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Hopf Bifurcation with Dihedral
Broup Symmetry:
Coupled Nonlinear Oscillators

Martin Golubitsky !
Ian Stewart 2

ABSTRACT  We apply the theory of Hopf bifurcation with symmetry developed in
Golubitsky and Stewart (1985) to systems of ODEs having the symmetries of a regular
polygen, that is, whose symmeiry group is dihedral. We consider the existence and
stability of symmetry-breaking branches of periodic solutions. In particular we
apply these results to a general system of n nonlinear oscillators, coupled
symmetrically in a ring, and describe the generic oscillation patterns. We find, for
example, that the symmetry can force some oscillators to have twice the frequency of
others. The case of four oscillaters has exceptional features.

0. Introduction
Systems of differential equations with symmetry can undergo an

analogue of Hopf bifurcation, whereby a symmetric steady state loses
stability and throws off a number of branches of symmetry-breaking
periodic states. A general theory of symmetric Hopf bifurcation was
developed in Golubitsky and Stewart (1985); some of the results have also
been found independently by Sattinger (1984). In this paper we shall apply
that theory to systems whose symmetries are those of a regular n-sided
polygon. More precisely, consider the system of ODEs
dx/dt + f(x,A) =0 (0.1)

where x(t) € RP and A € R is the bifurcation parameter. We suppose that the
dihedral group D, of order 2n acts on RP and that f:RPxR -+ RP {s a smooth

(C*°) mapping commuting with this action of D, so that
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132 MARTIN GOLUBITSKY and IAN STEWART
fpah) = ¥f(A)  (YED)). (0.2)

Further assume that f(O,A\) = 0, so that there is a trivial solution; and that
the Jacobian (df )(0 0) has some purely imaginary eigenvalues. Generically we

may assume that there is only one pair of such eigenvalues, and after
rescaling t in (0.1) we may assume that these eigenvalues are *i. Unlike
standard Hopf bifurcation, these eigenvalues need not be simple. As was
shown in Golubitsky and Stewart (1985), one standard situation {s that the
(real) generalized eigenspace corresponding to the eigenvalues #i{ has the
form WeW where the group acts absolutely irreducibly on W. In the specific
context of D, we assume that W = R? and that D, acts by its s/anoard

representation on R2. Finally, we assume that the critical elgenvalues cross
the imaginary axis with nonzero speed.

In $3 we use a Llapunov-Schmidt reduction to find perioedic solutlons to
(0.1). This reduction allows us to find periodic trajectories of (0.1) by
finding zeros of a mapping g:€2<R -+ €2 which commutes with an action of
D,xS! (where S! is the circle group of phase shift symmetries). The details

of this reduction process are simplified by assuming that p = 4, so that the
vector field itself may be thought of as a mapptng from C2R -+ €2 In §§1-4
we make this assumption; but it must be relaxed in the later sections when
we discuss coupled oscillators.

Note that although we assert the existence of various types of periodic
solution, we do s0f assert that no other solutions exist. On the contrary, we
would expect quite complicated dynamics to be possible, especially in
systems such as the coupled oscillators where the state space has dimension
greater than 4. We do not even claim that we have found all possible
periodic solutions of period near 2m. Further, in numerical simulations we
have observed what appear to be subharmonic oscillations and quasiperiodic
solutions. Chaotic behaviour might conceivably occur in suitable parameter
ranges. The dynamics of these symmetric systems deserves further
attention.

In §1 we show that generically there will be three branches of periodic
solutions of period near 2, bifurcating from the trivial solution at A = 0.
Similar results have been obtained independently by van Gils and Valkering
(1985). Each branch has its own symmetry group, combining spatial
symmetries (from D,) with temporal (phase shift) symmetries (from sl).

The action of the symmetry group anS1 places strong restrictions on

the form of the reduced mapping g, and in §2 we describe the most general
possible form of g. In §3, as mentioned above, we apply the Liapunov-
Schmidt reduction technique and show how this restricted form of g lets us
solve the bifurcation equations by prescribing in advance the required
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symmetries of solutions. In §4 we state conditions on appropriate
coefficients in the general form of g which determine the direction of
criticality and the asymptotic stability of these solutions. (We remark that
coefficients of high order terms, not just those of degree 3, are involved
here, while certain terms of intermediate degree are irrelevant to the
stability assignments.) The results for n = 4 dif fer markedly from those for
other n. Specifically, if n 2 3 and n # 4 then (subject to certain
nondegeneracy conditions stated in §4) in order for any of the three branches
to be stable, all three must be supercritical; further exactly one branch Is
then stable. When n = 4, however, some branches can be stable when others
are subcritical; further, two distinct branches may be stable for the same
values of the coefficlents in f. The detailed situation is summarized in §4.
Also in §4 we relate our results for D, symmetry, as n becomes large, to the

standard results for 0(2) symmetry - the “limiting case” as n -+ o. (See for
example Golubitsky and Stewart (1985) §§ 7, 9, 10, and references therein.)
In particular we explain how the three distinct types of oscitlation occurring
for D, merge to give only two distinct types for 0(2).

we apply these results in §§5-8 to a system of ODEs representing n
nonlinear oscillators coupled together in & ring, with symmetric
nearest-netghbour coupling.  The precise equations, and their symmetries,
are discussed in §S.

In §6 we specialize temporarily to the case of three oscillators. ve
give conditions on the Jacobian that guarantee the existence of the branches
of symmetry-breaking oscillations predicted by our general theory, and
describe the corresponding oscillation patterns. When n = 3 there are two
types of generic Hopf bifurcation, depending on whether the eigenvalues are
simple or double. One is that there is a unique branch of periodic (orbits of)
solutions, on which all three oscillators have {dentical waveforms, {n phase.
The other is that there are three branches of symmetry-breaking
oscillations. On one branch the oscillators have the same waveform but are
phase-shifted by 2m/3. On the second, two oscillators are identical and In
phase, the third behaving differently. On the third branch, two oscillators
have identical waveforms but are out of phase by m; and the third has double
the frequency. We also support these conclusions with numerical
simulations.

In §7 we discuss the case of general n; and in §8 we consider particular
examples when n = 2,4,5.  Again the case n = 4 has several peculiarities of
its own.

we employ the methods and results of Golubitsky and Stewart (1985),
and assume some familiarity with that paper. A brief sketch of the main
ideas may be in order, however. Specifically, suppose that x(t) is a periodic
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134 MARTIN GOLUBITSKY and IAN STEWART

solution of (0.1) (with pertfod scaled to 21) and define an action of anS1 by
(1.8).x(1) = yx(t-8)  (y€D, B €S
where 5! is the circle group. Define the /sotropy subgroup Z. of x(t) to be
% = {(d,8) | ox(t-8) = x(t)} < DxSL.
Then X prescribes the spatio-temporal symmetries of the solution x(t). In§4
of Golubitsky and Stewart (1985), or Sattinger (1983), it {s shown how the
Liapunov-Schmidt procedure may be used to reduce the solution of (0.1),
posed on a suitable space of periodic functions, to a finite- dimensional
bifurcation problem g(v,A\) = O having related symmetries. In the current
context this leads to an action of the group D x5! on V = R%. For v € V there

{s a corresponding notion of {sotropy subgroup in the reduced problem,
namely

z, = {oeDxs!|ov=v}
Define the fixed-point subspace

vE={weV|aw=w forall geZ}.
Then g maps VE to itself. Hence we may find periodic solutions to (0.1) by
restricting the reduced bifurcation problem g to the various VE,  Theorem
5.1 of Golubitsky and Stewart (1985) guarantees the existence of solutions if
dim VZ = 2, Our strategy s thus to find the isotropy subgroups, compute
their fixed-point subspaces, and list those of dimension 2.

In additton, Theorem 8.2 of Golubitsky and Stewart (1985) states that
the stability of the solution branch is determined by the eigenvalues of dg.
We compute these eigenvalues in §3, taking advantage of the symmetries to
simplify the calculations.

1. The Group Action of D xS

(a) Definition of the Group Action.
We begin by assuming that D (n 2 3) acts on C in the standard way as
symmetries of the regular n-gon, and on C2 by the diagonal action
¥(24025) = (¥24¥2,)-
Although D, will in general have many distinct irreducible representations

(there are (n+3)/2 when n is odd, (n+6)/2 when n Is even) there is no real
loss of generality in making this assumption. Essentially it is possible to
arrange for a standard action by relabelling the group elements and dividing
by the kernel of the action. See §7 for further discussfon.

we use the following notation for the elements of D,.  Its cyclic
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subgroup Z,, consists of rotations of the plane through 0,8,28,...,(n-1)5 where
€ =2m/n. The fp x is reflection in the x-axis. Incomplex notation D acts

on C as follows:
(mg).z = el™z,
K.Z=2Z.
To analyse D,-equivariant Hopf bifurcation we need to choose a simple

form for the action of ansl on C2, This we do as follows. The flip x acts
on €2 by (z4,25) » (21.22). we claim that there exists a 2-dimensional
subspace W, c €2 such that

(a) Z, acts irreducibly on W, (1.1)

(b) W @W, = C2 where W, = kW,.
For example, we may choose W,=C{(1,1)}.  Since Z acts trreducibly, 1t
follows that § = 2m/n € Z, acts by e on W,. However, all of the irreducible
subspaces of Z, in €2 have isomorphic representations; thus 2=t1. Replacing
g by -8 if necessary we may assume that L =1, Since x8x = -§ in D, it
follows that € acts by multiplication by e™% on W.,.

Next we describe the action of St on W eW,. Since 5! commutes with
Z,, it follows that S! must have the same invariant subspaces as Z,, (these
belng 2-dimensional). Thus 8 € S! acts by multiplication by e™® on w, for

some m. However, since we restrict our original phase shifts to
2m-periodic functions, the action of 5! must be the standard one, so m = 1.
Finally, since xB = 6x in ansi, the action of 8 on W, is identical to the action

of B on wl.
Thus we have identified the action of ansl on (21.22) € W,8W, with:
(a) ¥(z,.2p) = (e'V2,,67172,) (Yez,)
(b) K(ZI,Z2) = (22'21) (1.2)
(c) 6(zy,2,) = (e'z,,1%,) (8 e 1),
(b) Isotropy Subgroups of D xS*

We wish to compute, up to conjugacy, the isotropy subgroups of ansl.

Since points on the same group orbit have conjugate isotropy subgroups our
method will be to find a representative point on each orbit and then compute
the corresponding isotropy subgroup.  There are three distinct cases,
depending on whether n is odd, n = 2 (mod 4), or n = 0 {mod 4). The results
are given in Tables 1.1 - 1.2
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Table 1.1  Isotropy subgroups of ansl acting on €2, vhen n is odd.

ORBIT TYPE ISOTROPY SUBGROUP FIXED—POINT SPACE  DIMENSION
(0,0) D xS! {(0,0)} 0
(a,0) Z ={(y.~¥)l yeZ,} {(2,,0)} 2
(a,a) Z,(x) {(2442,)} 2
(a,-3) Z,(x,m) {(z44-24)} 2
(a,2,) 1 c? 4
z, # +a,0

Table 1.2 Isotropy subgroups of an51 acting on €2, when n = 2 (mod 4). Note that
zzc.{(oio)l(nl“) } -

ORBIT TYPE ISOTROPY SUBGROUP FIXED-POINT SPACE  DINENSION
(0,0) D"™s! {(0,0)} 0
(3,0) 2 ={(x,~¥)l yeZ,} {(z,,0)} 2
(a,a) Z,(x)® Z,° {(z4s29)} 2
(a,-a) Z,(x,m) @ Z,° {(zys-2¢)} 2
(a,2,) Z,t c2 4
2, # 13,0

Table 1.3 Isotropy subgrowps of Dx51 atting on €2, when n = O (mod 4). Note that
Z,°={(0,0),(m,m).

ORBIT TYPE ISOTROPY SUBGROUP FIXED—POINT SPACE  DINENSION
(0,0) D"xs! {(0,0} 0
(3,0) Z ={(y.-y) yeZ,} {(z,,0)} 2
(a,a) Z,(x)e 1, {(24:2:)} 2
(a,£2™/Ma)  Z,(x8)® L, {(z,,€%™/"2,)} 2
(8,2,) L c2 4

Z, # +a,0
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Observe that in Table 1.1 we also list the fixed-point subspaces for
the isotropy subgroups. Since three of these fixed-point subspaces are
two-dimensional, it follows from Theorem 5.1 of Golubitsky and Stewart
(1985) that there are at least three branches of (orbits under an51 of)

periodic solutions occurring generically in Hopf bifurcation with D,

symmetry. In the remainder of the paper we discuss the generic directions
of branching and stabilities of these solutions. We interpret the symmetries
in §§ 6-8 in the context of coupled oscillators.

We now verify the entries in Table 1.1. If (24,2,) = (0,0) then trivially

the isotropy subgroup is ansl. so we may assume (z,,2,) # (0,0). By use of ©
and x, if necessary, we may assume that z, = a> 0, and that (21,22) = (a,rel?).

We claim that we may assume 0 <y <§/2=m/n [nodd; 0 <y <§ = 2n/n [n
even]. This is trivial if r = 0, so assume r > 0. The group elements in anS1

have the form (mg,8) and (x(mg),8) where m = 0,1,..,n-1. These group
elements transform (a,re'?) to:

(@)  (aelmS+e) pally-mlse) (1.3)

(b)  (relly-ms+0) gplmi+))
respectively. For these group elements to preserve the form (a,z,) we must

assume in (1.3a) that
mg+0 = 21K
and in (1.3b) that
y-m8+0 = 21K
for some integer k. In addition, in (1.3b) it is convenient to interchange the
labels r and a. In this way we conjugate (a,re'?) to
(a) (a,relly-2m) (1.4)

(b)  (are@-v),
Using (1.4) we can translate y by 2§ and flip y to -y. Now when n is odd,
rotations by 2¢ generate the whole group Z,. Hence we may actually

translate y by §, not just 2. It is now easy to show that every y may be
assumed in the interval O < @ < §/2 as claimed. On the other hand, when n is
even we can only assume y is in the interval 0 < y < &.

we now consider the three cases: n odd, n = 2 (mod 4), n = 0 (mod 4).

(1) podd. We first note that if r #a,0 or 0 < y < §/2, then the isotropy
subgroup of (a.re“’) is 1. If r # a, then (1.3b) shows that no element of the
form (x(m&),8) can be in the isotropy subgroup. If r # O, then (1.3a) shows
that the form (a,re'¥) is fixed only by @ = -mg (mod 2m). Thus (1.4a) implies
that (a.re“') is fixedonlywhen @ =m =0, 0r 8 = -1, m = n/2 when n is even.
Since n is odd here, the isotropy subgroup is 1.

It also follows from these calculations that (a,0) is fixed precisely by
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(mg,-mg) € ansl. we have now reduced to the case r=a and y = 0,5/2. When
y = O we have a polnt (a,a) and its 1sotropy subgroup 1s Z,(x) = {(0,0).x}.
similarly, since n s odd, (a,ae'$/?) is in the same orbit as (a,-a) and the
isotropy subgroup 1s Z,(x,m) = {(0,0),(x,m} € DxS™.

Finally, the fixed-point subspaces are easily computed once the
isotropy subgroups are known.

(11) p.= 2 (mod 4). This is similar. In fact Z,° = {(0,0),(m1,m)} acts
trivially on €2 and hence is contained in every isotropy subgroup. Now
(D,xSY)/Z,F = D, ;x5! since D, x8! c D,x5! and (D,,x5')nZ," = 1. There i
one subtle point: the induced action of s1 (when Z,° is thus factored out) is by
e21® not 1%, The same arguments work (with @ replaced by 8/2), but all
isotropy subgroups are augmented by Z,°.

(1i1) n.= O (mod 4). Again (m,m) fixes €2, so every isotropy subgroup
contains Z,°. The previous analysis shows that we may assume

(2,,2,) = (a,re'¥) (0<y<3). (1.5)
If r = 0 then we have (a,0) and the isotropy subgroup is Zn as before.

Otherwise r # 0. We claim that the only elements (1.5) with r # 0 that have
isotropy subgroup larger than Z,° are (a,a) and (a,ae2mi/m,

It follows from (1.4) that for such elements any isotropy subgroup
larger than Z,° must contain an element of the form (x(mg),8) and hence

interchange the coordinates. Thereforer =a. From (1.4) we must have
2mS-y = + 2K
so0 that
g =mg - k.
But m e D, when n is even, so y = m§. Therefore from (1.5)y=0o0ry =8
This leads to the two cases (a,a) and (a,e"/"a). It {s easy to check that the
{sotropy subgroups are as stated in Table 1.3, and that since n = 0 (mod 4) the
two tsotropy subgroups Z,(x)eZ," and Z,(xS)eZ," are not conjugate.

Remark Whenn = 2 (mod 4) the element xg is conjugate to k. To see this
let q = (n-2)/4 and compute

(-g8)(x8)ag) = x(gS+8+q8) = x(Ing) = x1.
It follows that Z(xS)eZ," is conjugate to Z(x,meZ,°% Therefore the entries
in Table 1.3 also apply when n = 2 (mod 4), and provide an alternative
descriptton of the orbit structure in that case.



DIHEDRAL HOPF AND COUPLED OSCILLATORS 139

2. Invariant Theory for an51

In this section we find a Hilbert basis for the invariant functions
€25 R and a module basis for the equivariant mappings €2+ €2 The results
here depend only on the parity of n.

Proposition 2.1 Let m =n[nodd], n/2[n even]; and let n 2 3. Then
(a) Every smooth ansl—invar‘iant germ f:W,eW, - R has the form

f(Zl,Zz) = h(vaisvT)
where N = |21|2+|22|2. P= |21|2|22|2. S= (2122)m+(2122)"‘, and
(b) Every smooth D xS,-equivariant map germ g:W,eW, » W,@W, has the
form

8(z;02,) = A [21] +B 21221]+ C l:il""izz'“]" D [21""122"‘]
2y 22,1 Lz"™ ] 12ym2™
where A,B,C,D are complex-vatued ansl-invariant functions.

Before proving this, we note an easy but useful lemma, which lets us
consider the simpler situation of complex-valued {nvariants.

Lemma 2.2 Let T be agroup acting on C" Letz= (21.....zn) € C", and define
z = (Z,..s2,). Suppose that Ny,..,N. generate (over C) the C-valued
I'-invariant polynomials in 2z,2. Then Re(Ni),...,Re(Ns),Im(N1)....,Im(Ns)
generate (over R) the R-valued I'-invariant polynomials in z, Z.

Proof The R-valued invariants are those C-valued invariants whose values
happen to lie in R. Hence they are generated by the real and imaginary parts
of monomials N,*...N.%. But if p and q are polynomials in z,Z over C then

Re(pq) = Re(p)Re(q) - Im(p)im(q),
Im(pq) = Re(p)Im(q) + Im(p)Re(q).
An induction argument completes the proof. o

We are now ready for the:

Proof of Proposition 2.1 This is obtained by a direct but not always
elegant computation. By Schwarz (1975) and Poénaru (1976) we may assume
that the germ is polynomial. We begin with the complex-valued invariants,
and later deduce the real-valued ones using Lemma 2.2. A general
polynomial map (p:l:2-v R is of the form
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P20,25) = 2. Agpya?s* 24P 221 2" (2.1)
Invartance under x tmplies that
Atxﬂ15 = A,'Gapo (2-2)

Invariance under 8 € §! implies that
Q= z eie(u-ﬂ+1—6)zlo( zlp 221 226.

so only terms such that

x-p+y-6=0 ) (2.3)
can occur. Similarly Z -invariance implies that only terms for which
o-p-y+6 = 0 (mod n) (2.4)
occur,
Define

[opys]- 2,%2,P2,¥ 2,0 + 2,28 2,% 2 0.
Then (2.2) implies that every C-valued invartiant is a C-linear combination of
terms [xpy6]. We note three obvious invariants

P =1{1111] = 2,Z,2,2,, (2.5)

S= [moom] bl 21m izm’iim Z2m'
recalling that m = n [n odd], n/2 [n even]. Now (2.3,2.4) imply that

o+¥ = p+6

o+6 = p+y (mod n)

whence

¥-6 = 8-y (mod n).
Therefore

¥ = 8 (mod m), (2.6)
and

o = B (mod m). (2.7)

We shall use the following identities:

(a) [opy8] = [y6cxBl

(b)  Plopys] = [x+1,B+1,y+1,6+1], (2.8)

(c) S[oxBy8] = [oxem,By,6+4m]+[ox,B+m,y+m,8];

(d)  N[oxPy6] = [oxe1,p+1,%,8]+[cx, By +1,6+1].
we find generators for the invariants by seeking minimal terms [oBy8), not
expressible as linear combinations over C[P,N,S] of terms of smaller total
degree oc+B+¥+6. By (2.8d) minimatlity implies =0 or f=0. Using (2.83) we
may eliminate as redundant all terms except [0py8] and [xOy8]. Now

[oxpy 8] = N[ox,Bry-1,6-1]-Plox, ¥ -2,6-2]

so such terms are redundant uniess ¥ < 2 or § < 2. Thus there are eight
cases to consider:
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(a) [0pos) (b) [0p16] (c) [0Py0] (d) [OBy1] (2.9)

(e) [x008] (f) [x018] (g) [xOy0] (h) [oxOy1l
In (2.9a) we have B+ = 0, so B = § = 0. But [0000] s just a constant. In
(2.9b) p+8 = 1, so the term is [0100] (or [0001] which is eliminated by
(2.8a)). But (2.7) rutes this out. In (2.9¢c) B = ¥ by (2.3), so the term (s
[0B0]. Also B =0 (mod m)by(2.7) so B> m. We have

[oppo] = s{0,p-m,f-m,0]-P[m-1,B-m-1,8-m-1,m- 1]
by (2.8b,c). Minimality implies p-m < O, so § = m. But [OmmO] = 25 by
(2.5,2.8a). In(2.9d) ¥ = p+1 and the term is [0,p,p+1,1). Also B =0 (mod
m) so § 2 m. Now

[0,B,p+1,0] = S[0,8-m,B-m+1,1]-P[m-1,8-m-1,8-m,m].
Minimality implies p < m, so p = m and we get [0,m,m+1,1]). This is a new
generator. The case (2.9e) {s the same as (2.9c) by (2.8a). For case (f) we
have o+1 = 8, & = O (mod m), so we must consider [cx,0,1,x+1). But this Is
equal to S[a-m,0,1,0¢+1-m] - Plox- 1,m-1,m,x]. Minimality implies o = 0. But
[0011] = [1100] by (2.8a), so we get nothing new. In case (2.9g) we have x+Y
=0soo =¥ =0. Incase (2.9h) x+y = 1, and x+1 = §, so the only possiblities
are [1001] and [0011]. But ¥ = & (mod m) rules out the first, and the second
is not new.

Thus the C-valued invariants are generated over C by N,P,S, and
[0,mm+1,1]. We now appeal to Lemma 2.2. Each of N,P,S is already real, so
thetr imaginary parts do not contribute. Also Re[0,m,m+1,1] = 2NS s
redundant. So in addition to N, P, S, we require one further generator T =
2.Im[0,m,m+1,1] to generate (over R) the R-valued Invariants. This
completes the proof of Proposition 2.1(a).

The equivariants are obtained by a similar argument. If :€?» €21s
D xS!-equivariant, write

6(21-22) = (?1(21.22)-(92(21-22))-
There is no reallty condition. Equivariance under x implies that
Po(24125) = Py(z2¢)-
Putting @, = we have
8(2,,2,) = (9(24:2,).9(2:2,))
and it remalns to determine the form of . We seek generators for the
module E(ansl) of DxS!-equivariants over the ring 2(D,xS!) of invariants,

which by part (1) s R[N,P,S,T]. It suffices to find generators for . To see
this, suppose that ¢ = Z IIE) where each I, is invariant, E1 equivariant. Then

x~invariance implies that 11(21'22) = I](zz.zl), S0

141



142 MARTIN GOLUBITSKY and IAN STEWART

So the palrs (E(2y,2,)E{(25:2))) are generators for B(D,x5!) over E(DxS!).
Note further that since there {s no reality condition on g, but S(ansl) =

R[N,P,S,T] is real, the generators come in pairs E, iE.
The general ¢ can be written as a polynomtial in 2,,2,,2,,Z, as before.

This time define

[oPy8] = 2,22, PZ,Y Z,8.
Again we seek to express ¢ by terms that mintmize o+f+y+6. The detalls are
much as in part (a) but there is no analogue of (2.8a). However, (2.8b,c,d)
remain true with the new interpretation of [xpy6]. Using (2.8d) we may
assume &« = 0 or P = 0. Ineach case ¥ < 2 or 8 < 2, using (2.8d) again. Thus
there are the same eight cases:

(a) [0p0s] (b) [0p18] (c) [0By0] (d) [OBy1] (2.10)

(e) [008] (f) [0x018] (g) [ox0¥0] (h) [oxOy1].

Now S!-equivariance implies that only the terms with

o-pry-6=1
occur; and Z -equivariance that

x-B-¥+8 = 1 (mod n).
Thus

x+¥ = 1+f+8

¥ = 6 (mod m)

x = p+1 (mod m).
Now (2.10a) implies O = 1+f+8, a contradiction. For (2.10b) we have f
=§=0, and then 1=0(modm), alsoa contradiction. In case (2.10c) x =
1+B. But

[0,B,8+1,0] = S[0,8-m,B+1-m,0]-P[m-1,p-m-1,8-m,m-1]
unless B-m < 0. But B = -1 (mod m) so p = m-1 and we get a generator
[0,m-1,m,0]. Case (2.10d) implies ¥ = p+2. Now

[0,B,B+2,1] = S[0,-m,B+2-m, 1]-P[m-1,B-m-1,B+2-m,m]
which similarly yields a generator [O,m-1,m+1,1). In(2.10e) & = 1+§ and &
= 0 (mod m). If 8§ = 0 we get the generator [1000). Otherwise

[6+1,0,0,8] = S5[6+1-m,0,0,6-m]-P[§-m,m-1,m- 1,6-m-1]
and is redundant unless 6 = m. This yields the term [m+1,0,0,m]. But

[0,m-1,m+1,1] = N[O,m-1,m,0]-S[ 1000]+[m+1,0,0,m]
and we can remove the generator [O,m-1,m+1,1] and replace it by
[m+1,0,0,m). Case (2.10f) similarly leads to a generator [1011] which we
replace by [2100]. Cases (2.10g,h) lead to nothing new.

Collecting the generators found above we get
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[1000]

[2100]

[o,m-1,m,0]

[m+1,0,0,m]
which yield, respectively, the mappings with coefficients A,B,C,D In
Proposition 2.1b. This completes the proof. o

Note that when n = 4 there are three cubic equivariants
(|21|2+|22|2) [21] [212?1 [21222]
22 ] 2222 13 21222 0
However, when n 2 3, n # 4, onlty the first two are cublc. This has an effect
on the analysis of branching and stability {n D,-Hopf bifurcation in the next

section. This effect also appears in D4 -Hopf bifurcation for representations

having kernel D,.

To tie up one loose end, note that when n = 2 the non-trivial irreducible
representations of D, = Z,8Z, are 1-dimensional and have kernels K such

that D,/K x Z,, so effectively the probiem reduces to sz$1 acting on ReR =
C where Z, acts as minus the identity. The invariants and equivariants for

this action are the same as those of S! on C, namely one invariant generator
x2+y2 and two equivariants (x,y) and (-y,x). This happens because the
Z,-action is the same as that of the rotation m € S1.

3. How to Solve the Liapunov-Schmidt Reduced Equations
It now follows from Golubitsky and Stewart (1985) that when n 2 3 the
branching equations for D -equivariant Hopf bifurcation may be written
g=A [zl] +B [21221']+ c [Zzlm-lzzm]+ D [zlmizzm] -0

where T is the perturbed period parameter. (If further the original vector
field ts in Birkhoff normal form, that {s, commutes with ansi. then A =

A'-(1+T)i where A'(0) = 1.) The way we propose to solve the equations g = 0 is
by restricting g to each fixed-point subspace vZ, This method 1s possible
since g(VZ) € VZ. In Table 3.1 we list the equations for each of the three
maximal isotropy subgroups X when n#4; in Table 3.2 we list them for n = 4.
Note that each of the branching equations consists of a real and an imaginary
part. The imaginary parts of these equations may be solved for T. The real
parts contain the branching information.

Another important aspect of the branching equations is the fact (see
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Golubitsky and Stewart (1985) Theorem 8.2 and Tallaferro (1985)) that the
asymptotic stability of the solutions is determined by the etgenvalues of dg.
The St symmetry forces one eigenvalue of dg to be zero; the signs of the real
parts of the remaining three eigenvalues determine the asymptotic stabtlity.
We list here, and derive below, the signs of these eigenvalues.

The isotropy subgroup of a solution restricts the form of dg at that
solution since for z = (2,2,) we have

(dg),¥ = ¥(dg), (3.1)
For each of the three maximal isotropy subgroups Z, the action of = implies
that dg has two 2-dimensional invariant subspaces; namely the f ixed-point
subspace V, on which Z acts trivially, and an invartant complement V,. See

Tables 3.4, 3.5.

Table 3.4 Branching Equations for D, Hopf bifurcation, n> 3,nodd or n=2 (mod 4). Here

m= { n [n odd]
n/2 [neven].

ORBIT TYPE BRANCHING EQUATIONS SIGNS OF EIGENVALUES

(0,0) - Re A(O,\)

(a,0) A+Ba% =0 Re(Ay+B) + 0(a)
-Re(B) [twice]

(a,a) A+Ba2+CaZ™2.Da? = 0 Re(2A,+B) + 0(a)
trace = Re(B) + 0(a)
det = -Re(BC) + 0(a)

(a,-a) A+Ba?-Ca®™2-Da?™ = 0 Re(2A,+B) + 0(a)

trace = Re(B) + 0(a)
det = Re(BC) + 0(a)
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Table 3.2 Branching Equations for D, Hopf bifurcation, n=0(mod 4),n + 4. Herem = n/2.

ORBIT TYPE
(0,0)

(a,0)

(a,a)

(a'e2nl/na)

Table 3.3 Branching Equations for D4 Hopf bifurcation.

ORBIT TYPE
(0,0)

(a,0)

(a,a)

(a,ia)

BRANCHING EQUATIONS

|

A+Bal=0

A+Ba2+Ca2“"2+Da2'“ =0

A+Ba?-Ca?™2-pa?™ = 0

BRANCHING EQUATIONS

A+Bal=0

A+(B+C)62+Da‘1 =0

A+(B-C)a2-Da?=0

ST6NS OF EIGENVALUES
Re A(O,\)

Re(Ay+B) + O(a)
-Re(B) [twice]

Re(ZAN+B) + 0(a)

trace = Re(B) + 0(a)
det = -Re(BC) + 0(a)

Re(2AN+B) + 0(a)

trace = Re(B) + 0(a)
det = Re(BC) + 0(a)

ST6NS OF EIGENYALUES
Re A(O,\)

Re(Ay+B) + O(a)

-Re(B)
|Bi2-Icl?
Re(2Ay+B+C) + 0(a)

trace = Re(B-3C) + 0(a)
det = |C[2-Re(BC) + 0(a)

Re(2Ay+B-C) + 0(a)
trace = Re(B+3C) + 0(a)
det = |c[2+Re(BC) + O(a)
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Table 3.4 Decomposition of K? into invariant subspaces for T, when n = 1,2,3 (mod 4).

ISOTROPY ORBIT REPRESENTATIVE  INVARIANT SUBSPACES
zn = {(-%¥)} (a,0) Vo = {(W,O)}

V, = {(0w)k (-¥,¥) acts by e~217
Z,(x) or (a,a) Vo = {(w,w)}
Z,(x)eZ,° V= {(w,~w)}; x acts as -Id
Z,(x,m) or (a,-a) Vo = {(w,-w)}
22()<,‘IT)022° Vi = {(w,w)}; x acts as -1d

Table 3.5 Decomposition of R into invariant subspaces for X, when n = 0 (mod 4).

ISOTROPY ORBIT REPRESENTATIVE  INVARIANT SUBSPACES

Z,- {39} @0 Vo = {(wi0)}

V, = ((0,w)}; (-¥.¥) acts by ¥

Zz(x) 922‘: (a,a) Vo = {(W,W)}
V, = {(w,-w)}; x acts as -1d

Z,(x3) o2t  (ae?™/h) Vo = {(w,e?™/W))
V, = {(w, e2™/M)}; x acts as -1d

Of course, the zero eigenvalue has an eigenvector in Vg hence the
other elgenvalue of dglv0 is given by trace dglVo. The remaining two
eigenvalues of dg are those of dglV,.

To compute these it is convenient to use the complex coordinates
(24,2,)- Recall that an R-linear mappingon C = R2 has the form
w B Ow+W
where o,p € L. A simple calculation shows that
trace = 2 Re(x),  det = |o? - |2 (3.2)



DIHEDRAL HOPF AND COUPLED OSCILLATORS

we are now in a position to compute the eigenvalues of dg for each maximal
{sotropy subgroup Z. For this purpose we write g in coordinates:
(@) 7, = Azy+Bz,22,+CZ,™12,MsD2,™1Z,", (3.3)
(b)  Z, = Azy*B2,22,+C2,"Z,™1+DZ M2, ™1.
In these coordinates dg takes the form
dg |Wq [= |Z12,W1*Z13,W1*T12, W2 213, %2 (3.4)

Tables 3.4, 3.5 show that for all n the computations will be very
stmilar for the isotropy subgroups Zn. and for Z,(x)[#Z,); but the third case,

namely Zz(x.n)[ez.;] and Z(xS) oZ,", will differ according to the value of n

(mod 4). Further, when n = 4 additional low-order terms occur, so the
results will be different in that case.

Case Zn: The first eigenvalue is the trace of dglVo, which i{s the mapping
w = (dg)(w,0) = 21.21“' + me'
From (3.3) the trace s 2 Re Z, 24 A computation yields
2 2 4
Zy,,(a,0)= A+ A@®+ 283" + By
Since A+Ba? = 0 along Zn solutions we obtain the first entry tn Tables 3.1,

3.2, 3.3.
To obtatn the remaining eigenvalues in this case, note that when n # 4,

dglv1 must be a (scalar multipte of a) rotation matrix since it commutes with
e~2Y, Thus the eigenvalues of ngV1 are either complex conjugates, or real
and equal. In etther case the required sign is equal to that of the trace. Now
dglV, s
w = (dg)(0,w) = 22.12“’ +1, jzv‘v.

Using (3.3) we see that the trace of this map Is 2 Re 22.22' As above we
compute Z,,, (a,0) = A = -Ba.

However, if n = 4 then e~217 = -1, so we cannot assume that ddv, is a

rotation matrix. Thus we must compute both the trace and determinant of
dglv,. We find:

trace = 2Re(-B)a?,
det = (|BJ? - |c|2)a.

Case Z,(x) or Z,(x)eZ,%: The first eigenvalue in this case is the trace of the
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mapping dg|V,, which is

w = (dg)(w.w).
In coordinates this is
W (Zulirluz)w + (zﬁ;zuz)w.
Its trace is 2 Re (Z 1 .21+21 _22). To evaluate this we compute

2 3 2m-1 2m+1 2m
(a) Z, .zl(a.a) =A+ Azla+28a +lea +Czla *Dz18 +(m+1)Da
- Azia+B':12+lea3—(:512"“'24:21&2"'“1 +smDa?™ +Dziaz‘“*1. (3.5)
3 2m-2 2m-1 2m+1
(b) 21.12(9'3) = A‘2a+Bzza +mCa *sza +Dzza _

Observe that Nzl(a.a) =a= Nz2(a.a); le(a.a) =30 = Pz2(a.a): Szlta,a) = ma?™1 =

512(a.a); and Tzl(a.a) =0 = Tzz(a.a). Thus le = fl2 for any invartant function
f, evaluated at (a,a). It follows from (3.6) that trace uglv0 =

2Azla+Ba2+Zlea3+(rn— 1)C 62“"2+2Czlaz“‘1 +mDa?™® +2Dzla""“’”1
. { (2A+B)e? + 0(a?) ifnz4,
(2A+B+C)a? + 0(a%) ifn=4.

This gives the corraesponding entry in Tables 3.1, 3.2, 3.3.
To compute the remaining two eigenvalues in this case, we must find

det and trace of ngV-l. In coordinates, this mapping 1s
w = (dg)(w,-w) = (Z, -11_21 -Zz)w +(Z, ,il'zl jz)w.
Its trace is 98(21.21’21.22) which we can compute directly from (3.5)

obtaining
2 2m-2 2m
Z, rzl(a,a)-Z1 r22(a.a) = Ba*~(m+1)Ca“™ “+mDa
_(Ba?+0(a°) ifned, (3.6)
(B-3C)a%+0(a%) ifn=4.
To evaluate det ngV1 we must first compute
2,3 1(a,a)—Z1 52(3.3) = Ba2+(m-1)Ca?™-2-mDa?™. (3.7)
From (3.3,3.6,3.7) we have
det dglV,
= Iiaaz-(rm1){:ta""“'2+mDaz'“IZ-IBa2o(m—1)(:512"“2—m032"‘|2
_(-4m Re(BC)a?™ + 0(a®™1) 1fn#4,
8(C[2 - Re(BC))a" + 0(a®) ifn=4.

Case Z2(x,n) or Zz(x,n)022°: The calculations in this case, which holds

when n is odd or n = 2 (mod 4) are almost identical with those in the previous
case, hence we shall be brief.
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The first eigenvalue is trace dglvo = 2 Re(Z, -21-21 ’22) evaluated at (a,-3).

Calculate
2 3 2m-1 1 2m
Zy 'zl(a.-a) = A+Azia+ZBa +Bzia —[Czla +Dzlaz"" +(m+1)Da“™)

= A,a+Ba’B, a*Ca?™2-[C, a?™1D, a?™!+mDa®"),
2, (@) = Azla+Bzza3+mCa2“"2-sza2'“'1—02232'“*1.
Observe that at (a,-a) we have N, =a = Ny Py = as = P35, - (-1)Mg2m-1 o
-Szz; and Tzl =0 = T12. Therefore le(a.—a) = -flz(a.-a) for any invariant

function f. It follows that
trace dglV, = 2(AN+B)a2 + 0(a3).

Also
2),(8,m8) + 7y 2,{-a) = Ba2+(m+1)Ca®™2-mDa?™,

Hence
trace dglV, = 2 Re(B)a? + 0(a3).

To compute det dglV, we evaluate
Z)3 (a-a)+y 3 (8,-8) = Ba2-(m-1)Ca?™2:mDa?™,
Thus det dglv, =
IBa2+(m+1)Ca?™2-mDaZ™2-|Ba%~(m-1)CaZ™2-mpa2m?2
= Bm Re(BC)a?™ + 0(a2™!),

Case Zz(xg)ozzc. This is the final case, and applies for n = 0 (mod 4). Define
® = 82"/ oo that @™ = -1. Then Vp = {(2,02)} and V, = {(z,-w2)}, where the
action of xS on V, is by -Id. For this calculation
dglvy = (Z, ,21""421 zz)w +(Z, j1+m21 jz)v‘v.
On the orbit (a,na) we have Nzl(a.ma) =3 = msz(a.ma); le(a.ma) =3 =
i 2m-1 3

szZ(a.ma). Szl(a.ma) = -Ma = mszz(a.ma). and Tzl(a.ma) =0 = me(a.ma).
Thus le = mf12 for any invariant function f, evaluated at (a,0a).

When n > 4 the calculations are much the same as in the previous case,
except for higher order terms. We omit the detalls.
Whenn=4wehavew=1. On V we need only the trace of dg, which is

2 Re(2A,+B-C)a? + 0(a%).
on V1 we need both trace and determinant. The trace is
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2Re(Z,, 17y ,,) = (B+3C)a? + O(a?).
The determinant is
12,712, J2|2 1245125,
= (IB+3C[2-[B-C[?)a* + 0(a°)
= 8(|c|2 + 2Re(BC))a? + 0(ad).
This completes the calculations for Tables 3.1, 3.2, 3.3.

|2

4. The Generic Situation
In this section we use the information contained in Tables 3.13,b to
derive bifurcation diagrams describing the generic D, -equivariant Hopf

bifurcations. wWhen n # 4 we assume the nondegeneracy conditions
(a) He(AN+B) 20,
(b) Re(B)=#0,
(c) Re(2A+B) #0, (4.1)
(d) Re(BC)=0,
(e) Re(A))#0,
where each term is evaluated at the origin. When n = 4 we assume the
nondegeneracy conditions
(a) Re(A+B)#0,
(b) Re(B)#0,
(c) Re(2A+B+C) #0,
(d) Re(B-3C)#0,
(e) Re(B+3C)=0, (4.2)
(F)  IBl*-Ici# o,
(g Ic|>-Re(BL) 20,
(h)  Icl?+Re(BC) # O,
(1)  Re(A,)#0.

The main result is:

Theorem 4.1 Assuming the nondegeneracy conditions (4.1) or (4.2), there
exists precisely one branch of (an orbit of) small amplitude,
near-2m-pertodic solutfons, for each of the isotropy subgroups Zn; Z,(x) [n

odd] or Z,(x)eZ,° [n even]; and Z,(x,m) [n odd], Z,(x,m)eZ, [n = 2 (mod 4)],
Z,(x3)eZ,t [n = 0 (mod 4)). Assume that the trivial branch is stable

subcritically and loses stability as A passes through 0. If n 2 3, n # 4, then:
(a) The Zn branch is super- or subcritical according as Re(Ay(0)+B(0)) is
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positive or negative. It is stable if Re(A,(0)+B(0)) > O, Re B(0) < O.
(b) The Z,x)[eZ,5] branch 1s super- or subcritical according as
Re(ZAN(O)+B(0)) is posttive or negative. It is stable if Re(2A,(0)+B(0)) > O,

Re B(0) > 0, and Re (B(0)C(0)) < 0.
(c) The Z,(x,m)eZ,°] or Zy(x%)eZ,® branch is super- or subcritical

according as Re(2A\(0)+B(0)) is positive or negative. It is stable if
Re(2AN(0)+B(0)) > 0, Re B(0) > 0, and Re(B(0)C(0)) > 0.

If n = 4 then:
(d) The 24 branch is super- or subcritical according as Re(A{0)+B(0)) (s

postive or negative. It is stable if Re(A,(0)+B(0)) > O, Re B(0) < 0.

(e) The Z,x)eZ," branch is super- or subcritical according as
Re(2A,(0)+B(0)+C(0)) is positive or negative. It is stable if
Re(2AN(0)+B(O)+C(0)) > 0, Re(B(0)-3C(0)) > 0, and |C|2-RE(B(0)C(0)) >0,

(f) The Z,(x8)eZ,f branch is super- or subcritical according as
Re(2AN(0)+B(0)-C(O)) is positive or negative. It is stable if
Fie(ZAN(O)+B(0)-C(O)) > 0, Re(B(0)+3C(0)) > 0, and |C|2+Re(B(0)E(O)) >0.

Proof The existence of the stated branches follows from Theorem 5.1 of
Golubitsky and Stewart (1985). We consider their direction of criticality
and stability, using the results of §3. First suppose n2 3, n # 4. To lowest
order the three nontrivial branches are given by:

(@) X =-a°[Re(A{0)+B(0)]/Re A\(0) + .. 2,

(b) A = -a° [Re(24,{0)+B(0)/Re A(0) + ... Z,(x)[®Z,f] (4.3)
(c) = -a2 [Re(2A{0)+B(0))/Re Ay(0) + ... Z{k,m)®Z ).

We assume that our system of ODEs has the form dz/dt + g(z,\) = O, so that
eigenvalues of dg with gositive real part indicate stability. We also assume
that the steady state z = 0 is stable for A < O and loses stability when A > 0.
Hence Re Ax(o) < 0. Wwith these assumptions we can draw the bifurcation

diagrams in Fig. 4.1. Note that the two Z, branches are either both

supercritical or both subcritical.
We see that for any periodic solution to be asymptotically stable, all
three branches must be supercritical. Then either the Zn branch is stable (if

Re B(0) < 0); and precisely one of the Z, branches is stable (1f Re B(0) > 0).

Which of these branches is stable depends on the sign of Re(B(0)C(0)). Note
that AN(O) and B(0) are cubic coefficients, but C(0) is the coefficient of a
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Zz(")
fzz(,c',,) ReB(0)
Ll -

s ReAN(O)

Zi _-Za(x)
Y et 21X

Figure 4.1 Generic branching for D, Hopf bifurcation, n2 3, n # 4. For any branch to be stable, all

three must be supercritical. Exactly one branch, which may correspond to any of the three maximal
isotropy subgroups of ansl,is then stable. [Note that the label Zx(k,1r) should be changed to Zx{x()

when n = 0 (mod 4), and that the summand Z,° is suppressed in the labelling.]

term of degree 2m-1. Moreover, that term is needed to determine which of
the Z, branches is stable, /nagpendent of the many lower order lerms Ihat

may exist.
when n = 4, however, there are /#ee linearly independent cublic terms
in g. Inthis case the branching equations take the form

(a) = -aZ [Re(A(0)+B(0)]/Re A(0) + ... Z,
(b) X = -a2 [Re(2A{0)+B(0)+C(0)]/Re Ay(0) + ... Z,(x)oZ,t (4.4)
(c) X =-aZ [Re(2A,{0)+B(0)-C(0))/Re A\(0) + .  Zy(XS)0Z .

The possible configurations of branches that involve s/ab/e solutions are
shown in Fig. 4.2. (Differences in stability assignments of unstable branches
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(8) B<0. Inregions 1, 3,5, 11, 12 the 2+hranch is supercritical and stable. In region 2 the Z,_
branch i3 supercritical and stable; the Zx{xZ) branch is supercritical and can also be stable depending on
a combination of higher order coefficients. Inregion 4 a similar statement holds for the Z5(x) branch.

Figwre 4.2 Generic branching for D4 Hopf bifurcation. An asterisk denotes a branch whose stability

depends on high order terms in Table 3.3, not included in the coordinates of the diagram. Solid tines
indicate stable branches, dotted lines unstable.
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(b) B>0. The 2,,branch is never stable. In regions 2 and 13 the Z(x}) branch can be stable for
suitable high order coefficients. In regions 4 and 11 the Zo{x) branch can be stable for suitable high
order coefficients. Inregion 3 either the Z(x) branch, or the Z(x{) branch, or both, can be stable for
suitable high order coefficients; hovever, they cannot both be unstable.
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are not indicated, for simpticity, but may be derived from Table 3.1b.) We
note two interesting features where the case n = 4 differs from all others

(assuming the standard action of Dn):
(8) The two Z2 branches need not have the same direction of criticality.

(b) More than one branch may be stable for the same values of the
coefficients of g. That is, the system may have non-unique (orbits of) stable
states. Indeed for any choice of two out of the three tsotropy subgroups we
are considering, there are parameter values that make both of these two
branches stable, but the third unstable. It is s0/ possible to have all three
branches stable simultaneously.

Remark InFigure 4.2 those branches marked with an asterisk are stable or
unstable depending on the high-order coefficients noted in Table 3.3. Both
possibilities can occur with suitable choices of coefficients.

In one case, namely case 3 of Figure 4.2b, there are two branches
whose stabilities depend upon higher order coefficients. Either one of
these, or both, may be stable; but it is easy to see that they cannot both be
unstable, since this would require CJ? to be negative.

Relation with 0(2)-symmetric systems
Dihedral group symmetry D, often arises when a continuous system,

having circular 0(2) symmetry, is approximated by a discrete one. It may
seem curious that there are #ree classes of isotropy subgroups with
2-dimensional fixed-point spaces for D, however large n is, but only /wv

classes for the "limit" 0(2). An analysis of this sheds some light on the
approxtmation of a continuous system by a discrete one.
In algebraic terms what happens is that the solutions with the two zZ,

isotropy subgroups “merge” as n -+ oo. Solutions of these types differ by a
vanishingly small amount for large n. For example, consider for
deftniteness a tower

DycDgeDc...

The Z, solutions are those with isotropy subgroups Z,(x)®Z,* and Z,(x8)eZ,t.

Now x and x§ are both reflections: the first in the real axis, the second in a
line making an angle 1/n with the real axis. These lines approach each other
for large n.

In addition, the coefficient C that determines which of the two
branches is stable is attached to a term of increasingly high order as n - c.
Thus the distinction between the stabilities becomes more delicate.

Geometrically, we can picture the relevant periodic solutions in the
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following way. For D, think of a torus, on which n stable periodic

trajectories are separated by n unstable ones, as in Figure 4.3. These
correspond to the pair of Z, branches. As n -+ oo We get increasingly many

closed trajectories, and the degree of instability weakens. We approach &
torus foliated by a continuous family of periodic orbits, newirally stable to
displacements around the torus.

Figere 4.3 A torus on which n stable periodic trajectories are separated by n unstable ones. Each
family of n trajectories corresponds to an orbit under Dy, of one of the two Z; solutions.

5. Oscillators Coupled in a Ring
As an example of a problem having D, symmetry we consider a system

of n identical oscillators coupled in a ring, as in Fig. S.1.

Figare 5.1 Aring of coupled identical nonlinear oscillators.
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Such problems have been studied by a number of authors, including Alexander
and Auchmuty (1986), and Van Gils and Valkering (1985). Applications
include in particular chemical oscillators and biological oscillators (cells
coupled via membrane transport of ions). The situation is considered in the
seminal paper by Turing (1952) on morphogenesis. Tsotsis (1981)
discusses the problem in the context of chemical reactors. Surveys in the
literature include Winfree (1980), De Kleine, Kennedy and MacDonald (1982),
and Kopell (1983). The case of two oscillators has been discussed by Othmer
and Scriven (1971), Smale (1974), and Howard (1979). We shall describe the
generic behaviour, paying particular attention to the cases n € 5. The
results should prove applicable in a number of physical contexts. In this
section we set up the equations and discuss their symmetries. In §6 we
analyse the three-oscillator case, finding conditions under which purely
imaginary eigenvalues can occur, deriving the corresponding representations
of D5, and listing the patterns of oscillation that generically can occur. In §7

we generalize the methods to the general case of n oscillators. In §8 we
discuss as examples the cases n = 2,4,5 and compare our results with those
of Alexander and Auchmuty (1986).

For simplicity we assume that the coupling is "nearest neighbour" and
that it is symmetrical in the sense that the interaction between any
neighbouring pair of oscillators takes the same form. [The "nearest
neighbour” assumption may be relaxed, with minor changes in our
conclusions, provided the symmetry is retained; and the method may be
applied to systems having other kinds of symmetry - for example four
oscillators with any two interacting identically, a system with tetrahedral
symmetry.]

For purposes of illustration we shall use a fairly concrete system of
equations with linear interaction. Oscillator p will be described by two state
variables (xp,yp) and p will be taken mod n. Then we have a system of n

equations

d = X - S =

/d,(xp,up) F(xp,gp'7\)+K()\).(2xp Xp-1 xpd.ZQP Yp-1 Up+1)' (5.1)
Here F:RZ + R? is an arbitrary smooth function and A 1s a bifurcation
parameter. For each \, the matrix K is constant:

K= (K11 K2

ka1 kgpf:

The k11 (which depend only on \, and might be constant) represent “coupling
strengths”. The form of the equations is chosen so that the coupling term in

K vanishes if all oscillators behave identically. (The bifurcation parameter
A may be present in F, or K, or both, depending on interpretation.)
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For theoretical discussion and proofs we abstract from this system its
symmetries, and consider the more general system
de/dt N 9("p-1"‘p-"p+19‘)° (5.2)
Here p is taken mod n and runs from O to n-1, and Xy € R for some k, so the

system (5.2) is on R, (We shall see below that k > 2 is required for Hopf
bifurcation, and henceforth assume this.) We require g:R\xR<R¥xR -+ Rk to
be a smooth function with the symmetry property
g(u,viwil) = g(w,V,u;)). (5.3)
It is easy to check that (S.1) has this symmetry when written in the form
(5.2). Note that in (5.3) we do 70/ assume linearity of the coupling.
The system (5.2) has D, symmetry. The action of Z, c D, Is to permute

the Xy cyclically; the action of the flip x sends Xy to x 5 This symmetry is

reflected in the types of generic Hopf bifurcation that may occur, as we shall
now see.

6. Threae Oscillators
In this sectlon we find conditions under which equation (5.2) can

possess purely tmaginary eigenvalues, and use group theory to analyse the
resulting generic patterns of oscillation. To avoid complicating the
argument with group-theoretic generalities we first consider the case of
three oscillators, which tllustrates the main principles. The general case s
similar, and will be easier to describe once the method has been illustrated
forn=23. -
Equation (5.2) becomes
dxg/dt = G(XpXgeX43)
dx,/dt = g(xgeX;sX05N) (6.1)

dx,/dt = g(X, X0 X3 M)
where Xy € RX and ) is a bifurcation parameter. Suppress the A-dependence

in the notation and write (6.1) as
dx/dt = G(x)
where X = (XX,.X,) € R, Then we summarize the results of this section

as:

Theorem 6.1 Suppose that L = (dG)(o,x) has a pair of purely imaginary '

eigenvalues #i (without loss of generality at A = 0) which cross the
imaginary axis with nonzero speed as A passes through 0. Let A, B be the
matrices of partial derivatives d"is and deG' restricted to the spaces of
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Xy,Xg-variables respectively. Assume that the corresponding

Liapunov-Schmidt reduced system s nondegenerate in the sense of (4.1).
Then either:

(a) The purely imaginary eigenvalues are those of A+2B, and are simple.
There is a Hopf bifurcation at A = O and all three osctllators have the same
waveform and the same phase.

(b) The purely imaginary eigenvalues are those of A-B and have multiplicity
2. There are three branches of symmetry-breaking oscillations, with the

following patterns:
Isotropy subgroup 23: The osclllators have the same waveforms but with

phase shifts of 21/3 from one to the next.
Isotropy subgroup Z,(x): Two oscillators have the same waveform and

same phase; the third oscillates with the same period but a different

waveform.
Isotropy subgroup Z,(x,m): Two oscillators have the same waveform but

are 1 out of phase; the third oscillates with half the period.

Remarks 6.2

(a) we can rescale time so that any given pair of purely imaginary
eigenvalues is ti, and the corresponding periodic solutions will then have
periods near 2m.

(b) The assumption of nondegeneracy tn this theorem is generic for the full
oscillator equations (6.1). We sketch a proof. First observe that the form of
G in (6.1) is the most general Ds-equivariant mapping on R, Let W be the

eigenspace for the appropriate purely imaginary eigenvalues of G. Then the
Liapunov-Schmidt reduced function g is defined on W, and determines the
types of Hopf bifurcation that may occur. The direction of criticality of any
branch predicted by our theory, and its stabiiity, are determined by a finite
number of Taylor coefficients of g. If T {s the perturbed period parameter,
these coefficients do not involve t-derivatives. Let k be the highest degree
involved. Then the Liapunov-Schmidt reduction defines a polynomial mapping
p from the coefficlents of degree < k {n the original mapping G to those of g.
We clalm that p is a surjection to the space of nonzero coefficients (of terms
not involving ) of the D3x91-equivarlant mappings on W. To see this, note

that any D3x51-equivarlant mapping h on W extends to a D3x81~equivarlant

mapping H on R*, for an appropriate sl_action. Since suchanH is in normal
form, it follows from Golubitsky and Stewart (1985) Proposition 4.3 that the
Liapunov-Schmidt reduced mapping for H agrees with h for coefficients not
involving t-derivatives. Hence p is surjective for D3x81—equlvariant
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mappings, hence also for Dy-equivariant mappings. But G is an &rdiirary
D;-equivariant mapping. Therefore the nondegeneracy conditions for Hopf

bifurcations in the reduced problem are satisfled for an open subset of
coefficients of degree < k in the original problem; and any combination of
signs of the relevant coefficients can occur {n the reduced problem.

Proof The first step is to find conditions under which the linearization L =
(dG)(0 ) Can possess purely imaginary eigenvalues. Now g(XgX,,X;) =
a(x,:X,Xq) and we have
qp=A
%ﬁ=B
%£=B
for certain kxk matrices A,B. Hence in kxk block form,
A B B
L= B A B
B B Al
There is a k-dimensional space V,, of vectors [v,v,vl{ve R¥) that {s invariant
under L. Indeed
v A B BJ||V (A+2B)v
Livvvl=L|v|= |[B A BJ||V|= (A+2B)v (6.2)
v B B A||v (A+2B)v | .
Hence the eigenvalues of LIV0 are those of A+2B.
Let @ = e2™/3 be a cube root of unity in C. Then, complexifying from
R™ to L™, we can find two other subspaces invariant under L:
V, = {[vav,0#vlv e RY,
V, = {[vo?v,avlv e R¥).
A similar calculation to (6.2) shows that the eigenvalues of LIV1 are those of
A+uB+0%B, which s A-B since 1+w+w? = 0.  Similarly L[V, has the
eigenvalues of A+»2B+uB = A-B. We conclude that the eigenvalues of L are:
The eigenvalues of A+2B, (6.3)
The eigenvalues of A-B, repeated twice.
Hence L has purely imaginary eigenvalues, giving the posstbility of Hopf
bifurcation in (5.2), if and only if either A+2B or A-B has purely imaginary

eigenvalues. For this to occur, we must have k > 2. We shall see that the
two cases correspond to different representations of D3, and hence lead to

different patterns of oscillation.
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In our standard notation, we have Dy 5 7= {1,5.52}. and the flip is
x € D3.  The standard actlon of § on the plane C is rotation through 2m/3,
that is, multiplication by & = 823, The actions on R¥ are as follows:
S(XgeX1Xa) = (XguX2Xo) (6.4)
K(XgeX1sXp) = (XgeXeXy)e
we seek to decompose R into irreducible subspaces for the action of Dy,
noting that every eigenspace for L is Dy-invariant. Clearly both § and x act
trivially on vectors [v,v,v] € V, so D5 acts on V,, by k copies of the trivial
action on R. We assert that R = VoeW, where W, is the sum of k copies of
the nontrivial action of Dy on R2 = C. This can easily be seen directly,
because D5 has only two distinct irreducible representations, and the trivial
one occurs only on V. That is, if [u,v,w] is fixed by D thenu = v = w, which
is obvious from (6.2). (For D, withn >3 a little more care must be taken at

this stage of the analysis stnce there are several nontrivial representations:

see §7.)
To summarize: R* breaks up as R¥eR% where Dy acts on R¥ by k

copies of the trivial representation, and on RZ by k copies of the nontrivial
representation. Explicitly, V, = R is spanned by all [v,v,v] and W, = R by
all [v,w,-v-w] (since this is obviously an invariant complement to Vo)-

Thus generically there are two cases. The first is when the purely
imaginary eigenvalue of L (which of course must be part of a complex

conjugate pair) comes from A+2B. It is then (generically) simple, and there
is a standard Hopf bifurcation. Since D5 acts trivially on Vg, all three

oscillators behave identically (same waveform, same phase). To put it
another way, D5 lies in the isotropy subgroup of such a solution.

The second case is when the purely imaginary eigenvalue of L comes
from A-B. By (6.1) this will have multiplicity at least 2, and generically (in
the world of D5 symmetry) exactly 2. We are then in the situation of

Theorem 5.1 of Golubitsky and Stewart (1985), with I' = D4 in its standard

representation. We conclude that there will be (at least) three branches of
oscillations, with isotropy subgroups 24, Z,(x), and Z,(x,T). We describe the

interpretation of each in turn.
The first, 23, is the discrete analogue of a rotating wave. The

waveform is fixed under cyclic permutation of the oscillators, provided
phase is shifted by 2m/3. The oscillations thus have the identical waveform
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in all three oscillators, but a phase lag of 21w/3 from each oscillator to the
next. (The phase lag may also be -2m/3, which is a physically distinct
solution only when the the numbering of the oscillators has been chosen: it is
in the same orbit under D3x81. By "waveform” we mean the trajectory of X,

in phase space R,
On the Z,(x) branch, the waveform Is {dentical when X, and x, are

Interchanged. In other words, oscillators 1 and 2 behave identically, while

oscillator O has a different waveform (not prescribed by the symmetry).
On the Zz(x.n) branch the waveform is identical if Xy and Xy are

interchanged &7 the phase is shifted by m. In other words, oscillators 1 and
2 have the same waveform but are exactly m out of phase, whereas oscillator
0 is "m out of phase with itself”, That is, a phase shift of 7 produces the
same waveform in oscillator 0, which is therefore osclllating with /s/f the
period of oscillators 1 and 2. The exact shape of the waveform is not
prescribed by the symmetry approach, but will be nearly sinusoidal close to
the bifurcation point. 0

At least with our current techniques, it is a more complicated matter
to determine whether the bifurcation is super- or subcritical, and which
branch (if any) is stable. Before the results of §4 can be used, G must be
Liapunov-Schmidt reduced to the appropriate eigenspace. Certain cubic
terms will distinguish stability of Zn or some Z, branch; suitable fifth order

terms will determine whether Z,(x) or Z,(x,m) is stable. We shall not

pursue this problem here.

Remark In the notation of (5.1) we have
A= (dF) gy, + 2K
B=-K
so the relevant etgenvalues are those of
(cIF)(0 N (once), (dF )(0 v 3K (twice).
In the second case, where the bifurcation breaks symmetry to Z5, Z,(x), or
Zy{x,m), 1t 1s possible for (dF)y,) to have eigenvalues with negative real

part. That is, if the coupling i{s removed (K = 0) the individual "oscillators"
need not be capable of osctilating on thelr own. This effect was noticed for
two coupled oscillators by Smale (1974).  Loosely speaking, the coupling,
rather than instabilities of individual components, can be the source of the
oscillation,
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Numerical Simulations. We have performed some numerical experiments
on a system of the form (5.1), taking

Flxy) = [-4 1] [x Tp(x%u?)[x ] + glx2?) [‘U] 'QK["] (6.5)
-1 -4 {ly y x] y

K= x[-4 2
-2 -4l.

When o = 1.05, p=5, q=30 we observe 23 symmetry. The three waveforms

where

(plotted for the x-variable) are shown in Figure 6.1, and the fact they they
are identical but phase-shifted by 21/3 is clear. Plotting trajectories in the
three phase planes (xp.gp) we observe identical 1imit cycles, with the three

phase points traversing them at three roughly equally spaced positions.
when o = 1.2, p = 5, g = -50 we observe Z,(x,1) symmetry. Now two

oscitlators traverse the same limit cycle m out of phase, while the third
remains s/eagy at the origin. By varying additional fifth order terms the
Z,(x) solution should be obtainable, although we have not attempted this. (We

remark that other kinds of behaviour appear to be observed in the numerical
solutions, notably quasiperiodic oscillation. This might be expected as a
secondary bifurcation linking distinct primary branches. Figure 6.3 shows
an interesting subharmonic oscillation with a great deal of structure.)

The fact that one oscillator is steady in this simulation deserves
comment. Suppose that F is odd, so that F(-x,-y) = -F(x,y). Then DyxZ, c

D3xS1 commutes with the vector field, where Z, = {0,m}. It follows that the
fixed-point suspace for Z = Z,(x,m) c D3xZ, is invariant under the flow. But

this subspace is the set of vectors [O,v,-v]. In other words, oscillator 0
stays at the origin, hence is steady.

Even if F is not odd, we can put the vector field into Birkhoff normal
form up to arbitrarily high order (for a discussion in this context, see
Golubitsky and Stewart (1985) Proposition B.6) so that in particular the
normal form commutes with Z,. It is tempting to conclude that for the

Z,(x,7) branch one oscillator s a/ways steady. That this is nof the case is
shown by Fig. 6.2, obtained from (6.5) by adding terms

(A
0 (x2y)y

to F, againat o« = 1.1, p=5,q=-50, r = 10, s = 0. Instead of the third
oscillator being steady, it exhibits & smal/-amplitude oscrllation at double
e frequency of the other two, and these latter are out of phase with each
other. This is precisely what is predicted by the symmetry analysis. Thus
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in this example the dynamic behaviour can definitely be changed by a

symmetry-breaking "tail" of arbitrarily high order occuring in the reduction

to Birkhoff normal form.

Figure 6.1 Numerical solution showing three identical waveforms, 2/3 out of phase. Here ox = 1.05,

p=5q= 20,r=0,s5=0.

——

Figere 6.2 Numerical solution showing two identical waveforms, w out of phase, and a third at double

the frequency. Hereor=1.1,p=5, ¢=-50,r=10,3=0.
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Flgure 6.3. A subhermonic oscillation with striking symmetry features observed numerically when o
=1.1,p=5,q=90,r=10,8=0.

7. The General Case
We now turn to the general case of n osclllators, described by (5.1).

We will prove:

Theorem 7.1 Suppose that L = (dG)((w has a pair of purely imaginary

elgenvalues +i (without loss of generality at N = 0) which cross the
imaginary axis with nonzero speed as A passes through 0. Let A, B be the
matrices of partial derivatives 0*16 and UXOG. restricted to the spaces of

XysXg-variables respectively. Then generically the purely imaginary
eigenvalues of L will be those of A+l,B where l] = 2 cos 2nj/n, 0 £ j < n-1.

They are simple if § = 0, or if j = n/2 [n even]; double otherwise. Assume
that the corresponding Liapunov-Schmidt reduced system Is nondegenerate in
the sense of (4.1,4.2). Then the resulting oscillation patterns may be
described using the results of §4, for a particular representation P of D

Remarks
(a) To avoid group-theoretic generalities we describe the use of P below

and give examples in $8.
(b) The nondegeneracy assumptions are generic for the equations (5.1),

for the reasons noted {n Remark 6.2b.
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Proof Let § = e2™" be a primitive n' root of unity in C. (Note that we
also use § to denote a generator of D, but since this acts on C as
multiplication by e2™/M no confusion should arise.) Recall that
glegag™,  glagh -
To find the eigenvalues of L we may complexify. Define the space of vectors
V) = {[vhE,... 5] | v € RN,
Then
c™ - VieVie..aV ..

The linearization L = (ch)(0 ) now takes the form

A B B]
B A B
B A B
n B A B (7.1)
B A B
B B A

where A and B are kxk matrices. This banded ("circulant”) structure of
course comes from the nearest-neighbour coupling. Now

LViEN,.. 80 D] = (A+(eleg-DB)v,Eh, ... 50 D),
whence the eigenvalues of LIV, are those of A«(Tl™-NB that is, of

A+(T+ehB = A+LB where 1, = 2 cos 2mj/n.
For example, when n = 3 we have

j=0: A+2cos0.8 = A+2B
j=1: A +2cos(21m/3)B = A-B
j=2: A+ 2cos(4n/3)B = A-B

as before.
Note that since cos(-8) = cos 6 these occur in pairs, ll = In_’. except for

j=0[nodd]and f = 0,n/2 [n even).
Provided k > 2 there can be purely imaginary eigenvalues of A+l’B for

any J. Generically these will be simple on Vl' Because of the way the ll pair

up, purely imaginary eigenvalues of L will generically be simple for j=0
[n odd], and § = 0, n/2 [n even); and of multiplicity 2 for all other j =
1,2,...[n/2] [n odd], 1,2,...,in-1 [n even]. The simple eigenvalue case
corresponds to ordinary Hopf bifurcation when j = 0 and to a type of Z, Hopf

bifurcation when j = n/2 (see below); the double eigenvalue case is
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symmetric Hopf bifurcation of the type studied in Golubitsky and Stewart
(1985). 0

The relevant action of Dn depends on the value of §, and we describe the

results below. They may be proved by a complexification argument, by
direct calculation, or by abstract representation theory. They are
sufficiently natural for a proof to be superfluous. Let Py be the

representation of D, on € given by

zr gk (rotation due to S € Z,)

z» 2 (flip x)
when j # 0, n/2. Let p, be the trivial representation on R. If n is even let
Pns, b€ the representation on R given by

z2n -2 (rotation)

29z (flip).
Suppose that a Hopf-type bifurcation occurs when eigenvalues of A+l)B cross
the imaginary axis with nonzero speed, with generic assumptions on
multipticity (simple for j = O,n/2; double for all other j). Then the action of
D, on the corresponding imaginary eigenspace is (isomorphic to) Py From
this we can predict the possible patterns of oscillation. To do this, observe
that pycan be obtalned by composing the standard representation of a sultable

dihedral group D with a homomorphism

(p’:Dn -+ D,
sending the rotation generator § € D to gland sending x to itself. The group
D is the image of D, under P and is a dihedral group Dq where

q=n/h, h=gcd(n,j).
Thus we may apply the general theory for Dq and re-interpret the results for

the original system of n oscillators. Essentially the effect is to bunch them
Into sets of size h (corresponding to cosets of Z, In Z,), all oscillators in one

such set behaving identically; tn addition the waveforms on the q sets of
oscillators so obtained behave like the waveforms for a system of q
oscillators with standard Dq—action. Rather than prove these assertions in

general (they are combinatorially somewhat complicated exercises in
elementary group theory) we describe in the next section examples, for low
n, which exhibit the typical features of the analysis.
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8. Examples
We have already studied the case n = 3; here we look at n = 2,4, and 5.

(a) n=2

There are exceptional features to D, - for example its irreducible

representations are all 1-dimensional - but the general theory above stiil
applies provided we take care with the group actions. Wehave l;=2,¢, =

-2, so the eigenvalues of L are those of A:2B. The corresponding
representations of D, on RZ = C are trivial (3.2 = 2) or "standard” (8.2 = -2,

k.2 = Z). In the first case the isotropy group is Z, (both oscillators have
identical waveforms and are in phase). In the second case it is Z,° =

{(0,0),(m,m)}. So a spatial rotation by mw (interchange oscillators) is
compensated for by a phase shift of 1. In other words, they oscillate with
identical waveforms but m out of phase. We thus recover a result of Othmer

and Scriven (1971).

(b) n=4
Now -

lo=2coso=2 11-2cosn/2-0

12=2cosn=-2 z3=2cos:’m/2-0.

There are three cases: purely imaginary eigenvalues of A+2B (simple,
ylelding the representation p, of D,); A (double, p,); and A-2B (simple,p,).

The typical oscillation patterns in these cases are shown schematically in

Fig. 8.1.
The case p, deserves further comment as it s a prototype for p, on D,

when n and 2 have a common factor. The Invariant subspace on which p,

occurs consists of all vectors [v,-v,v,-v] for v € RK. On this, § acts as -1d and
K acts trivially. So we get k copies of the 1-dimensional representation

X = -X, KX =X
on R. There is a unique isotropy subgroup generated by £2, x, and (5,m).
This ytelds the pattern of Fig. 8.1 for p,.
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REPRESENTATION ISOTROPY PATTERN COMMENTS

Identical waveforms

Travelling Wave
Phase lags + /2

P1 Z,

Oscillators 13 identical
in phase with twice

frequenci0,2 identical
and 11 out of phase

Py Z,(x)eZ,°

0,1 {dentical;
2,3 identical and  out of

phase with 0,1

P Z(xS)eZ,’

0,2 {dentical; 1,3
{dentical and 1 out of
phase with 0,2

P2 <2§,K.(g,ﬂ)>

Figere B.1 Generic oscillation patterns for a four—oscillator ring. Here { = “/2 :

(c) n=%
Here
Ly=2 L, =2,=2cos 2m/5 =T-1

I,=13=2cos4n/S=-T

where T is the golden number ¥(y¥5+1). Again there are three cases: purely
imagtnary eigenvalues of A+2B (simple, py); A+t-1B (double, py): and A-TB

(double, p,). The corresponding typical oscillation patterns are shown

schematically in Figure B.2.
The case p, is a prototype for p, on D, when n and £ are coprime but

# 1. We can obtain p, by composing the standard p; with the map § -+ 52.
This has the effect of re-ordering the oscillators from 01234 to 02413
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REPRESENTATION ISOTROPY

Po

Py

P

Figure 8.2 Generic oscillation patterns for a five-oscillator ring

MARTIN GOLUBLITSKY and IAN STEWART

Ds

Z,(x)

Z,(x , 1)

Zz(x)

22(1< ,T1)

CONNENTS

Identical waveforms

in phase

Travelling Wave
Phase lags £ 2/S

Oscillators 1,4 identical
in phase; 2,3 {dentical and

in phase

1,4 w out of phase;
2.3 1 out of phase;
0 of twice frequency

Phase lags $+41/5

Oscillators 1,4 identical
in phase; 2.3 identical and
in phase

1,4 1 out of phase;
2,3 w out of phase;
0 of twice frequency
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(replacing the pemtagon with the pentacle). If the patterns for py are
relabelled in this order, the patterns for p, result. Note that the Z,(x)
solutions for p, and p, yield the same pattern. This happens because the map
¥ » ¥2 defines an automorphism of D, which preserves the orbits of Z,(x)
and interchanges the two representations p, and p,. Similar phenomena
occur for representations p, of D, when n and k are coprime.

We end by comparing our results and methods with those of Alexander
and Auchmuty (1986). They work in a slightly different context, but there is
an area of overlap to which we address our comments. They seek solutions
in which all oscillators have identical waveforms xp(t). with possible phase

lags.  This ansatz rules out solutions other than those with isotropy
subgroup in (and possibly Z,(x) from those found above. In their Corollary

to Theorem 2 they prove (in a "global" context) the existence of this Zn

branch. Further, when n = 4 (or more generally n = 4k) they find a torus of
solutions of the form

Xo(t) = p(t)
X4(t) = p(t+x) (8.1)
Xo{t) = p(t+m)
X3(t) = p(t+1raY)
where X is an arbitrary phase shift. When x = 7 this is our Zz(x) solution.

But if x # O,m then their solution is not found by our methed, and this
deserves explanation. The answer is that their proof requires the equations
for each individual oscillator on RP to be Z,-symmetric (odd), and the

coupling to be tinear.
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