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Many observers see geometric visual hallucinations after taking hallu-
cinogens such as LSD, cannabis, mescaline or psilocybin; on viewing
bright �ickering lights; on waking up or falling asleep; in “near-death”
experiences; and in many other syndromes. Klüver organized the images
into four groups called form constants: (I) tunnels and funnels, (II) spirals,
(III) lattices, including honeycombs and triangles, and (IV) cobwebs. In
most cases, the images are seen in both eyes and move with them. We
interpret this to mean that they are generated in the brain. Here, we sum-
marize a theory of their origin in visual cortex (area V1), based on the
assumption that the form of the retino–cortical map and the architecture
of V1 determine their geometry. (A much longer and more detailed math-
ematical version has been published in Philosophical Transactions of the
Royal Society B, 356 [2001].)

We model V1 as the continuum limit of a lattice of interconnected hy-
percolumns, each comprising a number of interconnected iso-orientation
columns. Based on anatomical evidence, we assume that the lateral con-
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nectivity between hypercolumns exhibits symmetries, rendering it in-
variant under the action of the Euclidean group E(2), composed of re-
�ections and translations in the plane, and a (novel) shift-twist action.
Using this symmetry, we show that the various patterns of activity that
spontaneously emerge when V1’s spatially uniform resting state becomes
unstable correspond to the form constants when transformed to the vi-
sual �eld using the retino-cortical map. The results are sensitive to the
detailed speci�cation of the lateral connectivity and suggest that the
cortical mechanisms that generate geometric visual hallucinations are
closely related to those used to process edges, contours, surfaces, and
textures.

1 Introduction

Seeing vivid visual hallucinations is an experience described in almost all
human cultures. Painted hallucinatory images are found in prehistoric caves
(Clottes & Lewis-Williams, 1998) and scratched on petroglyphs (Patterson,
1992). Hallucinatory images are seen both when falling asleep (Dybowski,
1939) and on waking up (Mavromatis, 1987), following sensory depriva-
tion (Zubek, 1969), after taking ketamine and related anesthetics (Collier,
1972), after seeing bright �ickering light (Purkinje, 1918; Helmholtz, 1925;
Smythies, 1960), or on applying deep binocular pressure on the eyeballs
(Tyler, 1978), in “near-death” experiences (Blackmore, 1992), and, most strik-
ing, shortly after taking hallucinogens containing ingredients such as LSD,
cannabis, mescaline, or psilocybin (Siegel & Jarvik, 1975). In most cases,
the images are seen in both eyes and move with them, but maintain their
relative positions in the visual �eld. We interpret this to mean that they are
generated in the brain. One possible location for their origin is provided by
fMRI studies of visual imagery suggesting that V1 is activated when human
subjects are instructed to inspect the �ne details of an imagined visual object
(Miyashita, 1995). In 1928, Klüver (1966) organized such images into four
groups called form constants: (I) tunnels and funnels, (II) spirals, (III) lat-
tices, including honeycombs and triangles, and (IV) cobwebs, all of which
contain repeated geometric structures. Figure 1 shows their appearance in
the visual �eld. Ermentrout and Cowan (1979) provided a �rst account of
a theory of the generation of such form constants. Here we develop and
elaborate this theory in the light of the anatomical and physiological data
that have accumulated since then.

1.1 Form Constants and the Retino–Cortical Map. Assuming that form
constants are generated in part in V1, the �rst step in constructing a theory
of their origin is to compute their appearance in V1 coordinates. This is
done using the topographic map between the visual �eld and V1. It is well
established that the central region of the visual �eld has a much bigger
representation in V1 than does the peripheral �eld (Drasdo, 1977; Sereno
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Figure 1: Hallucinatory form constants. (I) Funnel and (II) spiral images seen
following ingestion of LSD (redrawn from Siegel & Jarvik,1975), (III) honeycomb
generated by marijuana (redrawn from Siegel & Jarvik, 1975), and (IV) cobweb
petroglyph (redrawn from Patterson, 1992).

et al., 1995). Such a nonuniform retino-cortical magni�cation is generated
by the nonuniform packing density of ganglion cells in the retina, whose
axons in the optic nerve target neurons in the lateral geniculate nucleus
(LGN), and (subsequently) in V1, that are much more uniformly packed.
Let rR D frR, hRg be the (polar) coordinates of a point in the visual �eld and
r D fx, yg its corresponding V1 coordinates. Given a retinal ganglion cell
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packing density rR (cells per unit retinal area) approximated by the inverse
square law,

rR D
1

(w0 C 2 rR)2 ,

(Drasdo, 1977), and a uniform V1 packing density r, we derive a coordi-
nate transformation (Cowan, 1977) that reduces, suf�ciently far away from
the fovea (when rR À w0/ 2 ) to a scaled version of the complex logarithm
(Schwartz, 1977),

x D
a

2
ln

µ
2

w0
rR

¶
, y D

bhR

2
, (1.1)

where w0 and 2 are constants. Estimates of w0 D 0.087 and 2 D 0.051 in
appropriate units can be obtained from Drasdo’s data on the human retina,
and a and b are constants. These values correspond to a magni�cation fac-
tor of 11.5 mm/degrees of visual angle at the fovea and 5.75 mm/degrees
of visual angle at rR D w0/ 2 D 1.7 degrees of visual angle. We can also
compute how the complex logarithm maps local edges or contours in the
visual �eld, that is, its tangent map. Let wR be the orientation preference of
a neuron in V1 whose receptive �eld is centered at the point rR in the visual
�eld, and let fr, w g be the V1 image of frR, wRg. It can be shown (Wiener,
1994; Cowan, 1997; Bressloff, Cowan, Golubitsky, Thomas, & Wiener, 2001)
that under the tangent map of the complex logarithm, w D wR ¡ hR. Given
the retino-cortical map frR, wRg ! fr, w g, we can compute the form of loga-
rithmic spirals, circles, and rays and their local tangents in V1 coordinates.
The equation for spirals can be written as hR D a ln[rR exp(¡b)] C c, whence
y ¡ c D a(x ¡ b) under the action rR ! r. Thus, logarithmic spirals be-
come oblique lines of constant slope a in V1. Circles and rays correspond to
vertical (a D 1) and horizontal (a D 0) lines. Since the slopes of the local
tangents to logarithmic spirals are given by the equation tan(wR ¡ hR) D a,
and therefore in V1 coordinates by tan w D a, the local tangents in V1 lie
parallel to the images of logarithmic spirals. It follows that types I and II
form constants corresponding to stripes of neural activity at various angles
in V1 and types III and IV to spatially periodic patterns of local tangents
in V1, as shown in Figure 2. On the average, about 30 to 36 stripes and
about 60 to 72 contours are perceived in the visual �eld, corresponding to
a wavelength of about 2.4 to 3.2 mm in human V1. This is comparable to
estimates of about twice V1 hypercolumn spacing (Hubel & Wiesel, 1974)
derived from the responses of human subjects to perceived grating patterns
(Tyler, 1982) and from direct anatomical measurements of human V1 (Hor-
ton & Hedley-Whyte, 1984). All of these facts and calculations reinforce the
suggestion that the form constants are located in V1. It might be argued that
since hallucinatory images are seen as continuous across the midline, they
must be located at higher levels in the visual pathway than V1. However,
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Figure 2: (a) Retino-cortical transform. Logarithmic spirals in the visual �eld
map to straight lines in V1. (b, c) The action of the map on the outlines of funnel
and spiral form constants.

there is evidence that callosal connections along the V1/V2 border can act
to maintain continuity of the images across the vertical meridian (Hubel &
Wiesel, 1962). Thus, if hallucinatory images are generated in both halves of
V1, as long as the callosal connections operate, such images will be contin-
uous across the midline.
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Figure 3: Outline of the architecture of V1 represented by equation 1.2. Local
connections between iso-orientation patches within a hypercolumn are assumed
to be isotropic. Lateral connections between iso-orientation patches in different
hypercolumns are assumed to be anisotropic.

1.2 Symmetries of V1 Intrinsic Circuitry. In recent years, data concern-
ing the functional organization and circuitry of V1 have accrued from mi-
croelectrode studies (Gilbert & Wiesel, 1983), labeling, and optical imaging
(Blasdel & Salama, 1986; Bosking, Zhang, Scho�eld, & Fitzpatrick, 1997).
Perhaps the most striking result is Blasdel and Salama’s (1986) demonstra-
tion of the large-scale organization of iso-orientation patches in primates.
We can conclude that approximately every 0.7 mm or so in V1 (in macaque),
there is an iso-orientation patch of a given preference w and that each hyper-
column has a full complement of such patches, with preferences running
from w to w C p . The other striking result concerns the intrinsic horizon-
tal connections in layers 2, 3, and (to some extent) 5 of V1. The axons of
these connections make terminal arbors only every 0.7 mm or so along
their tracks (Gilbert & Wiesel, 1983), and connect mainly to cells with sim-
ilar orientation preferences (Bosking et al., 1997). In addition, there is a
pronounced anisotropy to the pattern of such connections: differing iso-
orientation patches preferentially connect to patches in neighboring hyper-
columns in such a way as to form continuous contours under the action of
the retino-cortical map described above (Gilbert & Wiesel, 1983; Bosking et
al., 1997). This contrasts with the pattern of connectivity within any one hy-
percolumn, which is much more isotropic: any given iso-orientation patch
connects locally in all directions to all neighboring patches within a radius
of less than 0.7 mm (Blasdel & Salama, 1986). Figure 3 shows a diagram of
such connection patterns.
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Since each location in the visual �eld is represented in V1, roughly speak-
ing, by a hypercolumn-sized region containing all orientations, we treat r
and w as independent variables, so that all possible orientation preferences
exist at each corresponding position rR in the visual �eld. This continuum
approximation allows a mathematically tractable treatment of V1 as a lat-
tice of hypercolumns. Because the actual hypercolumn spacing (Hubel &
Wiesel, 1974) is about half the effective cortical wavelength of many of the
images we wish to study, care must be taken in interpreting cortical activ-
ity patterns as visual percepts. In addition, it is possible that lattice effects
could introduce deviations from the continuum model. Within the contin-
uum framework, let w(r, w | r0 , w 0 ) be the strength or weight of connections
from the iso-orientation patch at fx0 , y0g D r0 in V1 with orientation pref-
erence w 0 to the patch at fx, yg D r with preference w . We decompose w in
terms of local connections from elements within the same hypercolumn and
patchy lateral connections from elements in other hypercolumns, that is,

w(r, w | r0 , w 0 ) D wLOC (w ¡ w 0 )d (r ¡ r0 )

C bwLAT (s)d (r ¡ r0 ¡ sew )d (w ¡ w 0 ), (1.2)

where d (¢) is the Dirac delta function, ew is a unit vector in the w–direction,
b is a parameter that measures the weight of lateral relative to local con-
nections, and wLAT (s) is the weight of lateral connections between iso-
orientation patches separated by a cortical distance s along a visuotopic
axis parallel to their orientation preference. The fact that the lateral weight
depends ona rotated vector expresses its anisotropy. Observations by Hirsch
and Gilbert (1991) suggest that b is small and therefore that the lateral con-
nections modulate rather than drive V1 activity. It can be shown (Wiener,
1994; Cowan, 1997; Bressloff et al., 2001) that the weighting function de�ned
in equation 1.2 has a well-de�ned symmetry: it is invariant with respect to
certain operations in the plane of V1–translations fr, w g ! fr C u, wg, re�ec-
tions fx, y, wg ! fx, ¡y, ¡w g, anda rotation de�ned as fr, w g ! fRh [r], w Ch g,
where Rh [r] is the vector r rotated by the angle h . This form of the rotation
operation follows from the anisotropy of the lateral weighting function and
comprises a translation or shift of the orientation preference label w to w Ch ,
together with a rotation or twist of the position vector r by the angle h . Such
a shift-twist operation (Zweck & Williams, 2001) provides a novel way to
generate the Euclidean group E(2) of rigid motions in the plane. The fact
that the weighting function is invariant with respect to this form of E(2) has
important consequences for any model of the dynamics of V1. In particular,
the equivariant branching lemma (Golubitsky & Schaeffer, 1985) guarantees
that when the homogeneous state a(r, w ) D 0 becomes unstable, new states
with the symmetry of certain subgroups of E(2) can arise. These new states
will be linear combinations of patterns we call planforms.
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2 A Model of the Dynamics of V1

Let a(r, w , t) be the average membrane potential or activity in an iso-orienta-
tion patch at the point r with orientation preference w . The activity variable
a(r, w , t) evolves according to a generalization of the Wilson-Cowan equa-
tions (Wilson & Cowan, 1973) that incorporates an additional degree of
freedom to represent orientation preference and the continuum limit of the
weighting function de�ned in equation 1.2:

@a(r, w , t)
@t

D ¡aa(r, w , t) C
m

p

Z p

0
wLOC (w ¡ w 0 )s[a(r, w 0 , t)]dw 0

C º

Z 1

¡1
wLAT (s)s[a(r C sew , w , t)] ds, (2.1)

where a, m , and º D mb are, respectively, time and coupling constants,
and s[a] is a smooth sigmoidal function of the activity a. It remains only to
specify the form of the functions wLOC (w ) and wLAT (s). In the single pop-
ulation model considered here, we do not distinguish between excitatory
and inhibitory neurons and therefore assume both wLOC (w ) and wLAT (s) to
be “Mexican hats” of the generic form,

s¡1
1 exp(¡x2/2s2

1 ) ¡ s¡1
2 exp(¡x2 /2s2

2 ), (2.2)

with Fourier transform

W (p) D exp(¡s2
1 p2) ¡ exp(¡s2

2 p2),

(s1 < s2), such that iso-orientation patches at nearby locations mutually ex-
cite if they have similar orientation preferences, and inhibit otherwise, and
similar iso-orientation patches at locations at least r0 mm apart mutually
inhibit. In models that distinguish between excitatory and inhibitory pop-
ulations, it is possible to achieve similar results using inverted Mexican hat
functions that incorporate short-range inhibition and long-range excitation.
Such models may provide a better �t to anatomical data (Levitt, Lund, &
Yoshioka, 1996).

An equation F[a] D 0 is said to be equivariant with respect to a symmetry
operatorc if it commutes with it, that is, ifc F[a] D F[c a]. It follows from the
Euclidean symmetry of the weighting function w(r, w | r0, w 0 ) with respect
to the shift-twist action that equation 2.1 is equivariant with respect to it.
This has important implications for the dynamics of our model of V1. Let
a(r, w ) D 0 be a homogeneous stationary state of equation 2.1 that depends
smoothly on the coupling parameter m . When no iso-orientation patches
are activated, it is easy to show that a(r, w ) D 0 is stable for all values of m

less than a critical value m 0 (Ermentrout, 1998). However, the parameter m

can reach m 0 if, for example, the excitability of V1 is increased by the ac-
tion of hallucinogens on brain stem nuclei such as the locus ceruleus or the
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raphe nucleus, which secrete the monoamines serotonin and noradrenalin.
In such a case, the homogeneous stationary state a(r, w ) D 0 becomes un-
stable. If m remains close to m 0, then new stationary states develop that
are approximated by (�nite) linear combinations of the eigenfunctions of
the linearized version of equation 2.1. The equivariant branching lemma
(Golubitsky & Schaeffer, 1985) then guarantees the existence of new states
with the symmetry of certain subgroups of the Euclidean group E(2). This
mechanism, by which dynamical systems with Mexican hat interactions can
generate spatially periodic patterns that displace a homogeneous equilib-
rium, was �rst introduced by Turing (1952) in his article on the chemical
basis of morphogenesis.

2.1 Eigenfunctions of V1. Computing the eigenvalues and associated
eigenfunctions of the linearized version of equation 2.1 is nontrivial, largely
because of the presence of the anisotropic lateral connections. However,
given that lateral effects are only modulatory, so that b ¿ 1, degenerate
Rayleigh-Schrödinger perturbation theory can be used to compute them
(Bressloff et al., 2001). The results can be summarized as follows. Let s1 be
the slope of s[a] at the stationary equilibrium a D 0. Then to lowest order
in b , the eigenvalues l§ are

l§ (p, q) D ¡a C m s1[WLOC (p) C bfWLAT (0, q) § WLAT (2p, q)g], (2.3)

where WLOC (p) is the pth Fourier mode of wLOC (w ) and

WLAT (p, q) D (¡1)p
Z 1

0
wLAT (s)J2p (qs) ds

is the Fourier transform of the lateral weight distribution with J2p (x) the
Bessel function of x of integer order 2p. To these eigenvalues belong the
associated eigenfunctions

º§ (r, w ) D cn u§ (w ¡ wn) exp[ikn ¢ r]

C c¤
n u§¤ (w ¡ wn) exp[¡ikn ¢ r], (2.4)

where kn D fq cos wn, q sin wng and (to lowest order in b), u§ (w ) D cos 2pw

or sin 2pw , and the ¤ operator is complex conjugation. These functions will
be recognized as plane waves modulated by even or odd phase-shifted p –
periodic functions cos[2p(w ¡ wn)] or sin[2p(w ¡ wn)]. The relation between
the eigenvalues l§ and the wave numbers p and q given in equation 2.3 is
called a dispersion relation. In case l§ D 0 at m D m 0, equation 2.3 can be
rewritten as

m c D
a

s1[WLOC (p) C bfWLAT (0, q) C WLAT (2p, q)g] (2.5)
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Figure 4: Dispersion curves showing the marginal stability of the homogeneous
mode of V1. Solid lines correspond to odd eigenfunctions, dashed lines to even
ones. If V1 is in the Hubel-Wiesel mode (pc D 0), eigenfunctions in the form of
unmodulated plane waves or roll patterns can appear �rst at the wave numbers
(a) qc D 0 and (b) qc D 1. If V1 is in the coupled–ring mode (pc D 1), odd
modulated eigenfunctions can form �rst at the wave numbers (c) qc D 0 and
(d) qc D 1.

and gives rise to themarginal stability curves plotted inFigure 4. Examination
of these curves indicates that the homogeneous state a(r, w ) D 0 can lose its
stability in four differing ways, as shown in Table 1.

Table 1: Instabilities of V1.

Wave Local Lateral
Numbers Interactions Interactions Eigenfunction

pc D qc D 0 Excitatory Excitatory cn

pc D 0, qc 6D 0 Excitatory Mexican hat cn cos[kn ¢ r]
pc 6D 0, qc D 0 Mexican hat Excitatory cnu§ (w ¡ wn ) C c¤

nu§¤ (w ¡ wn )

pc 6D 0, qc 6D 0 Mexican hat Mexican hat cnu§ (w ¡ wn ) cos[kn ¢ r]
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We call responses with pc D 0 (rows 1 and 2) the Hubel-Wiesel mode of V1
operation. In such a mode, any orientation tuning must be extrinsic to V1,
generated, for example, by local anisotropies of the geniculo-cortical map
(Hubel & Wiesel, 1962). We call responses with pc 6D 0 (rows 3 and 4) the
coupled ring mode of V1 operation (Somers, Nelson, & Sur, 1996; Hansel &
Sompolinsky, 1997; Mundel, Dimitrov, & Cowan, 1997). In both cases, the
model reduces to a system of coupled hypercolumns, each modeled as a ring
of interacting iso-orientation patches with local excitation and inhibition.
Even if the lateral interactions are weak (b ¿ 1), the orientation preferences
become spatially organized in a pattern given by some combination of the
eigenfunctions º§ (r, w ).

3 Planforms and V1

It remains to compute the actual patterns of V1 activity that develop when
the uniform state loses stability. These patterns will be linear combina-
tions of the eigenfunctions described above, which we call planforms. To
compute them, we �nd those planforms that are left invariant by the ax-
ial subgroups of E(2) under the shift-twist action. An axial subgroup is a
restricted set of the symmetry operators of a group, whose action leaves in-
variant a one-dimensional vector subspace containing essentially one plan-
form. We limit these planforms to regular tilings of the plane (Golubit-
sky, Stewart, & Schaeffer, 1988), by restricting our computation to doubly
periodic planforms. Given such a restriction, there are only a �nite num-
ber of shift-twists to consider (modulo an arbitrary rotation of the whole
plane), and the axial subgroups and their planforms have either rhombic,
square, or hexagonal symmetry. To determine which planforms are stabi-
lized by the nonlinearities of the system, we use Lyapunov-Schmidt reduc-
tion (Golubitsky et al., 1988) and Poincar Âe-Lindstedt perturbation theory
(Walgraef, 1997) to reduce the dynamics to a set of nonlinear equations for
the amplitudes cn in equation 2.4. Euclidean symmetry restricts the struc-
ture of the amplitude equations to the form (on rhombic and square lat-
tices)

d
dt

cn D cn[(m ¡ m 0) ¡ c 0 |cn |2 ¡ 2
2X

m 6Dn
c nm |cm |2], (3.1)

where c nm depends on Dw , the angle between the two eigenvectors of the
lattice. We �nd that all rhombic planforms with 30± · Dw · 60± are stable.
Similar equations obtain for hexagonal lattices. In general, all such plan-
forms on rhombic and hexagonal lattices are stable (in appropriate param-
eter regimes) with respect to perturbations with the same lattice structure.
However, square planforms on square lattices are unstable and give way to
simple roll planforms comprising one eigenfunction.
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Figure 5: V1 Planforms corresponding to some axial subgroups. (a, b): Roll
and hexagonal patterns generated in V1 when it is in the Hubel-Wiesel operat-
ing mode. (c, d) Honeycomb and square patterns generated when V1 is in the
coupled-ring operating mode.

3.1 Form Constants as Stable Planforms. Figure 5 shows some of the
(mostly) stable planforms de�ned above in V1 coordinates and Figure 6
in visual �eld coordinates, generated by plotting at each point r a con-
tour element at the orientation w most strongly signaled at that point—that
point,that is, for which a(r, w ) is largest.

These planforms are either contoured or noncontoured and correspond
closely to Kluver’s form constants. In what we call the Hubel-Wiesel mode,
interactions between iso-orientation patches in a single hypercolumn are
weak and purely excitatory, so individual hypercolumns do not amplify any
particular orientation. However, if the long-range interactions are stronger
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Figure 6: The same planforms as shown in Figure 5 drawn in visual �eld coor-
dinates. Note however, that the feathering around the edges of the bright blobs
in b is a fortuitous numerical artifact.

and effectively inhibitory, then plane waves of cortical activity can emerge,
with no label for orientation preference. The resulting planforms are called
noncontoured and correspond to the types I and II form constants, as orig-
inally proposed by Ermentrout and Cowan (1979). On the other hand, if
coupled-ring-mode interactions between neighboring iso-orientation
patches are strong enough so that even weakly biased activity can trigger a
sharply tuned response, under the combined action of many interacting hy-
percolumns, plane waves labeled for orientation preference can emerge. The
resulting planforms correspond to types III and IV form constants. These
results suggest that the circuits in V1 that are normally involved in the de-
tection of oriented edges and the formation of contours are also responsible
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for the generation of the form constants. Since 20% of the (excitatory) lateral
connections in layers 2 and 3 of V1 end on inhibitory interneurons (Hirsch
& Gilbert, 1991), the overall action of the lateral connections can become in-
hibitory, especially at high levels of activity. The mathematical consequence
of this inhibition is the selection of odd planforms that do not form continu-
ous contours. We have shown that even planforms that do form continuous
contours can be selected when the overall action of the lateral connection is
inhibitory, if the model assumes deviation away from the visuotopic axis by
at least 45 degrees in the pattern of lateral connections (Bressloff et al., 2001)
(as opposed to our �rst model, in which connections between iso-orientation
patches are oriented along the visuotopic axis).

This might seem paradoxical given observations suggesting that there
are at least two circuits in V1: one dealing with contrast edges, in which
the relevant lateral connections have the anisotropy found by Bosking et al.
(1997), and others that might be involved with the processing of textures,
surfaces, and color contrast, which seem to have a much more isotropic lat-
eral connectivity (Livingstone & Hubel, 1984). However, there are several
intriguing possibilities that make the analysis more plausible. The �rst can
occur in case V1 operates in the Hubel-Wiesel mode (pc D 0). In such an op-
erating mode, if the lateral interactions are not as weak as we have assumed
in our analysis, then even contoured planforms can form. The second re-
lated possibility can occur if at low levels of activity, V1 operates initially
in the Hubel-Wiesel mode and the lateral and long-range interactions are
all excitatory (pc D qc D 0), so that a bulk instability occurs if the homo-
geneous state becomes unstable, which can be followed by the emergence
of patterned noncontoured planforms at the critical wavelength of about
2.67 mm, when the level of activity rises, and the longer-ranged inhibition
is activated (pc D 0, qc 6D 0), until V1 operates in the coupled-ring mode
when the short-range inhibition is also activated (pc 6D 0, qc 6D 0). In such
a case, even planforms can be selected by the anistropic connectivity, since
the degeneracy has already been broken by the noncontoured planforms.
A third possibility is related to an important gap in our current model:
we have not properly incorporated the observation that the distribution
of orientation preferences in V1 is not spatially homogeneous. In fact, the
well-known orientation “pinwheel” singularities originally found by Blas-
del and Salama (1986) turn out to be regions in which the scatter or rate
of change |Dw /Dr| of differing orientation preference labels is high—about
20 degrees—whereas in linear regions, it is only about 10 degrees (Mal-
donado & Gray, 1996). Such a difference leads to a second model circuit
(centered on the orientation pinwheels) with a lateral patchy connectivity
that is effectively isotropic (Yan, Dimitrov, & Cowan, 2001) and therefore
consistent with observations of the connectivity of pinwheel regions (Liv-
ingstone & Hubel, 1984). In such a case, even planforms are selected in the
coupled-ring mode. Types I and II noncontoured form constants could also
arise from a “�lling-in” process similar to that embodied in the retinex algo-
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Figure 7: (a) Lattice tunnel hallucination seen following the taking of marijuana
(redrawn from Siegel & Jarvik, 1975), with the permission of Alan D. Iselin.
(b) Simulation of the lattice tunnel generated by an even hexagonal roll pattern
on a square lattice.

rithm of Land and McCann (1971) following the generation of types III or IV
form constants in the coupled-ring mode. The model allows for oscillating
or propagating waves, as well as stationary patterns, to arise from a bulk
instability. Such waves are in fact observed: many subjects who have taken
LSD and similar hallucinogens report seeing bright white light at the center
of the visual �eld, which then “explodes” into a hallucinatory image (Siegel,
1977) in at most 3 seconds, corresponding to a propagation velocity in V1 of
about 2.5 cm per second, suggestive of slowly moving epileptiform activity
(Senseman, 1999). In this respect, it is worth noting that in the continuum
approximation we use in this study, both planforms arising when the long-
range interactions are purely excitatory correspond to the perception of a
uniform bright white light.

Finally, it should be emphasized that many variants of the Klüver form
constants have been described, some of which cannot be understood in
terms of the model we have introduced. For example the lattice tunnel
shown in Figure 7a is more complicated than any of the simple form con-
stants shown earlier. One intriguing possibility is that this image is gener-
ated as a result of a mismatch between the corresponding planform and
the underlying structure of V1. We have (implicitly) assumed that V1 has
patchy connections that endow it with lattice properties. It is clear from
the optical image data (Blasdel & Salama, 1986; Bosking et al., 1997) that
the cortical lattice is somewhat disordered. Thus, one might expect some
distortions to occur when planforms are spontaneously generated in such
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a lattice. Figure 7b shows a computation of the appearance in the visual
�eld of a roll pattern on a hexagonal lattice represented on a square lat-
tice, so that there is a slight incommensurability between the two. The re-
sulting pattern matches the hallucinatory image shown in Figure 7a quite
well.

4 Discussion

This work extends previous work on the cortical mechanisms underlying
visual hallucinations (Ermentrout & Cowan, 1979) by explicitly considering
cells with differing orientation preferences and by considering the action
of the retino-cortical map on oriented edges and local contours. This is
carried out by the tangent map associated with the complex logarithm, one
consequence of which is that w , the V1 label for orientation preference, is not
exactly equal to orientation preference in the visual �eld, wR but differs from
it by the angle hR, the polar angle of receptive �eld position. It follows that
elements tuned to the same angle w should be connected along lines at that
angle in V1. This is consistent with the observations of Blasdel and Sincich
(personal communication, 1999) and Bosking et al. (1997) and with one of
Mitchison and Crick’s (1982) hypotheses on the lateral connectivity of V1.
Note that near the vertical meridian (where most of the observations have
been made), changes in w approximate closely changes in wR. However, such
changes should be relatively large and detectable with optical imaging near
the horizontal meridian.

Another major feature outlined in this article is the presumed Euclidean
symmetry of V1. Many systems exhibit Euclidean symmetry. What is novel
here is the way in which such a symmetry is generated: by a shift fr, w g !
fr C s, w g followed by a twist fr, w g ! fRh [r], w C h g, as well as by the
usual translations and re�ections. It is the twist w ! w C h that is novel
and is required to match the observations of Bosking et al. (1997). In this
respect, it is interesting that Zweck and Williams (2001) recently introduced
a set of basis functions with the same shift-twist symmetry as part of an
algorithm to implement contour completion. Their reason for doing so is
to bind sparsely distributed receptive �elds together functionally, so as to
perform Euclidean invariant computations. It remains to explain the precise
relationship between the Euclidean invariant circuits we have introduced
here and Euclidean invariant receptive �eld models.

Finally, we note that our analysis indicates the possibility that V1 can
operate in two different dynamical modes, the Hubel-Wiesel mode or the
coupled-ring mode, depending on the levels of excitability of its various
excitatory and inhibitory cell populations. We have shown that the Hubel-
Wiesel mode can spontaneously generate noncontoured planforms and the
coupled-ring mode contoured ones. Such planforms are seen as hallucina-
tory images in the visual �eld, and their geometry is a direct consequence of
the architecture of V1. We conjecture that the ability of V1 to process edges,



Geometric Visual Hallucinations 489

contours, surfaces, and textures is closely related to the existence of these
two modes.
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