Kimberly Fessel

Postdoctoral Fellow
Mathematical Biosciences Institute

Schedule and News

  • Presented talk at Ohio Wesleyan University "Modeling cancer cell lineage and radiation-induced dedifferentiation." (06 Nov 14)
  • Paper submitted for publication "Mathematical analysis of a model for glucose regulation." (06 Nov 14)
  • Teaching MATH 2177: Mathematical Topics for Engineers during Fall 2014. (27 Aug 14)
  • Paper accepted for publication "A model for the nonlinear mechanism responsible for cochlear amplification." (24 July 14)

Contact Info

  • Email: fessel.6 (at)
  • Office: Jennings Hall 380,
                 Ohio State University
  • Phone: 614.688.3334


Research Interests

I am primarily interested in mathematical biology, asymptotic methods, and combining analytics with numerics to arrive at system solutions. Below are brief descriptions of my current and recent research. (Click the headers for more details on each project.)

  • Cancer Cell Lineage
    My current research focuses on the development of a cancer lineage model including the effect of radiation-induced cellular de-differentiation. A coupled ODE population model is used to track stem, committed progenitor, and differentiation cells both with and without applied radiation, and the role of various internal feedbacks is under investigation.
  • Glucose-Insulin Dynamics
    I am also currently analyzing glucose-insulin dynamics via analytic solution to the Bergman-Cobelli minimal model. With the use of an expanded intermediary function, we have developed a constrained minimizing algorithm to fit patient-specific parameters for diabetes prediction. We are now testing this analytic-numeric approach on clinical data.
  • Active Hearing
    My thesis research centered around the development of a comprehensive model for the transduction mechanism of the mammalian cochlea. The fluid-solid interactions of the cochlea can be described by coupled PDEs; whereas, a micromechanical model has been developed to represent the outer hair cells' external forcing which influences the system nonlinearly.

Curriculum Vitae

A PDF copy of my CV can be found here.
Last update: 09 October 2014.

web counter