ~ X. A priori it is possible that
equivalent diagrams could occur in two different components of W ~ X,
but we have not found any examples where this actually occurs.

When k is large, say k > 4, the determination of X is a nontrivial task.
Even when k is small, the actual construction of the bifurcation diagrams
associated to G, we modify Definition 5.1 by restricting (x, 4) to U x L; for
see in our discusson of the unfolding of the winged cusp in §8, this construc-
tion often proceeds more smoothly by first considering well-chosen transi-
tion diagrams corresponding to o in .

We will prove Theorem 6.1 in §10 as a corollary of a more general result.
A more direct proof is sketched in §9.

§7. A Simple Example: The Pitchfork

In this section we apply Theorem 6.1 to derive the information contained
in Figure 1.5, Chapter I, §1 about perturbations of the pitchfork. (We will
make a similar, but technically more complicated, application to the winged
cusp in §8 below.)
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Let G(x, 4, o, f) = x> — Ax + a + Bx? be the universal unfolding of the
pitchfork, and let U, L < R and W < R? be neighborhoods verifying the
conditions of Theorem 6.1. (In Exercise 7.1 below we guide the reader through
one possible explicit choice for these neighborhoods.) Note that the only
singularity of the unperturbed problem (i.e., solution of g = g, = 0) occurs
at the origin, and of course the choice of U, L, and W guarantees that for
o€ W no singularity can escape across (U x L). Thus the modification
(6.1) of Definition 5.1 has no effect here.

We claim that there are no double limit points for the case at hand. We
will use the following lemma to verify this.

Lemma 7.1. If h(x) is a polynomial of degree 3 or less such that h = h, = 0 at
two distinct points x, and x,, then h = 0.

ProOF. By performing a translation of axes, x - x — x;, we may assume that
x; = 0. Then h(0) = h,(0) = 0, which implies that h(x) has the form h(x) =
ax® + bx?* for some coefficients a, b€ R. Now the two equations h(x,) =
h.(x,) = 0 may be written as a matrix equation

x3 x3\/a
: =0.
3x5 2x,/\b

But the determinant of this matrix equals —x% # 0, which implies that
a=b=0. O

It follows from the lemma that it is not possible to satisfy G = G, = 0
at two points x, and x, for fixed a, f, and 4, since G has degree 3 in x. This
proves the claim. In symbols, 2 = &.

In order to compute # and s# we first calculate

G=x34px>—Ax + a,
G, = 3x* + 2Bx — A,
G, = —Xx,

G,. = 6x + 26,

To determine 4, note that G, = G, = Oimpliesthat x = A = 0. From G = 0
we obtain the equation a = 0. Hence

B={opeW: a=0}
To determine 4, note that G = G, = G, = 0 yields
x = —p/3,
A= —pp,
a = B3/27.
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(1) ©)) X

B I——)B

@ 0]

Figure 7.1. Nonpersistence set for the pitchfork x3 — Ax.
®

(3 4)
Figure 7.2. Persistent perturbations of the pitchfork. (Numbers refer to Figure 7.1.)

—~
N
~

It follows that
H = {(a, peW: o= p>/27}.

As shown in Figure 7.1, W ~ X has four connected components.

According to Theorem 6.1, any two choices of parameters in the same
component of W ~ X give equivalent bifurcation diagrams. Thus to obtain
the associated bifurcation diagram we could graph the solution set

{(x, 1): G(x, 4, a, p) = O}

for one choice of parameters from each region. In practice such calculations
can be shortened considerably by considering the dividing cases in Figure
7.1 (i.e., parameter values on # or #°) as was done in Chapter I, §1. In
Figure 7.2 we indicate bifurcation diagrams for each region of Figure 7.1.

EXERCISE

7.1. (a) Show thatg(x, 1) = x> — Axsatisfies(6.1)when U = [—1, 1JandL = [—1,1].
(b) Show that the universal unfolding of g, G(x, 4, a, f) = x> — Ax + a + Bx?,
satisfies (6.2) for U, L as in (a) and W = {(o, B) e R%:a® + B* < 1}.
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§8. A Complicated Example: The Winged Cusp

In this section we study in detail the universal unfolding
G(x, Ao, B,y) = x> + A2 + pAx + Bx + « 8.1)

of the winged cusp singularity. We use Theorem 6.1 to list the various per-
sistent bifurcation diagrams which can be found in the universal unfolding
G. The details of many calculations will be left to the reader.

Our procedure involves computing the subvariety £ of R? given in Defin-
ition 5.1. For ease of exposition we shall work globally in R x R x R3,
noting that technically our results are valid only on the neighborhoods U,
L, and W of Theorem 6.1.

We begin by observing that the double limit point variety & is empty for
G. This fact follows directly from Lemma 7.1, since G is a cubic polynomial
in x. To find the varieties % and s note that

G, =3x* + yA + B,
G, =24 + yx, (8.2)
G,, = 6x.

Our plan is first to calculate 4 and s# separately, second to construct
Y = % U #, then to list the connected components of R* ~ X and finally
to determine the associated bifurcation diagrams.

Recall that the hysteresis variety J# is defined by G = G, = G, = 0. It
follows from (8.1) and (8.2) that

H = {uy* = —p*; 0 <0} (8.3)

H is the so-called “Whitney Umbrella” and is pictured in Figure 8.1(a). It
is also convenient to graph slices of constant y; this is done in Figure 8.1(b).

A‘ L
B
(a) The Whitney umbrella: s#.
o
/L

=0 y#0
(b) Slices of A# for y constant.
Figure 8.1. The hysteresis variety for the winged cusp.



§8. A Complicated Example: The Winged Cusp 149

> N5

=0 7#0
Figure 8.2. Slices of 4 for y constant (the winged cusp).

The bifurcation variety £ is determined by solving the equations G =
G, = G, = 0 simultaneously. For this it is easiest to give 4 in parametric
form — parametrized by x and y—as:

B = —3x*+ y*(x/2),
o = 2x3 — y2(x%/4). (8.4)

We can now graph slices of & given by y constant. When y = 0, we obtain
the cusp (B/3)° + (¢/2)*> = 0. When y # 0, we claim that one obtains a cusp
curve which is tilted down as indicated in Figure 8.2. Observe-that the
cusp point is defined by do/dx = dB/dx = 0 and occurs at x = y?/12. To
see that the cusp tilts down, compute da/df = —x < 0 at the cusp point.
To complete the picture, show that the two nappes of the cusp never intersect.

We now discuss £ = # U #. From the above discussion it seems most
natural to graph slices of X for y constant. This is done in Figure 8.3. Although
the slices of X for y and —7 are identical we have given both in Figure 8.3
as both copies are necessary in order to determine the number of connected
components in the complement of X. These connected components are
enumerated in this figure. Let us discuss how to obtain this figure.

The graph of X for y = 0 is easily recovered from the discussions of
% and # above. For y = 0, the picture of X is plausible, given that # is a
parabola opening downward and 4 is a cusp curve which tilts down. In order
to confirm this picture we check two points. First, we show that for each
nonzero 7y, # N # consists of two points, one on each nappe; and second,
we show that at the intersection of the left-hand nappe of # with £, these
two surfaces are tangent and cross one another.

The first point is to compute & N #. We do this by substituting the para-
metrization (8.4) for # into the equation (8.3) for s#, thus obtaining the
equation for x

x3(9x — %) = 0. (8.5)
o
B P
1)
@) b
@ @
» O]
#
o y<o y=0 y>0

Figure 8.3. Slices of X for y constant (the winged cusp).
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The two solutions of (8.5) are the two intersections. One intersection occurs
on each nappe of %, since the cusp point occurs at x = y2/12 and this point
is between the two solutions of (8.5). To verify the second item, consider the
solution x = 0in (8.5); this lies in the lower nappe of #. By (8.4),a = f =0
at this point. We claim that at this point the unfolding

G(x,2,0,0,7) = x> + A2 + pAx

has a pitchfork singularity at (0, 0). This is easily checked using the solution
to the recognition problem for the pitchfork (Proposition II,9.2). (See
Exercise 8.1.) Moreover, the two-parameter unfolding G(x, 4, a, f, ) of
G(x, 4, 0, 0, 7) is a universal unfolding; this follows from Proposition 3.4.
Recalling our discussion of the pitchfork in §7, especially Figure 7.1, we see
that # and A are tangent and cross one another ata = f = 0.

Given the pictures in Figure 8.3 it is easy to enumerate the seven connected
components of R* ~ ¥ as is indicated on the figure. Note that regions 4 and
6 and that regions 5 and 7 are not connected in R* < X.

To complete our discussion of the winged cusp, it remains to find the seven
persistent perturbed bifurcation diagrams predicted by the analysis of Z
above. These seven diagrams are given in Figure 8.4, with numbers corre-
sponding to regions in Figure 8.3. We shall use the existence of the pitchfork
ata = B =0,y # 0 heavily in our derivation of these figures.

We begin by graphing a particular diagram in region 1. Let f =y =0,
o > 0. The equation

G(x, 42,000 =x>+A2+a=0
can be solved easily, yielding
x(A) = —(A% + o)t (8.6)

Y o

.

')

1) ) 3)
) .
()] )
)
/ /;_____—
(6) @]

Figure 8.4. Persistent perturbations of the winged cusp. (Numbers refer to Figure 8.3.)
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Figure 8.5. x> + A> + 0 = 0, < 0.

Note that x(A) is C®, since > 0. Thus one sees that the bifurcation diagrams
corresponding to region 1 are typified by graph number 1 in Figure 8.4.

Next we show that if § = y = 0, « < 0 (i.e., the half line opposite the case
above) then the bifurcation diagram is the one shown in Figure 8.5; this has
two hysteresis points. Note that (8.6) is still valid, so there is one solution x
for each A. However, G = G, = G, =0 at (x, 1) = (0, i\/M) while
G,.. G, # Oatthese points. Using Proposition IL,9.1 we see that (0, i\/]_oﬂ )
are both hysteresis points for G(x, 4, a, 0, 0). (Remark: The points we are
considering lie on the line of self-intersections of #.) By Proposition 3.3,
the one-parameter unfolding G(x, 4, a, B, 0) of G(x, 4, a, 0, 0) is a universal
unfolding for either of these hysteresis points. Thus for f # 0, there will be
either 2 or 0 limit points near each hysteresis point, depending on the sign
of B. Since the bifurcation diagrams corresponding to region 1 have no limit
points, it follows that those in region 2 must have four limit points and that
the corresponding diagrams look like the mushroom of case 2 in Figure 8.4.

Now recall that G(x, 4, 0, 0 y) has a pitchfork bifurcation at (0, 0) for
y # 0. The bifurcation diagrams for G(x, 4, 0, 0, y) = 0 are given in Figure
8.6. Let us fix y < O for further discussion. As we saw above, G(x, 4, «, f, y) is
a universal unfolding of the pitchfork G(x, 4, 0, 0, y).

Perturbation of the pitchfork with y < 0 in Figure 8.6 leads to the four
bifurcation diagrams shown in Figure 8.7; this may be derived from our
discussion of the universal unfolding of the pitchfork in §7, especially Figure
7.2. We claim that the four diagrams in Figure 8.7 may be identified with
regions in Figure 8.3 as follows:

Figure 8.7 Figure 8.3
(@) (3)
(b) (6)
(© (7)
(d) (2)

We have already made the identification of (d) with region 2 in discussing
Figure 8.5 above. Since one crosses # when moving from region (2) to region

y<0 y>0
Figure 8.6. x> + A% + yxA = 0.
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-
—\ ’\—
(a) (b)
-
\/—-\I
— 7
© @

Figure 8.7. G = O for a, f small compared with |y|, y < 0. (Perturbation of Figure 8.6.)

(3) in Figure 8.3, the identification of (a) with region (3) follows. On the
other hand, diagrams (a) and (b) correspond to the fat regions in Figure
7.1 (the unfolding of the pitchfork) while diagrams (c) and (d) correspond
to the thin regions in that figure. This leads to the remaining two identifica-
tions: (b) with (6) and (c) with (7). A similar analysis with y > 0 allows us
to complete Figure 8.4.

EXERCISE

8.1. Show that h = x> + A% + yAx has a pitchfork singularity at (x, A) = (0, 0) when
y # 0. Show that x> + A2 + yAx + « + Px is a universal unfolding of h.

§9. A Sketch of the Proof of Theorem 6.1

We must show that if « and § are in the same component of W ~ Z then

G(-, -, a) and G(-, -, f) are equivalent on U x L. The main task in this proof is

to show that G(-, -, «) and G(., -, B) are equivalent when o and f are sufficiently

close to one another and belong to the same component of W ~ X. The

general case may be deduced from this special case by a simple connectivity

argument, and in this sketch we concentrate only on the special case.
Suppose that in fact

G(x, 4, @) = S(x, HG(X(x, 1), A(4), B), ©.1)
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